softmax_gpudnn.h 39.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

17
#include "paddle/phi/backends/gpu/gpu_info.h"
18 19
#include "paddle/phi/common/amp_type_traits.h"
#include "paddle/phi/common/bfloat16.h"
20 21 22 23 24 25
#include "paddle/phi/common/float16.h"
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/kernels/funcs/axis_utils.h"
#include "paddle/phi/kernels/primitive/kernel_primitives.h"

// See Note [ Why still include the fluid headers? ]
26 27
#include "paddle/fluid/platform/device/gpu/gpu_device_function.h"
#include "paddle/fluid/platform/device/gpu/gpu_dnn.h"
28

29
namespace phi {
30

31 32
using ScopedTensorDescriptor = paddle::platform::ScopedTensorDescriptor;
using GPUDNNDataLayout = paddle::platform::DataLayout;
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

// Vectorization trait 4 * sizeof(T)
template <typename T>
class VecT4 {};
template <>
class VecT4<double> {
 public:
  using Type = long4;
};
template <>
class VecT4<float> {
 public:
  using Type = int4;
};
template <>
48
class VecT4<phi::dtype::float16> {
49 50 51
 public:
  using Type = int2;
};
52 53 54 55 56
template <>
class VecT4<phi::dtype::bfloat16> {
 public:
  using Type = int2;
};
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71

// Vectorization trait 2 * sizeof(T)
template <typename T>
class VecT2 {};
template <>
class VecT2<double> {
 public:
  using Type = int4;
};
template <>
class VecT2<float> {
 public:
  using Type = int2;
};
template <>
72
class VecT2<phi::dtype::float16> {
73 74 75
 public:
  using Type = int;
};
76 77 78 79 80
template <>
class VecT2<phi::dtype::bfloat16> {
 public:
  using Type = int;
};
81

82
static inline int Log2Ceil(int value) {
83 84 85 86 87 88 89 90 91 92 93
  int log2_value = 0;
  while ((1 << log2_value) < value) ++log2_value;
  return log2_value;
}

template <typename T, int BatchSize, int WarpSize>
__device__ __forceinline__ void WarpReduceSum(T* sum) {
#pragma unroll
  for (int offset = WarpSize / 2; offset > 0; offset /= 2) {
#pragma unroll
    for (int i = 0; i < BatchSize; ++i) {
94 95
      T sum_val =
          paddle::platform::CudaShuffleXorSync(0xFFFFFFFF, sum[i], offset);
96 97 98 99 100 101 102 103 104 105 106
      sum[i] = sum[i] + sum_val;
    }
  }
}

template <typename T, int BatchSize, int WarpSize>
__device__ __forceinline__ void WarpReduceMax(T* sum) {
#pragma unroll
  for (int offset = WarpSize / 2; offset > 0; offset /= 2) {
#pragma unroll
    for (int i = 0; i < BatchSize; ++i) {
107 108
      T max_val =
          paddle::platform::CudaShuffleXorSync(0xFFFFFFFF, sum[i], offset);
109 110 111 112 113
      sum[i] = max(sum[i], max_val);
    }
  }
}

114 115 116 117 118 119 120 121 122 123
template <typename Tx, typename Ty = Tx>
struct ReduceMaxFunctor {
  inline Ty initial() { return -std::numeric_limits<Ty>::infinity(); }

  __device__ __forceinline__ Ty operator()(const Ty& a, const Ty& b) const {
    return max(a, b);
  }
};

template <typename Tx, typename Ty = Tx>
124
struct ExpFunctor {
125
  HOSTDEVICE inline Ty operator()(const Tx& x) const {
126
    return static_cast<Ty>(std::exp(x));
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
  }
};

template <typename Tx, typename Ty = Tx>
struct ExpMulFunctor {
  HOSTDEVICE inline ExpMulFunctor() { y = static_cast<Tx>(1.0f); }

  HOSTDEVICE explicit inline ExpMulFunctor(Tx y) : y((Tx)(y)) {}

  HOSTDEVICE inline Ty operator()(const Tx& x) const {
    return static_cast<Ty>(std::exp(x) * y);
  }

 private:
  Tx y;
};

template <typename Tx, typename Ty = Tx>
struct UnarySubFunctor {
  HOSTDEVICE inline UnarySubFunctor() { y = static_cast<Tx>(0.0f); }

  HOSTDEVICE explicit inline UnarySubFunctor(Tx y) : y((Tx)(y)) {}

  HOSTDEVICE inline Ty operator()(const Tx& x) const {
    return static_cast<Ty>(x - y);
  }

 private:
  Tx y;
};

template <typename Tx, typename Ty = Tx>
struct UnaryLogFunctor {
  HOSTDEVICE inline UnaryLogFunctor() {}

  HOSTDEVICE explicit inline UnaryLogFunctor(int n) {}

  HOSTDEVICE inline Ty operator()(const Tx& x) const {
    return static_cast<Ty>(std::log(x));
  }
};

template <typename Tx, typename Ty>
struct DataTransFunctor {
  HOSTDEVICE inline DataTransFunctor() {}

  HOSTDEVICE explicit inline DataTransFunctor(int n) {}

  HOSTDEVICE inline Ty operator()(const Tx& x) const {
    return x == -std::numeric_limits<Tx>::infinity()
               ? -std::numeric_limits<Ty>::infinity()
               : static_cast<Ty>(x);
  }
};

template <typename Tx, typename Ty = Tx>
struct UnaryDivFunctor {
  HOSTDEVICE inline UnaryDivFunctor() { n_inv = static_cast<Tx>(1.0f); }

  HOSTDEVICE explicit inline UnaryDivFunctor(Tx n) : n_inv((Tx)(1.0 / n)) {}

  HOSTDEVICE inline Ty operator()(const Tx& x) const {
    return static_cast<Ty>(x * n_inv);
  }

 private:
  Tx n_inv;
};

196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
template <typename Tx, typename Ty = Tx>
struct SoftmaxForwardFunctor {
  HOSTDEVICE inline SoftmaxForwardFunctor(Tx max, Tx sum)
      : max(max), sum(sum) {}

  HOSTDEVICE inline Ty operator()(const Tx& x) const {
    return static_cast<Ty>(std::exp(x - max) / sum);
  }

 private:
  Tx max;
  Tx sum;
};

template <typename Tx, typename Ty = Tx>
struct SoftmaxBackwardFunctor {
  HOSTDEVICE inline SoftmaxBackwardFunctor(Tx sum) : sum(sum) {}

  HOSTDEVICE inline Ty operator()(const Tx& grad_out, const Tx& out) const {
    return static_cast<Ty>(out * (grad_out - sum));
  }

 private:
  Tx sum;
};

template <typename Tx, typename Ty = Tx>
struct LogSoftmaxForwardFunctor {
  HOSTDEVICE inline LogSoftmaxForwardFunctor(Tx max, Tx sum)
      : max(max), log_sum(std::log(sum)) {}

  HOSTDEVICE inline Ty operator()(const Tx& x) const {
    return static_cast<Ty>(x - max - log_sum);
  }

 private:
  Tx max;
  Tx log_sum;
};

template <typename Tx, typename Ty = Tx>
struct LogSoftmaxBackwardFunctor {
  HOSTDEVICE inline LogSoftmaxBackwardFunctor(Tx sum) : sum(sum) {}

  HOSTDEVICE inline Ty operator()(const Tx& grad_out, const Tx& out) const {
    return static_cast<Ty>(grad_out - std::exp(out) * sum);
  }

 private:
  Tx sum;
};

248 249 250 251 252 253 254 255 256 257
/*
Core function of computing softmax forward for axis=-1.
The computation includes
  - Compute maximum of batch: maxvalue_{i} = max_j src_{i,j}
  - Compute sum of exp batch: s_{i} = sum_{j}{ exp(src_{i,j} - maxvalue_{i} }
  - Compute: (a_{i,j} - maxvalue_{i}) / s_{i}
One warp (32 threads) is used to compute 1 or 2 batch (kBatchSize).
For reduction max (sum), firstly compute max (sum) to one warp, then use shuffle
api to compute max (sum) in one warp.
*/
258 259 260 261
template <typename T,
          typename VecT,
          typename AccT,
          int Log2Elements,
262
          bool LogMode = false>
263 264 265 266
__global__ void WarpSoftmaxForward(T* softmax,
                                   const T* src,
                                   const int batch_size,
                                   const int stride,
267 268 269 270
                                   const int element_count) {
  constexpr int kDimCeil = 1 << Log2Elements;
  constexpr int kWarpSize = (kDimCeil < 32) ? kDimCeil : 32;
  constexpr int kVSize = sizeof(VecT) / sizeof(T);
271 272
  constexpr int kLoops = kDimCeil / kWarpSize;
  constexpr int kLoopsV = (kLoops >= kVSize) ? (kLoops / kVSize) : 1;
273 274
  constexpr int kBatchSize = (kDimCeil <= 32) ? 2 : 1;
  int first_batch = (blockDim.y * blockIdx.x + threadIdx.y) * kBatchSize;
275 276 277 278
  constexpr int kStep = kBatchSize * kLoopsV * kVSize;
  constexpr int kVItem = kLoopsV * kVSize;
  constexpr AccT kLowInf = -std::numeric_limits<AccT>::infinity();
  using kMode = kps::details::ReduceMode;
279 280 281 282 283 284 285 286 287

  // max index to read
  int idx_max_v[kBatchSize];
#pragma unroll
  for (int i = 0; i < kBatchSize; i++) {
    int idx_max = ((i + first_batch) < batch_size) ? element_count : 0;
    idx_max_v[i] = idx_max / kVSize;
  }

F
Feng Xing 已提交
288
  // data src
289 290 291 292 293 294 295 296
  // src_data: the raw data form global memory
  // sub_data: store the data obtained by (src_data - max), used by log_softmax
  // exp_data: store the data obtained by (exp(sub_data)), used by softmax
  T src_data[kBatchSize][kLoopsV][kVSize];
  AccT sub_data[kBatchSize][kLoopsV][kVSize];
  AccT exp_data[kBatchSize][kLoopsV][kVSize];
  kps::Init<AccT, kStep>(&sub_data[0][0][0], kLowInf);
  kps::Init<T, kStep>(&src_data[0][0][0], -std::numeric_limits<T>::infinity());
F
Feng Xing 已提交
297 298 299 300 301 302 303 304 305 306 307 308

  // data dst
  T out_tmp[kBatchSize][kLoopsV][kVSize];

  // max value
  AccT max[kBatchSize];
  kps::Init<AccT, kBatchSize>(&max[0], kLowInf);

  // sum value
  AccT sum[kBatchSize] = {0};

// read data from global memory
309 310
#pragma unroll
  for (int i = 0; i < kBatchSize; ++i) {
F
Feng Xing 已提交
311 312
    const VecT* src_v =
        reinterpret_cast<const VecT*>(&src[(first_batch + i) * stride]);
313
    VecT* reg_v = reinterpret_cast<VecT*>(&src_data[i][0][0]);
314
    kps::ReadData<VecT, VecT, kLoopsV, 1, true>(
315
        &reg_v[0], &src_v[0], idx_max_v[i], 0, kWarpSize, 1);
316
    kps::ElementwiseUnary<T, AccT, kVItem, 1, DataTransFunctor<T, AccT>>(
317
        &sub_data[i][0][0], &src_data[i][0][0], DataTransFunctor<T, AccT>());
318 319
  }

320
  // compute max
321 322 323 324 325
  kps::Reduce<AccT,
              kVItem,
              kBatchSize,
              ReduceMaxFunctor<AccT>,
              kMode::kLocalMode>(
326
      &max[0], &sub_data[0][0][0], ReduceMaxFunctor<AccT>(), true);
327
  WarpReduceMax<AccT, kBatchSize, kWarpSize>(max);
328

329 330
// compute sum
#pragma unroll
331
  for (int i = 0; i < kBatchSize; ++i) {
332
    kps::ElementwiseUnary<AccT, AccT, kVItem, 1, UnarySubFunctor<AccT>>(
333
        &sub_data[i][0][0], &sub_data[i][0][0], UnarySubFunctor<AccT>(max[i]));
334
    kps::ElementwiseUnary<AccT, AccT, kVItem, 1, ExpFunctor<AccT>>(
335
        &exp_data[i][0][0], &sub_data[i][0][0], ExpFunctor<AccT>());
336
  }
337 338 339 340 341
  kps::Reduce<AccT,
              kVItem,
              kBatchSize,
              kps::AddFunctor<AccT>,
              kMode::kLocalMode>(
342
      &sum[0], &exp_data[0][0][0], kps::AddFunctor<AccT>(), true);
343 344
  WarpReduceSum<AccT, kBatchSize, kWarpSize>(sum);

F
Feng Xing 已提交
345
// write data to global memory
346 347
#pragma unroll
  for (int i = 0; i < kBatchSize; ++i) {
F
Feng Xing 已提交
348 349 350
    VecT* softmax_v =
        reinterpret_cast<VecT*>(&softmax[(first_batch + i) * stride]);
    VecT* reg_v = reinterpret_cast<VecT*>(&out_tmp[i][0][0]);
351
    if (LogMode) {
352
      kps::ElementwiseUnary<AccT, T, kVItem, 1, UnarySubFunctor<AccT>>(
353
          &out_tmp[i][0][0],
354
          &sub_data[i][0][0],
355 356
          UnarySubFunctor<AccT>(std::log(sum[i])));
    } else {
357
      kps::ElementwiseUnary<AccT, T, kVItem, 1, UnaryDivFunctor<AccT>>(
358
          &out_tmp[i][0][0], &exp_data[i][0][0], UnaryDivFunctor<AccT>(sum[i]));
359
    }
360
    kps::WriteData<VecT, VecT, kLoopsV, 1, true>(
361
        &softmax_v[0], &reg_v[0], idx_max_v[i], 0, kWarpSize, 1);
362 363 364 365 366 367 368 369 370 371 372 373
  }
}

/*
Core function of computing softmax backward for axis=-1.
The computation includes
  - Compute sum of exp batch: s_{i} = sum_{j} {src_{i,j} * grad_{i,j}
  - Compute src_{i,j} * ( grad_{i,j}) - s_{i} )
One warp (32 threads) is used to compute 1 or 2 batch (kBatchSize).
For reduction max (sum), firstly compute max (sum) to one warp, then use shuffle
api to compute max (sum) in one warp.
*/
374 375 376 377
template <typename T,
          typename VecT,
          typename AccT,
          int Log2Elements,
378
          bool LogMode = false>
379 380 381 382 383
__global__ void WarpSoftmaxBackward(T* dst,
                                    const T* grad,
                                    const T* src,
                                    int batch_size,
                                    int stride,
384 385 386 387
                                    int element_count) {
  constexpr int kVSize = sizeof(VecT) / sizeof(T);
  constexpr int kDimCeil = 1 << Log2Elements;
  constexpr int kWarpSize = (kDimCeil < 32) ? kDimCeil : 32;
388
  constexpr int kLoops = kDimCeil / kWarpSize;
389
  constexpr int kBatchSize = (kDimCeil <= 128) ? 2 : 1;
390
  constexpr int kLoopsV = (kLoops >= kVSize) ? (kLoops / kVSize) : 1;
391 392
  int element_count_v = element_count / kVSize;
  int first_batch = (blockDim.y * blockIdx.x + threadIdx.y) * kBatchSize;
393 394 395 396 397 398 399 400
  int local_batches = min(batch_size - first_batch, kBatchSize);

  // max index to read
  int idx_max_v[kBatchSize];
#pragma unroll
  for (int i = 0; i < kBatchSize; i++) {
    int idx_max = ((i + first_batch) < batch_size) ? element_count : 0;
    idx_max_v[i] = idx_max / kVSize;
401 402 403
  }

  // read data from global memory
404 405 406 407 408 409 410 411
  VecT src_reg[kBatchSize][kLoopsV];
  VecT grad_reg[kBatchSize][kLoopsV];
  VecT k_value;
  for (int s = 0; s < kVSize; s++) {
    reinterpret_cast<T*>(&k_value)[s] = 0.0;
  }
  kps::Init<VecT, kBatchSize * kLoopsV>(&src_reg[0][0], k_value);
  kps::Init<VecT, kBatchSize * kLoopsV>(&grad_reg[0][0], k_value);
412
#pragma unroll
413 414 415 416 417
  for (int i = 0; i < kBatchSize; ++i) {
    int flag = i < local_batches ? 1 : 0;
    int ptr = (first_batch + i) * stride;
    const VecT* src_v = reinterpret_cast<const VecT*>(&src[ptr]);
    const VecT* grad_v = reinterpret_cast<const VecT*>(&grad[ptr]);
418
    kps::ReadData<VecT, VecT, kLoopsV, 1, true>(
419
        &src_reg[i][0], &src_v[0], idx_max_v[i], 0, kWarpSize, flag);
420
    kps::ReadData<VecT, VecT, kLoopsV, 1, true>(
421
        &grad_reg[i][0], &grad_v[0], idx_max_v[i], 0, kWarpSize, flag);
422 423
  }

424 425 426 427 428 429 430
  // change T to AccT
  AccT src_tmp[kBatchSize][kLoopsV][kVSize];
  AccT grad_tmp[kBatchSize][kLoopsV][kVSize];
  const T* src_ptr = reinterpret_cast<const T*>(&src_reg[0][0]);
  const T* grad_ptr = reinterpret_cast<const T*>(&grad_reg[0][0]);
  constexpr int kStep = kBatchSize * kLoopsV * kVSize;
  constexpr int kVItem = kLoopsV * kVSize;
431
  kps::ElementwiseUnary<T, AccT, kStep, 1, DataTransFunctor<T, AccT>>(
432
      &src_tmp[0][0][0], &src_ptr[0], DataTransFunctor<T, AccT>());
433
  kps::ElementwiseUnary<T, AccT, kStep, 1, DataTransFunctor<T, AccT>>(
434 435
      &grad_tmp[0][0][0], &grad_ptr[0], DataTransFunctor<T, AccT>());

436 437
  // compute sum
  AccT sum[kBatchSize]{0.0};
438 439 440
  AccT sum_tmp[kBatchSize][kLoopsV][kVSize];
  AccT* gradptr = reinterpret_cast<AccT*>(&grad_tmp[0][0][0]);
  AccT* srcptr = reinterpret_cast<AccT*>(&src_tmp[0][0][0]);
441 442 443 444 445 446 447 448
  if (LogMode) {
    kps::Reduce<AccT,
                kVItem,
                kBatchSize,
                kps::AddFunctor<AccT>,
                kps::details::ReduceMode::kLocalMode>(
        &sum[0], &grad_tmp[0][0][0], kps::AddFunctor<AccT>(), true);
  } else {
449
    kps::ElementwiseBinary<AccT, AccT, kStep, 1, kps::MulFunctor<AccT>>(
450 451 452 453 454 455 456 457
        &sum_tmp[0][0][0], &gradptr[0], &srcptr[0], kps::MulFunctor<AccT>());
    kps::Reduce<AccT,
                kVItem,
                kBatchSize,
                kps::AddFunctor<AccT>,
                kps::details::ReduceMode::kLocalMode>(
        &sum[0], &sum_tmp[0][0][0], kps::AddFunctor<AccT>(), true);
  }
458 459
  WarpReduceSum<AccT, kBatchSize, kWarpSize>(sum);

460 461 462
  // write result to global memory
  AccT out[kBatchSize][kLoopsV][kVSize];
  T out_tmp[kBatchSize][kLoopsV][kVSize];
463 464 465
#pragma unroll
  for (int i = 0; i < kBatchSize; ++i) {
    if (i >= local_batches) break;
466 467
    AccT* gradptr = reinterpret_cast<AccT*>(&grad_tmp[i][0][0]);
    AccT* srcptr = reinterpret_cast<AccT*>(&src_tmp[i][0][0]);
468
    if (LogMode) {
469
      kps::ElementwiseUnary<AccT, AccT, kVItem, 1, ExpMulFunctor<AccT>>(
470
          &out[i][0][0], &srcptr[0], ExpMulFunctor<AccT>(sum[i]));
471
      kps::ElementwiseBinary<AccT, T, kVItem, 1, kps::SubFunctor<AccT>>(
472 473 474 475 476
          &out_tmp[i][0][0],
          &gradptr[0],
          &out[i][0][0],
          kps::SubFunctor<AccT>());
    } else {
477
      kps::ElementwiseUnary<AccT, AccT, kVItem, 1, UnarySubFunctor<AccT>>(
478
          &out[i][0][0], &gradptr[0], UnarySubFunctor<AccT>(sum[i]));
479
      kps::ElementwiseBinary<AccT, T, kVItem, 1, kps::MulFunctor<AccT>>(
480 481 482 483 484
          &out_tmp[i][0][0],
          &srcptr[0],
          &out[i][0][0],
          kps::MulFunctor<AccT>());
    }
485
    VecT* dst_v = reinterpret_cast<VecT*>(&dst[(first_batch + i) * stride]);
486
    VecT* reg_v = reinterpret_cast<VecT*>(&out_tmp[i][0][0]);
487
    kps::WriteData<VecT, VecT, kLoopsV, 1, true>(
488
        &dst_v[0], &reg_v[0], idx_max_v[i], 0, kWarpSize, 1);
489 490 491
  }
}

492 493 494 495 496
#define SOFTMAX_WARP_FORWARD_CASE(Log2Elements, AccT)        \
  case Log2Elements:                                         \
    WarpSoftmaxForward<T, VecT, AccT, Log2Elements, LogMode> \
        <<<blocks, threads, 0, dev_ctx.stream()>>>(          \
            dst, src, batch_size, stride, element_count);    \
497 498 499 500 501 502
    break;

/*
  Wrapper of softmax formward with template instantiation on size of input.
*/
template <typename T, typename VecT, bool LogMode>
503 504 505 506 507 508 509 510
void SwitchWarpSoftmaxForward(const int blocks,
                              const dim3 threads,
                              const GPUContext& dev_ctx,
                              T* dst,
                              const T* src,
                              const int batch_size,
                              const int stride,
                              const int element_count,
511
                              int Log2Elements) {
512
  using AccT = typename phi::dtype::MPTypeTrait<T>::Type;
513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
  switch (Log2Elements) {
    SOFTMAX_WARP_FORWARD_CASE(0, AccT);
    SOFTMAX_WARP_FORWARD_CASE(1, AccT);
    SOFTMAX_WARP_FORWARD_CASE(2, AccT);
    SOFTMAX_WARP_FORWARD_CASE(3, AccT);
    SOFTMAX_WARP_FORWARD_CASE(4, AccT);
    SOFTMAX_WARP_FORWARD_CASE(5, AccT);
    SOFTMAX_WARP_FORWARD_CASE(6, AccT);
    SOFTMAX_WARP_FORWARD_CASE(7, AccT);
    SOFTMAX_WARP_FORWARD_CASE(8, AccT);
    SOFTMAX_WARP_FORWARD_CASE(9, AccT);
    default:
      break;
  }
}

529 530 531 532 533
#define SOFTMAX_WARP_BACKWARD_CASE(Log2Elements, AccT)          \
  case Log2Elements:                                            \
    WarpSoftmaxBackward<T, VecT, AccT, Log2Elements, LogMode>   \
        <<<blocks, threads, 0, dev_ctx.stream()>>>(             \
            dst, grad, src, batch_size, stride, element_count); \
534 535 536 537 538 539
    break;

/*
Wrapper of softmax backward with template instantiation on size of input.
*/
template <typename T, typename VecT, bool LogMode>
540 541 542 543 544 545 546 547 548 549 550
void SwitchWarpSoftmaxBackward(const int blocks,
                               const dim3 threads,
                               const GPUContext& dev_ctx,
                               T* dst,
                               const T* grad,
                               const T* src,
                               const int batch_size,
                               const int stride,
                               const int element_count,
                               int Log2Elements) {
  using AccT = typename phi::dtype::MPTypeTrait<T>::Type;
551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569
  switch (Log2Elements) {
    SOFTMAX_WARP_BACKWARD_CASE(0, AccT);
    SOFTMAX_WARP_BACKWARD_CASE(1, AccT);
    SOFTMAX_WARP_BACKWARD_CASE(2, AccT);
    SOFTMAX_WARP_BACKWARD_CASE(3, AccT);
    SOFTMAX_WARP_BACKWARD_CASE(4, AccT);
    SOFTMAX_WARP_BACKWARD_CASE(5, AccT);
    SOFTMAX_WARP_BACKWARD_CASE(6, AccT);
    SOFTMAX_WARP_BACKWARD_CASE(7, AccT);
    SOFTMAX_WARP_BACKWARD_CASE(8, AccT);
    SOFTMAX_WARP_BACKWARD_CASE(9, AccT);
    default:
      break;
  }
}

#undef SOFTMAX_WARP_FORWARD_CASE
#undef SOFTMAX_WARP_BACKWARD_CASE

570 571 572 573 574
/**
 * <NormalSoftmaxKernel>
 * Better performence when axis != -1
 */

575 576 577 578
static void GetGridDim(
    int high_dim, int mid_dim, int low_dim, const dim3& block, dim3* grid) {
  int device_id = phi::backends::gpu::GetCurrentDeviceId();
  int max_mp = phi::backends::gpu::GetGPUMultiProcessors(device_id);
579
  int max_threads_per_mp =
580
      phi::backends::gpu::GetGPUMaxThreadsPerMultiProcessor(device_id);
581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598
  int max_threads = max_threads_per_mp * max_mp;
  int num_threads = block.x * block.y;
  int max_num_blocks = max_threads / num_threads;

  int grid_x = (low_dim + block.x - 1) / block.x;
  grid_x = std::min(grid_x, max_num_blocks);
  int grid_y = (max_num_blocks + grid_x - 1) / grid_x;
  grid_y = std::min(grid_y, high_dim);
  grid->x = grid_x;
  grid->y = grid_y;
}

static void GetBlockDim(int mid_dim, int low_dim, dim3* block) {
#ifdef __HIPCC__
  constexpr int max_num_threads = 256;
#else
  constexpr int max_num_threads = 1024;
#endif
599 600
  int block_x = 1 << Log2Ceil(low_dim);
  int block_y = 1 << Log2Ceil(mid_dim);
601 602 603 604 605
  block->x = std::min(block_x, 32);
  block->y = std::min(block_y, static_cast<int>(max_num_threads / block->x));
  block->x = std::min(block_x, static_cast<int>(max_num_threads / block->y));
}

606 607
static void GetLaunchConfig(
    int high_dim, int mid_dim, int low_dim, dim3* grid, dim3* block) {
608 609 610 611
  GetBlockDim(mid_dim, low_dim, block);
  GetGridDim(high_dim, mid_dim, low_dim, *block, grid);
}

612 613
template <typename T,
          typename AccT,
614 615
          template <typename, typename>
          class Functor>
616 617
__global__ void NormalSoftmaxForward(
    T* output, const T* input, int high_dim, int mid_dim, int low_dim) {
618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634
  using kMode = kps::details::ReduceMode;
  const int high_stride = mid_dim * low_dim;
  const int mid_stride = low_dim;
  for (int high_id = blockIdx.y; high_id < high_dim; high_id += gridDim.y) {
    for (int low_id = blockIdx.x * blockDim.x + threadIdx.x; low_id < low_dim;
         low_id += blockDim.x * gridDim.x) {
      const int input_offset = high_id * high_stride + low_id;

      // 1. reduce max
      AccT max_value = -std::numeric_limits<AccT>::infinity();
      AccT value = -std::numeric_limits<AccT>::infinity();
      for (int mid_id = threadIdx.y; mid_id < mid_dim; mid_id += blockDim.y) {
        value = static_cast<AccT>(input[input_offset + mid_id * mid_stride]);
        max_value = kps::MaxFunctor<AccT>()(max_value, value);
      }

      if (blockDim.y > 1) {
635
        kps::Reduce<AccT, 1, 1, kps::MaxFunctor<AccT>, kMode::kGlobalMode>(
636 637 638 639 640 641 642 643 644 645
            &max_value, &max_value, kps::MaxFunctor<AccT>(), false);
      }

      // 2. reduce sum
      AccT sum = 0;
      for (int mid_id = threadIdx.y; mid_id < mid_dim; mid_id += blockDim.y) {
        value = static_cast<AccT>(input[input_offset + mid_id * mid_stride]);
        sum += std::exp(value - max_value);
      }
      if (blockDim.y > 1) {
646
        kps::Reduce<AccT, 1, 1, kps::AddFunctor<AccT>, kMode::kGlobalMode>(
647 648 649 650 651 652 653 654 655 656 657 658 659
            &sum, &sum, kps::AddFunctor<AccT>(), false);
      }

      // 3. (log)softmax
      Functor<AccT, T> functor(max_value, sum);
      for (int mid_id = threadIdx.y; mid_id < mid_dim; mid_id += blockDim.y) {
        int data_offset = input_offset + mid_id * mid_stride;
        output[data_offset] = functor(static_cast<AccT>(input[data_offset]));
      }
    }
  }
}

660 661
template <typename T,
          typename AccT,
662 663
          template <typename, typename>
          class Functor,
664
          bool LogMode>
665 666 667 668 669 670
__global__ void NormalSoftmaxBackward(T* input_grad,
                                      const T* output_grad,
                                      const T* output,
                                      int high_dim,
                                      int mid_dim,
                                      int low_dim) {
671 672 673 674 675 676 677 678 679 680
  using kMode = kps::details::ReduceMode;
  const int high_stride = mid_dim * low_dim;
  const int mid_stride = low_dim;
  for (int high_id = blockIdx.y; high_id < high_dim; high_id += gridDim.y) {
    for (int low_id = blockIdx.x * blockDim.x + threadIdx.x; low_id < low_dim;
         low_id += blockDim.x * gridDim.x) {
      const int grad_offset = high_id * high_stride + low_id;

      // 1. reduce sum
      AccT sum = 0;
681 682 683 684 685 686 687 688 689 690 691
      if (LogMode) {
        for (int mid_id = threadIdx.y; mid_id < mid_dim; mid_id += blockDim.y) {
          int data_offset = grad_offset + mid_id * mid_stride;
          sum += static_cast<AccT>(output_grad[data_offset]);
        }
      } else {
        for (int mid_id = threadIdx.y; mid_id < mid_dim; mid_id += blockDim.y) {
          int data_offset = grad_offset + mid_id * mid_stride;
          sum += static_cast<AccT>(output_grad[data_offset]) *
                 static_cast<AccT>(output[data_offset]);
        }
692 693
      }
      if (blockDim.y > 1) {
694
        kps::Reduce<AccT, 1, 1, kps::AddFunctor<AccT>, kMode::kGlobalMode>(
695 696 697 698 699 700 701 702 703 704 705 706 707 708 709
            &sum, &sum, kps::AddFunctor<AccT>(), false);
      }

      // 2. (log)softmax backward
      Functor<AccT, T> functor(sum);
      for (int mid_id = threadIdx.y; mid_id < mid_dim; mid_id += blockDim.y) {
        int data_offset = grad_offset + mid_id * mid_stride;
        input_grad[data_offset] =
            functor(static_cast<AccT>(output_grad[data_offset]),
                    static_cast<AccT>(output[data_offset]));
      }
    }
  }
}

710
template <typename T, bool LogMode = false>
711 712 713 714 715 716 717
void LaunchNormalSoftmaxForward(const GPUContext& dev_ctx,
                                T* output_data,
                                const T* input_data,
                                int high_dim,
                                int mid_dim,
                                int low_dim) {
  using AccT = typename phi::dtype::MPTypeTrait<T>::Type;
718 719 720
  dim3 grid, block;
  GetLaunchConfig(high_dim, mid_dim, low_dim, &grid, &block);
  if (LogMode) {
721 722 723
    NormalSoftmaxForward<T, AccT, LogSoftmaxForwardFunctor>
        <<<grid, block, 0, dev_ctx.stream()>>>(
            output_data, input_data, high_dim, mid_dim, low_dim);
724
  } else {
725 726 727
    NormalSoftmaxForward<T, AccT, SoftmaxForwardFunctor>
        <<<grid, block, 0, dev_ctx.stream()>>>(
            output_data, input_data, high_dim, mid_dim, low_dim);
728 729 730
  }
}

731
template <typename T, bool LogMode = false>
732 733 734 735 736 737 738 739
void LaunchNormalSoftmaxBackward(const GPUContext& dev_ctx,
                                 T* input_grad_data,
                                 const T* output_grad_data,
                                 const T* output_data,
                                 int high_dim,
                                 int mid_dim,
                                 int low_dim) {
  using AccT = typename phi::dtype::MPTypeTrait<T>::Type;
740 741 742
  dim3 grid, block;
  GetLaunchConfig(high_dim, mid_dim, low_dim, &grid, &block);
  if (LogMode) {
743 744 745 746 747 748 749
    NormalSoftmaxBackward<T, AccT, LogSoftmaxBackwardFunctor, LogMode>
        <<<grid, block, 0, dev_ctx.stream()>>>(input_grad_data,
                                               output_grad_data,
                                               output_data,
                                               high_dim,
                                               mid_dim,
                                               low_dim);
750
  } else {
751 752 753 754 755 756 757
    NormalSoftmaxBackward<T, AccT, SoftmaxBackwardFunctor, LogMode>
        <<<grid, block, 0, dev_ctx.stream()>>>(input_grad_data,
                                               output_grad_data,
                                               output_data,
                                               high_dim,
                                               mid_dim,
                                               low_dim);
758 759 760
  }
}

761 762 763 764 765 766 767 768 769 770
static std::vector<int> GetSoftmaxTensorDims(const phi::DDim& dims,
                                             const int axis) {
  int dim = dims[axis];
  int N = phi::funcs::SizeToAxis(axis, dims);
  int D = phi::funcs::SizeOutAxis(axis, dims);
  return {N, dim, D, 1};
}

template <typename T>
void SoftmaxForwardCudnnKernel(const GPUContext& dev_ctx,
771
                               const T* x_data,
772
                               const int axis,
773
                               const int rank,
774
                               const bool log_mode,
775 776
                               const std::vector<int>& tensor_dims,
                               T* out_data) {
777 778 779 780 781 782 783 784 785 786 787 788 789 790
  auto handle = dev_ctx.cudnn_handle();
  GPUDNNDataLayout layout = GPUDNNDataLayout::kNCHW;

  ScopedTensorDescriptor scoped_desc;
#ifdef PADDLE_WITH_HIP
  miopenTensorDescriptor_t desc =
      scoped_desc.descriptor<T>(layout, tensor_dims);
  auto mode = axis == rank - 1 ? MIOPEN_SOFTMAX_MODE_INSTANCE
                               : MIOPEN_SOFTMAX_MODE_CHANNEL;
  auto algo = log_mode ? MIOPEN_SOFTMAX_LOG : MIOPEN_SOFTMAX_ACCURATE;
  PADDLE_ENFORCE_GPU_SUCCESS(paddle::platform::dynload::miopenSoftmaxForward_V2(
      handle,
      paddle::platform::CudnnDataType<T>::kOne(),
      desc,
791
      x_data,
792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807
      paddle::platform::CudnnDataType<T>::kZero(),
      desc,
      out_data,
      algo,
      mode));
#else
  cudnnTensorDescriptor_t desc = scoped_desc.descriptor<T>(layout, tensor_dims);
  auto mode = axis == rank - 1 ? CUDNN_SOFTMAX_MODE_INSTANCE
                               : CUDNN_SOFTMAX_MODE_CHANNEL;
  auto algo = log_mode ? CUDNN_SOFTMAX_LOG : CUDNN_SOFTMAX_ACCURATE;
  PADDLE_ENFORCE_GPU_SUCCESS(paddle::platform::dynload::cudnnSoftmaxForward(
      handle,
      algo,
      mode,
      paddle::platform::CudnnDataType<T>::kOne(),
      desc,
808
      x_data,
809 810 811 812 813 814
      paddle::platform::CudnnDataType<T>::kZero(),
      desc,
      out_data));
#endif
}

815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839
template <typename T>
void LaunchSoftmaxForwardCudnnKernel(const GPUContext& dev_ctx,
                                     const DenseTensor& x,
                                     const int axis,
                                     const bool log_mode,
                                     DenseTensor* out) {
  auto* out_data = out->data<T>();
  auto* x_data = x.data<T>();
  const int rank = x.dims().size();

  std::vector<int> tensor_dims = GetSoftmaxTensorDims(x.dims(), axis);
  int64_t remaining = tensor_dims[0];
  int dim = tensor_dims[1];
  int64_t batch_size = std::numeric_limits<int32_t>::max() / dim;
  int offset = batch_size * dim;
  while (remaining > 0) {
    tensor_dims[0] = std::min<int64_t>(remaining, batch_size);
    SoftmaxForwardCudnnKernel<T>(
        dev_ctx, x_data, axis, rank, log_mode, tensor_dims, out_data);
    x_data += offset;
    out_data += offset;
    remaining -= batch_size;
  }
}

840 841
template <typename T>
void SoftmaxBackwardCudnnKernel(const GPUContext& dev_ctx,
842 843
                                const T* out_data,
                                const T* dout_data,
844
                                const int axis,
845
                                const int rank,
846
                                const bool log_mode,
847 848
                                const std::vector<int>& tensor_dims,
                                T* dx_data) {
849 850 851 852 853 854 855 856 857 858 859 860 861 862 863
  auto handle = dev_ctx.cudnn_handle();
  GPUDNNDataLayout layout = GPUDNNDataLayout::kNCHW;

  ScopedTensorDescriptor scoped_desc;
#ifdef PADDLE_WITH_HIP
  miopenTensorDescriptor_t desc =
      scoped_desc.descriptor<T>(layout, tensor_dims);
  auto mode = axis == rank - 1 ? MIOPEN_SOFTMAX_MODE_INSTANCE
                               : MIOPEN_SOFTMAX_MODE_CHANNEL;
  auto algo = log_mode ? MIOPEN_SOFTMAX_LOG : MIOPEN_SOFTMAX_ACCURATE;
  PADDLE_ENFORCE_GPU_SUCCESS(
      paddle::platform::dynload::miopenSoftmaxBackward_V2(
          handle,
          paddle::platform::CudnnDataType<T>::kOne(),
          desc,
864
          out_data,
865
          desc,
866
          dout_data,
867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882
          paddle::platform::CudnnDataType<T>::kZero(),
          desc,
          dx_data,
          algo,
          mode));
#else
  cudnnTensorDescriptor_t desc = scoped_desc.descriptor<T>(layout, tensor_dims);
  auto mode = axis == rank - 1 ? CUDNN_SOFTMAX_MODE_INSTANCE
                               : CUDNN_SOFTMAX_MODE_CHANNEL;
  auto algo = log_mode ? CUDNN_SOFTMAX_LOG : CUDNN_SOFTMAX_ACCURATE;
  PADDLE_ENFORCE_GPU_SUCCESS(paddle::platform::dynload::cudnnSoftmaxBackward(
      handle,
      algo,
      mode,
      paddle::platform::CudnnDataType<T>::kOne(),
      desc,
883
      out_data,
884
      desc,
885
      dout_data,
886 887 888 889 890 891
      paddle::platform::CudnnDataType<T>::kZero(),
      desc,
      dx_data));
#endif
}

892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925
template <typename T>
void LaunchSoftmaxBackwardCudnnKernel(const GPUContext& dev_ctx,
                                      const DenseTensor& out,
                                      const DenseTensor& dout,
                                      const int axis,
                                      const bool log_mode,
                                      DenseTensor* dx) {
  auto* dx_data = dx->data<T>();
  auto* out_data = out.data<T>();
  auto* dout_data = dout.data<T>();
  int rank = out.dims().size();

  std::vector<int> tensor_dims = GetSoftmaxTensorDims(out.dims(), axis);
  int64_t remaining = tensor_dims[0];
  int dim = tensor_dims[1];
  int64_t batch_size = std::numeric_limits<int32_t>::max() / dim;
  int offset = batch_size * dim;
  while (remaining > 0) {
    tensor_dims[0] = std::min<int64_t>(remaining, batch_size);
    SoftmaxBackwardCudnnKernel<T>(dev_ctx,
                                  out_data,
                                  dout_data,
                                  axis,
                                  rank,
                                  log_mode,
                                  tensor_dims,
                                  dx_data);
    out_data += offset;
    dout_data += offset;
    dx_data += offset;
    remaining -= batch_size;
  }
}

926 927
#if CUDNN_VERSION < 8100
template <>
928
inline void LaunchSoftmaxForwardCudnnKernel<phi::dtype::bfloat16>(
929 930 931 932 933 934 935 936 937 938
    const GPUContext& dev_ctx,
    const DenseTensor& x,
    const int axis,
    const bool log_mode,
    DenseTensor* out) {
  PADDLE_THROW(errors::Unavailable(
      "This kernel is not supported when the dtype is bf16 and CUDNN_VERSION < "
      "8100."));
}
template <>
939
inline void LaunchSoftmaxBackwardCudnnKernel<phi::dtype::bfloat16>(
940 941 942 943 944 945 946 947 948 949 950 951
    const GPUContext& dev_ctx,
    const DenseTensor& out,
    const DenseTensor& dout,
    const int axis,
    const bool log_mode,
    DenseTensor* dx) {
  PADDLE_THROW(errors::Unavailable(
      "This kernel is not supported when the dtype is bf16 and CUDNN_VERSION < "
      "8100."));
}
#endif

952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970
template <typename T>
bool UseCudnnSoftmax(const GPUContext& ctx, int softmax_dim, bool last_dim) {
  bool cudnn_available = ctx.cudnn_handle();
  if (!ctx.cudnn_handle()) {
    if (std::is_same<T, phi::dtype::bfloat16>::value) {
#if CUDNN_VERSION < 8100
      cudnn_available = false;
#endif
    }
  }
  constexpr int max_dim = 512;
  if (!cudnn_available || !last_dim ||
      (softmax_dim <= max_dim && sizeof(T) <= 4)) {
    return false;
  } else {
    return true;
  }
}

971
template <typename T, bool LogMode = false>
972 973 974 975
void SoftmaxForwardCUDAKernelDriver(const GPUContext& dev_ctx,
                                    const DenseTensor& x,
                                    const int input_axis,
                                    DenseTensor* out) {
976 977
  auto* out_data = out->data<T>();

978 979 980 981 982 983
  int rank = x.dims().size();
  int axis = phi::funcs::CanonicalAxis(input_axis, rank);
  std::vector<int> tensor_dims = GetSoftmaxTensorDims(x.dims(), axis);
  int N = tensor_dims[0];
  int dim = tensor_dims[1];
  int D = tensor_dims[2];
984

985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
  if (D == 1) {
    if (!UseCudnnSoftmax<T>(dev_ctx, dim, true)) {
      int dim_log2 = static_cast<int>(Log2Ceil(dim));
      int dim_ceil = 1 << dim_log2;
      int warp_size = (dim_ceil < 32) ? dim_ceil : 32;
      int batches_per_warp = (dim_ceil <= 32) ? 2 : 1;

      // use 128 threads per block to maximimize gpu utilization
      constexpr int threads_per_block = 128;

      int warps_per_block = (threads_per_block / warp_size);
      int batches_per_block = warps_per_block * batches_per_warp;
      int blocks = (N + batches_per_block - 1) / batches_per_block;
      dim3 threads(warp_size, warps_per_block, 1);

      // vectorization read/write
      using T4 = typename VecT4<T>::Type;
      using T2 = typename VecT2<T>::Type;

      if (dim % 4 == 0) {
        SwitchWarpSoftmaxForward<T, T4, LogMode>(blocks,
                                                 threads,
                                                 dev_ctx,
                                                 out_data,
                                                 x.data<T>(),
                                                 N,
                                                 dim,
                                                 dim,
                                                 dim_log2);
      } else if (dim % 2 == 0) {
        SwitchWarpSoftmaxForward<T, T2, LogMode>(blocks,
                                                 threads,
                                                 dev_ctx,
                                                 out_data,
                                                 x.data<T>(),
                                                 N,
                                                 dim,
                                                 dim,
                                                 dim_log2);
      } else {
        SwitchWarpSoftmaxForward<T, T, LogMode>(blocks,
                                                threads,
                                                dev_ctx,
                                                out_data,
                                                x.data<T>(),
                                                N,
                                                dim,
                                                dim,
                                                dim_log2);
      }
1035
    } else {
1036
      LaunchSoftmaxForwardCudnnKernel<T>(dev_ctx, x, axis, LogMode, out);
1037
    }
1038
  } else {
1039 1040
    LaunchNormalSoftmaxForward<T, LogMode>(
        dev_ctx, out_data, x.data<T>(), N, dim, D);
1041 1042 1043 1044
  }
}

template <typename T, bool LogMode = false>
1045 1046 1047 1048 1049
void SoftmaxBackwardCUDAKernelDriver(const GPUContext& dev_ctx,
                                     const DenseTensor& out,
                                     const DenseTensor& dout,
                                     const int input_axis,
                                     DenseTensor* dx) {
1050 1051
  auto* dx_data = dx->data<T>();

1052 1053 1054 1055 1056 1057
  int rank = out.dims().size();
  int axis = phi::funcs::CanonicalAxis(input_axis, rank);
  std::vector<int> tensor_dims = GetSoftmaxTensorDims(out.dims(), axis);
  int N = tensor_dims[0];
  int dim = tensor_dims[1];
  int D = tensor_dims[2];
1058

1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
  if (D == 1) {
    if (!UseCudnnSoftmax<T>(dev_ctx, dim, true)) {
      int dim_log2 = Log2Ceil(dim);
      int dim_ceil = 1 << dim_log2;
      int warp_size = (dim_ceil < 32) ? dim_ceil : 32;
      int batches_per_warp = (dim_ceil <= 128) ? 2 : 1;

      constexpr int threads_per_block = 128;

      int warps_per_block = (threads_per_block / warp_size);
      int batches_per_block = warps_per_block * batches_per_warp;
      int blocks = (N + batches_per_block - 1) / batches_per_block;
      dim3 threads(warp_size, warps_per_block, 1);

      // vectorization read/write
      using T4 = typename VecT4<T>::Type;
      using T2 = typename VecT2<T>::Type;
      if (dim % 4 == 0) {
        SwitchWarpSoftmaxBackward<T, T4, LogMode>(blocks,
                                                  threads,
                                                  dev_ctx,
                                                  dx_data,
                                                  dout.data<T>(),
                                                  out.data<T>(),
                                                  N,
                                                  dim,
                                                  dim,
                                                  dim_log2);
      } else if (dim % 2 == 0) {
        SwitchWarpSoftmaxBackward<T, T2, LogMode>(blocks,
                                                  threads,
                                                  dev_ctx,
                                                  dx_data,
                                                  dout.data<T>(),
                                                  out.data<T>(),
                                                  N,
                                                  dim,
                                                  dim,
                                                  dim_log2);
      } else {
        SwitchWarpSoftmaxBackward<T, T, LogMode>(blocks,
                                                 threads,
                                                 dev_ctx,
                                                 dx_data,
                                                 dout.data<T>(),
                                                 out.data<T>(),
                                                 N,
                                                 dim,
                                                 dim,
                                                 dim_log2);
      }
1110
    } else {
1111 1112
      LaunchSoftmaxBackwardCudnnKernel<T>(
          dev_ctx, out, dout, axis, LogMode, dx);
1113
    }
1114
  } else {
1115 1116
    LaunchNormalSoftmaxBackward<T, LogMode>(
        dev_ctx, dx_data, dout.data<T>(), out.data<T>(), N, dim, D);
1117 1118 1119
  }
}

1120
}  // namespace phi