Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
bd5e97d3
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2299
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
bd5e97d3
编写于
6月 21, 2022
作者:
Z
Zhang Ting
提交者:
GitHub
6月 21, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
slice large tensor for cudnn_softmax (#43681)
上级
827d9992
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
182 addition
and
124 deletion
+182
-124
paddle/phi/kernels/gpudnn/softmax_gpudnn.h
paddle/phi/kernels/gpudnn/softmax_gpudnn.h
+182
-124
未找到文件。
paddle/phi/kernels/gpudnn/softmax_gpudnn.h
浏览文件 @
bd5e97d3
...
...
@@ -772,15 +772,12 @@ static std::vector<int> GetSoftmaxTensorDims(const phi::DDim& dims,
template
<
typename
T
>
void
SoftmaxForwardCudnnKernel
(
const
GPUContext
&
dev_ctx
,
const
DenseTensor
&
x
,
const
T
*
x_data
,
const
int
axis
,
const
int
rank
,
const
bool
log_mode
,
DenseTensor
*
out
)
{
auto
*
out_data
=
out
->
data
<
T
>
();
const
int
rank
=
x
.
dims
().
size
();
std
::
vector
<
int
>
tensor_dims
=
GetSoftmaxTensorDims
(
x
.
dims
(),
axis
);
const
std
::
vector
<
int
>&
tensor_dims
,
T
*
out_data
)
{
auto
handle
=
dev_ctx
.
cudnn_handle
();
GPUDNNDataLayout
layout
=
GPUDNNDataLayout
::
kNCHW
;
...
...
@@ -795,7 +792,7 @@ void SoftmaxForwardCudnnKernel(const GPUContext& dev_ctx,
handle
,
paddle
::
platform
::
CudnnDataType
<
T
>::
kOne
(),
desc
,
x
.
data
<
T
>
()
,
x
_data
,
paddle
::
platform
::
CudnnDataType
<
T
>::
kZero
(),
desc
,
out_data
,
...
...
@@ -812,25 +809,47 @@ void SoftmaxForwardCudnnKernel(const GPUContext& dev_ctx,
mode
,
paddle
::
platform
::
CudnnDataType
<
T
>::
kOne
(),
desc
,
x
.
data
<
T
>
()
,
x
_data
,
paddle
::
platform
::
CudnnDataType
<
T
>::
kZero
(),
desc
,
out_data
));
#endif
}
template
<
typename
T
>
void
LaunchSoftmaxForwardCudnnKernel
(
const
GPUContext
&
dev_ctx
,
const
DenseTensor
&
x
,
const
int
axis
,
const
bool
log_mode
,
DenseTensor
*
out
)
{
auto
*
out_data
=
out
->
data
<
T
>
();
auto
*
x_data
=
x
.
data
<
T
>
();
const
int
rank
=
x
.
dims
().
size
();
std
::
vector
<
int
>
tensor_dims
=
GetSoftmaxTensorDims
(
x
.
dims
(),
axis
);
int64_t
remaining
=
tensor_dims
[
0
];
int
dim
=
tensor_dims
[
1
];
int64_t
batch_size
=
std
::
numeric_limits
<
int32_t
>::
max
()
/
dim
;
int
offset
=
batch_size
*
dim
;
while
(
remaining
>
0
)
{
tensor_dims
[
0
]
=
std
::
min
<
int64_t
>
(
remaining
,
batch_size
);
SoftmaxForwardCudnnKernel
<
T
>
(
dev_ctx
,
x_data
,
axis
,
rank
,
log_mode
,
tensor_dims
,
out_data
);
x_data
+=
offset
;
out_data
+=
offset
;
remaining
-=
batch_size
;
}
}
template
<
typename
T
>
void
SoftmaxBackwardCudnnKernel
(
const
GPUContext
&
dev_ctx
,
const
DenseTensor
&
out
,
const
DenseTensor
&
dout
,
const
T
*
out_data
,
const
T
*
dout_data
,
const
int
axis
,
const
int
rank
,
const
bool
log_mode
,
DenseTensor
*
dx
)
{
auto
*
dx_data
=
dx
->
data
<
T
>
();
int
rank
=
out
.
dims
().
size
();
std
::
vector
<
int
>
tensor_dims
=
GetSoftmaxTensorDims
(
out
.
dims
(),
axis
);
const
std
::
vector
<
int
>&
tensor_dims
,
T
*
dx_data
)
{
auto
handle
=
dev_ctx
.
cudnn_handle
();
GPUDNNDataLayout
layout
=
GPUDNNDataLayout
::
kNCHW
;
...
...
@@ -846,9 +865,9 @@ void SoftmaxBackwardCudnnKernel(const GPUContext& dev_ctx,
handle
,
paddle
::
platform
::
CudnnDataType
<
T
>::
kOne
(),
desc
,
out
.
data
<
T
>
()
,
out
_data
,
desc
,
dout
.
data
<
T
>
()
,
dout
_data
,
paddle
::
platform
::
CudnnDataType
<
T
>::
kZero
(),
desc
,
dx_data
,
...
...
@@ -865,18 +884,52 @@ void SoftmaxBackwardCudnnKernel(const GPUContext& dev_ctx,
mode
,
paddle
::
platform
::
CudnnDataType
<
T
>::
kOne
(),
desc
,
out
.
data
<
T
>
()
,
out
_data
,
desc
,
dout
.
data
<
T
>
()
,
dout
_data
,
paddle
::
platform
::
CudnnDataType
<
T
>::
kZero
(),
desc
,
dx_data
));
#endif
}
template
<
typename
T
>
void
LaunchSoftmaxBackwardCudnnKernel
(
const
GPUContext
&
dev_ctx
,
const
DenseTensor
&
out
,
const
DenseTensor
&
dout
,
const
int
axis
,
const
bool
log_mode
,
DenseTensor
*
dx
)
{
auto
*
dx_data
=
dx
->
data
<
T
>
();
auto
*
out_data
=
out
.
data
<
T
>
();
auto
*
dout_data
=
dout
.
data
<
T
>
();
int
rank
=
out
.
dims
().
size
();
std
::
vector
<
int
>
tensor_dims
=
GetSoftmaxTensorDims
(
out
.
dims
(),
axis
);
int64_t
remaining
=
tensor_dims
[
0
];
int
dim
=
tensor_dims
[
1
];
int64_t
batch_size
=
std
::
numeric_limits
<
int32_t
>::
max
()
/
dim
;
int
offset
=
batch_size
*
dim
;
while
(
remaining
>
0
)
{
tensor_dims
[
0
]
=
std
::
min
<
int64_t
>
(
remaining
,
batch_size
);
SoftmaxBackwardCudnnKernel
<
T
>
(
dev_ctx
,
out_data
,
dout_data
,
axis
,
rank
,
log_mode
,
tensor_dims
,
dx_data
);
out_data
+=
offset
;
dout_data
+=
offset
;
dx_data
+=
offset
;
remaining
-=
batch_size
;
}
}
#if CUDNN_VERSION < 8100
template
<
>
inline
void
SoftmaxForwardCudnnKernel
<
phi
::
dtype
::
bfloat16
>
(
inline
void
Launch
SoftmaxForwardCudnnKernel
<
phi
::
dtype
::
bfloat16
>
(
const
GPUContext
&
dev_ctx
,
const
DenseTensor
&
x
,
const
int
axis
,
...
...
@@ -887,7 +940,7 @@ inline void SoftmaxForwardCudnnKernel<phi::dtype::bfloat16>(
"8100."
));
}
template
<
>
inline
void
SoftmaxBackwardCudnnKernel
<
phi
::
dtype
::
bfloat16
>
(
inline
void
Launch
SoftmaxBackwardCudnnKernel
<
phi
::
dtype
::
bfloat16
>
(
const
GPUContext
&
dev_ctx
,
const
DenseTensor
&
out
,
const
DenseTensor
&
dout
,
...
...
@@ -933,60 +986,62 @@ void SoftmaxForwardCUDAKernelDriver(const GPUContext& dev_ctx,
int
dim
=
tensor_dims
[
1
];
int
D
=
tensor_dims
[
2
];
if
(
D
==
1
&&
!
UseCudnnSoftmax
<
T
>
(
dev_ctx
,
dim
,
true
))
{
int
dim_log2
=
static_cast
<
int
>
(
Log2Ceil
(
dim
));
int
dim_ceil
=
1
<<
dim_log2
;
int
warp_size
=
(
dim_ceil
<
32
)
?
dim_ceil
:
32
;
int
batches_per_warp
=
(
dim_ceil
<=
32
)
?
2
:
1
;
// use 128 threads per block to maximimize gpu utilization
constexpr
int
threads_per_block
=
128
;
int
warps_per_block
=
(
threads_per_block
/
warp_size
);
int
batches_per_block
=
warps_per_block
*
batches_per_warp
;
int
blocks
=
(
N
+
batches_per_block
-
1
)
/
batches_per_block
;
dim3
threads
(
warp_size
,
warps_per_block
,
1
);
// vectorization read/write
using
T4
=
typename
VecT4
<
T
>::
Type
;
using
T2
=
typename
VecT2
<
T
>::
Type
;
if
(
dim
%
4
==
0
)
{
SwitchWarpSoftmaxForward
<
T
,
T4
,
LogMode
>
(
blocks
,
threads
,
dev_ctx
,
out_data
,
x
.
data
<
T
>
(),
N
,
dim
,
dim
,
dim_log2
);
}
else
if
(
dim
%
2
==
0
)
{
SwitchWarpSoftmaxForward
<
T
,
T2
,
LogMode
>
(
blocks
,
threads
,
dev_ctx
,
out_data
,
x
.
data
<
T
>
(),
N
,
dim
,
dim
,
dim_log2
);
if
(
D
==
1
)
{
if
(
!
UseCudnnSoftmax
<
T
>
(
dev_ctx
,
dim
,
true
))
{
int
dim_log2
=
static_cast
<
int
>
(
Log2Ceil
(
dim
));
int
dim_ceil
=
1
<<
dim_log2
;
int
warp_size
=
(
dim_ceil
<
32
)
?
dim_ceil
:
32
;
int
batches_per_warp
=
(
dim_ceil
<=
32
)
?
2
:
1
;
// use 128 threads per block to maximimize gpu utilization
constexpr
int
threads_per_block
=
128
;
int
warps_per_block
=
(
threads_per_block
/
warp_size
);
int
batches_per_block
=
warps_per_block
*
batches_per_warp
;
int
blocks
=
(
N
+
batches_per_block
-
1
)
/
batches_per_block
;
dim3
threads
(
warp_size
,
warps_per_block
,
1
);
// vectorization read/write
using
T4
=
typename
VecT4
<
T
>::
Type
;
using
T2
=
typename
VecT2
<
T
>::
Type
;
if
(
dim
%
4
==
0
)
{
SwitchWarpSoftmaxForward
<
T
,
T4
,
LogMode
>
(
blocks
,
threads
,
dev_ctx
,
out_data
,
x
.
data
<
T
>
(),
N
,
dim
,
dim
,
dim_log2
);
}
else
if
(
dim
%
2
==
0
)
{
SwitchWarpSoftmaxForward
<
T
,
T2
,
LogMode
>
(
blocks
,
threads
,
dev_ctx
,
out_data
,
x
.
data
<
T
>
(),
N
,
dim
,
dim
,
dim_log2
);
}
else
{
SwitchWarpSoftmaxForward
<
T
,
T
,
LogMode
>
(
blocks
,
threads
,
dev_ctx
,
out_data
,
x
.
data
<
T
>
(),
N
,
dim
,
dim
,
dim_log2
);
}
}
else
{
SwitchWarpSoftmaxForward
<
T
,
T
,
LogMode
>
(
blocks
,
threads
,
dev_ctx
,
out_data
,
x
.
data
<
T
>
(),
N
,
dim
,
dim
,
dim_log2
);
LaunchSoftmaxForwardCudnnKernel
<
T
>
(
dev_ctx
,
x
,
axis
,
LogMode
,
out
);
}
}
else
if
(
D
>
1
)
{
}
else
{
LaunchNormalSoftmaxForward
<
T
,
LogMode
>
(
dev_ctx
,
out_data
,
x
.
data
<
T
>
(),
N
,
dim
,
D
);
}
else
{
SoftmaxForwardCudnnKernel
<
T
>
(
dev_ctx
,
x
,
axis
,
LogMode
,
out
);
}
}
...
...
@@ -1005,61 +1060,64 @@ void SoftmaxBackwardCUDAKernelDriver(const GPUContext& dev_ctx,
int
dim
=
tensor_dims
[
1
];
int
D
=
tensor_dims
[
2
];
if
(
D
==
1
&&
!
UseCudnnSoftmax
<
T
>
(
dev_ctx
,
dim
,
true
))
{
int
dim_log2
=
Log2Ceil
(
dim
);
int
dim_ceil
=
1
<<
dim_log2
;
int
warp_size
=
(
dim_ceil
<
32
)
?
dim_ceil
:
32
;
int
batches_per_warp
=
(
dim_ceil
<=
128
)
?
2
:
1
;
constexpr
int
threads_per_block
=
128
;
int
warps_per_block
=
(
threads_per_block
/
warp_size
);
int
batches_per_block
=
warps_per_block
*
batches_per_warp
;
int
blocks
=
(
N
+
batches_per_block
-
1
)
/
batches_per_block
;
dim3
threads
(
warp_size
,
warps_per_block
,
1
);
// vectorization read/write
using
T4
=
typename
VecT4
<
T
>::
Type
;
using
T2
=
typename
VecT2
<
T
>::
Type
;
if
(
dim
%
4
==
0
)
{
SwitchWarpSoftmaxBackward
<
T
,
T4
,
LogMode
>
(
blocks
,
threads
,
dev_ctx
,
dx_data
,
dout
.
data
<
T
>
(),
out
.
data
<
T
>
(),
N
,
dim
,
dim
,
dim_log2
);
}
else
if
(
dim
%
2
==
0
)
{
SwitchWarpSoftmaxBackward
<
T
,
T2
,
LogMode
>
(
blocks
,
threads
,
dev_ctx
,
dx_data
,
dout
.
data
<
T
>
(),
out
.
data
<
T
>
(),
N
,
dim
,
dim
,
dim_log2
);
if
(
D
==
1
)
{
if
(
!
UseCudnnSoftmax
<
T
>
(
dev_ctx
,
dim
,
true
))
{
int
dim_log2
=
Log2Ceil
(
dim
);
int
dim_ceil
=
1
<<
dim_log2
;
int
warp_size
=
(
dim_ceil
<
32
)
?
dim_ceil
:
32
;
int
batches_per_warp
=
(
dim_ceil
<=
128
)
?
2
:
1
;
constexpr
int
threads_per_block
=
128
;
int
warps_per_block
=
(
threads_per_block
/
warp_size
);
int
batches_per_block
=
warps_per_block
*
batches_per_warp
;
int
blocks
=
(
N
+
batches_per_block
-
1
)
/
batches_per_block
;
dim3
threads
(
warp_size
,
warps_per_block
,
1
);
// vectorization read/write
using
T4
=
typename
VecT4
<
T
>::
Type
;
using
T2
=
typename
VecT2
<
T
>::
Type
;
if
(
dim
%
4
==
0
)
{
SwitchWarpSoftmaxBackward
<
T
,
T4
,
LogMode
>
(
blocks
,
threads
,
dev_ctx
,
dx_data
,
dout
.
data
<
T
>
(),
out
.
data
<
T
>
(),
N
,
dim
,
dim
,
dim_log2
);
}
else
if
(
dim
%
2
==
0
)
{
SwitchWarpSoftmaxBackward
<
T
,
T2
,
LogMode
>
(
blocks
,
threads
,
dev_ctx
,
dx_data
,
dout
.
data
<
T
>
(),
out
.
data
<
T
>
(),
N
,
dim
,
dim
,
dim_log2
);
}
else
{
SwitchWarpSoftmaxBackward
<
T
,
T
,
LogMode
>
(
blocks
,
threads
,
dev_ctx
,
dx_data
,
dout
.
data
<
T
>
(),
out
.
data
<
T
>
(),
N
,
dim
,
dim
,
dim_log2
);
}
}
else
{
SwitchWarpSoftmaxBackward
<
T
,
T
,
LogMode
>
(
blocks
,
threads
,
dev_ctx
,
dx_data
,
dout
.
data
<
T
>
(),
out
.
data
<
T
>
(),
N
,
dim
,
dim
,
dim_log2
);
LaunchSoftmaxBackwardCudnnKernel
<
T
>
(
dev_ctx
,
out
,
dout
,
axis
,
LogMode
,
dx
);
}
}
else
if
(
D
>
1
)
{
}
else
{
LaunchNormalSoftmaxBackward
<
T
,
LogMode
>
(
dev_ctx
,
dx_data
,
dout
.
data
<
T
>
(),
out
.
data
<
T
>
(),
N
,
dim
,
D
);
}
else
{
SoftmaxBackwardCudnnKernel
<
T
>
(
dev_ctx
,
out
,
dout
,
axis
,
LogMode
,
dx
);
}
}
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录