tensor_py.h 42.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14 15

#pragma once
16

L
Luo Tao 已提交
17
#include <Python.h>
18 19 20 21
// Avoid a problem with copysign defined in pyconfig.h on Windows.
#ifdef copysign
#undef copysign
#endif
22

W
wopeizl 已提交
23 24
#include <algorithm>
#include <memory>
Q
qijun 已提交
25
#include <string>
C
chengduoZH 已提交
26
#include <tuple>
27
#include <type_traits>
28
#include <utility>
C
chengduoZH 已提交
29
#include <vector>
30

31
#include "paddle/fluid/framework/data_type.h"
Y
Yi Wang 已提交
32 33
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/memory/memcpy.h"
34
#include "paddle/fluid/operators/eigen/eigen_function.h"
W
wopeizl 已提交
35
#include "paddle/fluid/operators/math/concat_and_split.h"
36
#include "paddle/fluid/platform/bfloat16.h"
37
#include "paddle/fluid/platform/device/device_wrapper.h"
38
#include "paddle/phi/kernels/funcs/strided_memcpy.h"
39
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
40 41
#include "paddle/fluid/platform/cuda_device_guard.h"
#endif
42
#include "paddle/fluid/eager/api/generated/eager_generated/forwards/dygraph_functions.h"
43
#include "paddle/fluid/framework/convert_utils.h"
Z
zyfncg 已提交
44
#include "paddle/fluid/framework/eigen.h"
Y
Yi Wang 已提交
45
#include "paddle/fluid/platform/device_context.h"
46
#include "paddle/fluid/platform/float16.h"
47
#include "paddle/fluid/platform/profiler/event_tracing.h"
48
#include "paddle/phi/common/pstring.h"
J
Jack Zhou 已提交
49 50
#include "paddle/phi/core/string_tensor.h"
#include "paddle/phi/kernels/strings/unicode.h"
Q
qijun 已提交
51 52
#include "pybind11/numpy.h"
#include "pybind11/pybind11.h"
53

W
wopeizl 已提交
54 55
namespace py = pybind11;

56 57 58 59 60 61 62
namespace pybind11 {
namespace detail {

// Note: use same enum number of float16 in numpy.
// import numpy as np
// print np.dtype(np.float16).num  # 23
constexpr int NPY_FLOAT16_ = 23;
63
constexpr int NPY_UINT16_ = 4;
64 65
constexpr int NPY_COMPLEX64 = 14;
constexpr int NPY_COMPLEX128 = 15;
66

67 68 69 70 71 72
template <typename T, typename S>
struct casting_complex_to_non_complex {
  static const bool value = pybind11::detail::is_complex<S>::value &&
                            !pybind11::detail::is_complex<T>::value;
};

W
wanghuancoder 已提交
73
// cast numpy type form S to T, this may allocate new memory
74 75 76 77 78
template <
    class T,
    class S,
    std::enable_if_t<!std::is_same<T, S>::value &&
                     !casting_complex_to_non_complex<T, S>::value> * = nullptr>
W
wanghuancoder 已提交
79 80 81 82 83 84 85 86 87 88 89 90
static py::array_t<T> CastNumpyType(py::array_t<S> array) {
  auto dim = array.ndim();
  std::vector<py::ssize_t> result_shape(dim);
  for (auto i = 0; i < dim; i++) {
    result_shape[i] = array.shape(i);
  }

  py::array_t<T> result(result_shape);

  return py::vectorize([](S s) { return static_cast<T>(s); })(array);
}

91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
template <
    class T,
    class S,
    std::enable_if_t<(!std::is_same<T, S>::value) &&
                     casting_complex_to_non_complex<T, S>::value> * = nullptr>
static py::array_t<T> CastNumpyType(py::array_t<S> array) {
  auto dim = array.ndim();
  std::vector<py::ssize_t> result_shape(dim);
  for (auto i = 0; i < dim; i++) {
    result_shape[i] = array.shape(i);
  }

  py::array_t<T> result(result_shape);

  return py::vectorize([](S s) { return static_cast<T>(s.real()); })(array);
}

template <class T,
          class S,
          std::enable_if_t<std::is_same<T, S>::value> * = nullptr>
static py::array_t<T> CastNumpyType(py::array_t<S> array) {
  return array;
}

W
wanghuancoder 已提交
115 116 117 118 119 120 121 122 123 124 125 126
template <class T>
static py::array_t<T> CastNumpyArray(const py::object &array) {
  if (py::isinstance<py::array_t<float>>(array)) {
    return CastNumpyType<T>(array.cast<py::array_t<float>>());
  } else if (py::isinstance<py::array_t<double>>(array)) {
    return CastNumpyType<T>(array.cast<py::array_t<double>>());
  } else if (py::isinstance<py::array_t<int32_t>>(array)) {
    return CastNumpyType<T>(array.cast<py::array_t<int32_t>>());
  } else if (py::isinstance<py::array_t<int64_t>>(array)) {
    return CastNumpyType<T>(array.cast<py::array_t<int64_t>>());
  } else if (py::isinstance<py::array_t<bool>>(array)) {
    return CastNumpyType<T>(array.cast<py::array_t<bool>>());
127 128 129 130
  } else if (py::isinstance<py::array_t<std::complex<float>>>(array)) {
    return CastNumpyType<T>(array.cast<py::array_t<std::complex<float>>>());
  } else if (py::isinstance<py::array_t<std::complex<double>>>(array)) {
    return CastNumpyType<T>(array.cast<py::array_t<std::complex<double>>>());
W
wanghuancoder 已提交
131 132 133
  } else {
    PADDLE_THROW(paddle::platform::errors::InvalidArgument(
        "Value type error. The assign numpy value allows integer, float, "
134
        "double, complex64, complex128, and bool, "
W
wanghuancoder 已提交
135 136 137 138 139 140 141
        "but received %s.",
        Py_TYPE(array.ptr())->tp_name));
  }
  // can't reach here
  return py::array_t<T>();
}

142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
// Note: Since float16 is not a builtin type in C++, we register
// paddle::platform::float16 as numpy.float16.
// Ref: https://github.com/pybind/pybind11/issues/1776
template <>
struct npy_format_descriptor<paddle::platform::float16> {
  static py::dtype dtype() {
    handle ptr = npy_api::get().PyArray_DescrFromType_(NPY_FLOAT16_);
    return reinterpret_borrow<py::dtype>(ptr);
  }
  static std::string format() {
    // Note: "e" represents float16.
    // Details at:
    // https://docs.python.org/3/library/struct.html#format-characters.
    return "e";
  }
157
  static constexpr auto name = _("float16");
158 159
};

160 161 162 163 164 165 166 167 168 169 170 171 172 173
// Note: Since bfloat16 is not a builtin type in C++ and in numpy,
// we register paddle::platform::bfloat16 as numpy.uint16.
template <>
struct npy_format_descriptor<paddle::platform::bfloat16> {
  static py::dtype dtype() {
    handle ptr = npy_api::get().PyArray_DescrFromType_(NPY_UINT16_);
    return reinterpret_borrow<py::dtype>(ptr);
  }
  static std::string format() {
    // Note: "H" represents UINT16.
    // Details at:
    // https://docs.python.org/3/library/struct.html#format-characters.
    return "H";
  }
174
  static constexpr auto name = _("bfloat16");
175 176
};

177
// we register paddle::platform::complex<float> as numpy.complex64.
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
template <>
struct npy_format_descriptor<paddle::platform::complex<float>> {
  static py::dtype dtype() {
    handle ptr = npy_api::get().PyArray_DescrFromType_(NPY_COMPLEX64);
    return reinterpret_borrow<py::dtype>(ptr);
  }

  static std::string format() {
    // Note: "F" represents complex64.
    // Details at:
    // https://stackoverflow.com/questions/13997087/what-are-the-available-datatypes-for-dtype-with-numpys-loadtxt-an-genfromtx
    // for k, v in np.sctypeDict.iteritems():
    //     print '{0:14s} : {1:40s}'.format(str(k), v)
    return "F";
  }
  static constexpr auto name = _("complext64");
};

template <>
struct npy_format_descriptor<paddle::platform::complex<double>> {
  static py::dtype dtype() {
    handle ptr = npy_api::get().PyArray_DescrFromType_(NPY_COMPLEX128);
    return reinterpret_borrow<py::dtype>(ptr);
  }

  static std::string format() {
    // Note: "D" represents complex128.
    // Details at:
    // https://stackoverflow.com/questions/13997087/what-are-the-available-datatypes-for-dtype-with-numpys-loadtxt-an-genfromtx
    // for k, v in np.sctypeDict.iteritems():
    //     print '{0:14s} : {1:40s}'.format(str(k), v)
    return "D";
  }
  static constexpr auto name = _("complext128");
};

214 215 216
}  // namespace detail
}  // namespace pybind11

217
namespace paddle {
218
namespace pybind {
219

220 221
namespace details {

222 223 224 225
template <typename T>
class PYBIND11_HIDDEN NumpyAllocation : public memory::Allocation {
 public:
  explicit NumpyAllocation(const py::array &arr)
226 227
      : Allocation(const_cast<void *>(arr.data()),
                   sizeof(T) * (arr.size()),
228 229
                   paddle::platform::CPUPlace()),
        arr_(arr.ptr()) {
230 231 232 233
    PADDLE_ENFORCE_NOT_NULL(
        arr_,
        platform::errors::InvalidArgument("The underlying PyObject pointer of "
                                          "numpy array cannot be nullptr"));
234
    PADDLE_ENFORCE_NE(
235 236
        arr_,
        Py_None,
237 238 239 240 241 242 243 244 245 246 247 248 249
        platform::errors::PreconditionNotMet(
            "The underlying PyObject pointer of numpy array cannot be None"));
    Py_INCREF(arr_);
  }
  ~NumpyAllocation() override {
    py::gil_scoped_acquire gil;
    Py_DECREF(arr_);
  }

 private:
  PyObject *arr_;
};

250 251 252 253 254 255 256 257 258 259 260 261
template <typename T>
struct ValidDTypeToPyArrayChecker {
  static constexpr bool kValue = false;
};

#define DECLARE_VALID_DTYPE_TO_PY_ARRAY(type) \
  template <>                                 \
  struct ValidDTypeToPyArrayChecker<type> {   \
    static constexpr bool kValue = true;      \
  }

DECLARE_VALID_DTYPE_TO_PY_ARRAY(platform::float16);
262
DECLARE_VALID_DTYPE_TO_PY_ARRAY(platform::bfloat16);
263 264
DECLARE_VALID_DTYPE_TO_PY_ARRAY(platform::complex<float>);
DECLARE_VALID_DTYPE_TO_PY_ARRAY(platform::complex<double>);
265 266 267 268
DECLARE_VALID_DTYPE_TO_PY_ARRAY(float);
DECLARE_VALID_DTYPE_TO_PY_ARRAY(double);
DECLARE_VALID_DTYPE_TO_PY_ARRAY(bool);
DECLARE_VALID_DTYPE_TO_PY_ARRAY(int8_t);
L
Leo Chen 已提交
269
DECLARE_VALID_DTYPE_TO_PY_ARRAY(int16_t);
270 271
DECLARE_VALID_DTYPE_TO_PY_ARRAY(int);
DECLARE_VALID_DTYPE_TO_PY_ARRAY(int64_t);
L
Leo Chen 已提交
272
DECLARE_VALID_DTYPE_TO_PY_ARRAY(uint8_t);
273 274 275 276 277 278 279

inline std::string TensorDTypeToPyDTypeStr(
    framework::proto::VarType::Type type) {
#define TENSOR_DTYPE_TO_PY_DTYPE(T, proto_type)                             \
  if (type == proto_type) {                                                 \
    if (std::is_same<T, platform::float16>::value) {                        \
      return "e";                                                           \
280 281 282
    } else if (std::is_same<T, platform::bfloat16>::value) {                \
      /* NumPy character code of uint16 due to no support for bfloat16 */   \
      return "H";                                                           \
283 284 285 286
    } else if (std::is_same<T, platform::complex<float>>::value) {          \
      return "F";                                                           \
    } else if (std::is_same<T, platform::complex<double>>::value) {         \
      return "D";                                                           \
287 288
    } else {                                                                \
      constexpr auto kIsValidDType = ValidDTypeToPyArrayChecker<T>::kValue; \
289
      PADDLE_ENFORCE_EQ(                                                    \
290 291
          kIsValidDType,                                                    \
          true,                                                             \
292 293 294
          platform::errors::Unimplemented(                                  \
              "This type [%s] of tensor cannot be expose to Python",        \
              typeid(T).name()));                                           \
295 296 297 298 299 300
      return py::format_descriptor<T>::format();                            \
    }                                                                       \
  }

  _ForEachDataType_(TENSOR_DTYPE_TO_PY_DTYPE);
#undef TENSOR_DTYPE_TO_PY_DTYPE
301 302
  PADDLE_THROW(platform::errors::Unimplemented(
      "Unsupported tensor data type: %s", framework::DataTypeToString(type)));
303 304 305 306
}

}  // namespace details

307
template <typename T>
308
T TensorGetElement(const phi::DenseTensor &self, size_t offset) {
309 310
  PADDLE_ENFORCE_LT(offset,
                    self.numel(),
311 312
                    platform::errors::InvalidArgument(
                        "The offset exceeds the size of tensor."));
313

Q
qingqing01 已提交
314
  T b = static_cast<T>(0);
315 316
  if (platform::is_cpu_place(self.place()) ||
      platform::is_cuda_pinned_place(self.place())) {
Q
qingqing01 已提交
317
    b = self.data<T>()[offset];
318 319 320
  } else if (platform::is_xpu_place(self.place())) {
#ifdef PADDLE_WITH_XPU
    const T *a = self.data<T>();
321
    auto p = self.place();
322 323
    paddle::memory::Copy(platform::CPUPlace(), &b, p, a + offset, sizeof(T));
#endif
324 325
  } else if (platform::is_gpu_place(self.place()) ||
             platform::is_cuda_pinned_place(self.place())) {
326
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
Q
qingqing01 已提交
327
    const T *a = self.data<T>();
328
    auto p = self.place();
329 330
    paddle::memory::Copy(
        platform::CPUPlace(), &b, p, a + offset, sizeof(T), nullptr);
331 332 333 334 335
#endif
  } else if (platform::is_custom_place(self.place())) {
#if defined(PADDLE_WITH_CUSTOM_DEVICE)
    const T *a = self.data<T>();
    auto p = self.place();
336 337
    paddle::memory::Copy(
        platform::CPUPlace(), &b, p, a + offset, sizeof(T), nullptr);
Q
qingqing01 已提交
338
#endif
339
  }
340 341
  VLOG(10) << "TensorGetElement, place: " << self.place()
           << ", offset: " << offset << ", element: " << b;
Q
qingqing01 已提交
342
  return b;
343 344 345
}

template <typename T>
346
void TensorSetElement(phi::DenseTensor *self, size_t offset, T elem) {
347 348
  PADDLE_ENFORCE_LT(offset,
                    self->numel(),
349 350
                    platform::errors::InvalidArgument(
                        "The offset exceeds the size of tensor."));
351 352
  VLOG(10) << "TensorSetElement, place: " << self->place()
           << ", offset: " << offset << ", element: " << elem;
Q
qingqing01 已提交
353
  if (platform::is_cpu_place(self->place())) {
Y
Yu Yang 已提交
354
    self->mutable_data<T>(self->place())[offset] = elem;
355 356
  } else if (platform::is_xpu_place(self->place())) {
#ifdef PADDLE_WITH_XPU
357
    auto p = self->place();
358 359 360
    T *a = self->mutable_data<T>(p);
    paddle::memory::Copy(p, a + offset, platform::CPUPlace(), &elem, sizeof(T));
#endif
361 362
  } else if (platform::is_gpu_place(self->place()) ||
             platform::is_cuda_pinned_place(self->place())) {
363
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
364
    auto p = self->place();
Q
qingqing01 已提交
365
    T *a = self->mutable_data<T>(p);
366 367
    paddle::memory::Copy(
        p, a + offset, platform::CPUPlace(), &elem, sizeof(T), nullptr);
368 369 370 371 372
#endif
  } else if (platform::is_custom_place(self->place())) {
#if defined(PADDLE_WITH_CUSTOM_DEVICE)
    auto p = self->place();
    T *a = self->mutable_data<T>(p);
373 374
    paddle::memory::Copy(
        p, a + offset, platform::CPUPlace(), &elem, sizeof(T), nullptr);
Q
qingqing01 已提交
375
#endif
376
  }
377 378
}

379 380
template <typename T, typename P>
void SetTensorFromPyArrayT(
381
    phi::DenseTensor *self,
382
    const py::array_t<T, py::array::c_style | py::array::forcecast> &array,
383 384
    const P &place,
    bool zero_copy) {
385 386 387
  std::vector<int64_t> dims;
  dims.reserve(array.ndim());
  for (decltype(array.ndim()) i = 0; i < array.ndim(); ++i) {
388
    dims.push_back(static_cast<int64_t>(array.shape()[i]));
389
  }
390
  self->Resize(phi::make_ddim(dims));
391 392

  if (paddle::platform::is_cpu_place(place)) {
393 394 395
    if (zero_copy) {
      auto holder = std::make_shared<details::NumpyAllocation<T>>(array);
      auto type = framework::ToDataType(std::type_index(typeid(T)));
396
      self->ResetHolderWithType(holder, framework::TransToPhiDataType(type));
397 398 399 400
    } else {
      auto dst = self->mutable_data<T>(place);
      std::memcpy(dst, array.data(), array.nbytes());
    }
401 402
  } else if (paddle::platform::is_xpu_place(place)) {
#ifdef PADDLE_WITH_XPU
W
WangXi 已提交
403 404 405
    // NOTE(wangxi): When copying data to the accelerator card,
    // we need set_device(dev_id) first.
    platform::Place tmp_place = place;
406
    platform::XPUDeviceGuard guard(tmp_place.device);
407
    auto dst = self->mutable_data<T>(place);
408 409 410 411 412
    memory::Copy(tmp_place,
                 static_cast<void *>(dst),
                 platform::CPUPlace(),
                 static_cast<const void *>(array.data()),
                 array.nbytes());
413 414 415 416
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Cannot use XPUPlace in CPU/GPU version, "
        "Please recompile or reinstall Paddle with XPU support."));
J
jianghaicheng 已提交
417 418 419 420 421 422
#endif
  } else if (paddle::platform::is_ipu_place(place)) {
#ifdef PADDLE_WITH_IPU
    if (zero_copy) {
      auto holder = std::make_shared<details::NumpyAllocation<T>>(array);
      auto type = framework::ToDataType(std::type_index(typeid(T)));
423
      self->ResetHolderWithType(holder, framework::TransToPhiDataType(type));
J
jianghaicheng 已提交
424
    } else {
425 426 427 428 429 430 431 432
      // IPU does not store Tensor data, Tensor will be created on CPU
      if (!self->initialized()) {
        auto dst = self->mutable_data<T>(place);
        std::memcpy(dst, array.data(), array.nbytes());
      } else {
        auto dst = self->mutable_data<T>(self->place());
        std::memcpy(dst, array.data(), array.nbytes());
      }
J
jianghaicheng 已提交
433 434 435 436 437
    }
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Cannot use IPUPlace in CPU/GPU/XPU/NPU version, "
        "Please recompile or reinstall Paddle with IPU support."));
438 439 440 441
#endif
  } else if (paddle::platform::is_custom_place(place)) {
#ifdef PADDLE_WITH_CUSTOM_DEVICE
    platform::Place tmp_place = place;
442
    phi::DeviceGuard guard(tmp_place);
443 444
    auto dst = self->mutable_data<T>(place);

445
    phi::DeviceManager::GetDeviceWithPlace(tmp_place)->MemoryCopyH2D(
446 447 448 449 450 451 452 453 454 455
        reinterpret_cast<void *>(dst),
        const_cast<void *>(reinterpret_cast<const void *>(array.data())),
        array.nbytes());
    platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
    auto &ctx = *pool.Get(place);
    ctx.Wait();
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Cannot use CustomDevice in CPU/GPU/XPU version. "
        "Please recompile or reinstall Paddle with CustomDevice support."));
456
#endif
457
  } else {
458
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
459
    if (paddle::platform::is_gpu_place(place)) {
W
WangXi 已提交
460 461
      // NOTE(wangxi): When copying data to the accelerator card,
      // we need set_device(dev_id) first.
462
      platform::CUDADeviceGuard guard(place.device);
463
      auto dst = self->mutable_data<T>(place);
464
#ifdef PADDLE_WITH_HIP
465 466
      paddle::platform::GpuMemcpySync(
          dst, array.data(), array.nbytes(), hipMemcpyHostToDevice);
467
#else
468 469
      paddle::platform::GpuMemcpySync(
          dst, array.data(), array.nbytes(), cudaMemcpyHostToDevice);
470
#endif
471

472 473 474
    } else if (paddle::platform::is_cuda_pinned_place(place)) {
      auto dst = self->mutable_data<T>(place);
      std::memcpy(dst, array.data(), array.nbytes());
475
    } else {
476 477 478
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Incompatible place type: Tensor.set() supports "
          "CPUPlace, CUDAPlace "
479
          "and CUDAPinnedPlace, but got %s!",
480
          place));
481 482
    }
#else
483
    PADDLE_THROW(platform::errors::PermissionDenied(
484
        "Cannot use CUDAPlace or CUDAPinnedPlace in CPU only version, "
485
        "Please recompile or reinstall Paddle with CUDA support."));
486 487 488 489 490
#endif
  }
}

template <typename P>
491
void SetTensorFromPyArray(phi::DenseTensor *self,
492 493 494
                          const py::object &obj,
                          const P &place,
                          bool zero_copy) {
495
  auto array = obj.cast<py::array>();
496
  if (py::isinstance<py::array_t<float>>(array)) {
497
    SetTensorFromPyArrayT<float, P>(self, array, place, zero_copy);
498
  } else if (py::isinstance<py::array_t<int>>(array)) {
499
    SetTensorFromPyArrayT<int, P>(self, array, place, zero_copy);
500
  } else if (py::isinstance<py::array_t<int64_t>>(array)) {
501
    SetTensorFromPyArrayT<int64_t, P>(self, array, place, zero_copy);
502
  } else if (py::isinstance<py::array_t<double>>(array)) {
503
    SetTensorFromPyArrayT<double, P>(self, array, place, zero_copy);
504
  } else if (py::isinstance<py::array_t<int8_t>>(array)) {
505
    SetTensorFromPyArrayT<int8_t, P>(self, array, place, zero_copy);
L
Leo Chen 已提交
506 507
  } else if (py::isinstance<py::array_t<int16_t>>(array)) {
    SetTensorFromPyArrayT<int16_t, P>(self, array, place, zero_copy);
508
  } else if (py::isinstance<py::array_t<uint8_t>>(array)) {
509
    SetTensorFromPyArrayT<uint8_t, P>(self, array, place, zero_copy);
510
  } else if (py::isinstance<py::array_t<paddle::platform::float16>>(array)) {
511 512
    SetTensorFromPyArrayT<paddle::platform::float16, P>(
        self, array, place, zero_copy);
513 514 515 516 517 518 519 520
  } else if (py::isinstance<py::array_t<paddle::platform::complex<float>>>(
                 array)) {
    SetTensorFromPyArrayT<paddle::platform::complex<float>, P>(
        self, array, place, zero_copy);
  } else if (py::isinstance<py::array_t<paddle::platform::complex<double>>>(
                 array)) {
    SetTensorFromPyArrayT<paddle::platform::complex<double>, P>(
        self, array, place, zero_copy);
521
  } else if (py::isinstance<py::array_t<uint16_t>>(array)) {
522 523
    // since there is still no support for bfloat16 in NumPy,
    // uint16 is used for casting bfloat16
524 525
    SetTensorFromPyArrayT<paddle::platform::bfloat16, P>(
        self, array, place, zero_copy);
526
  } else if (py::isinstance<py::array_t<bool>>(array)) {
527
    SetTensorFromPyArrayT<bool, P>(self, array, place, zero_copy);
528
  } else {
529 530
    // obj may be any type, obj.cast<py::array>() may be failed,
    // then the array.dtype will be string of unknown meaning,
531
    PADDLE_THROW(platform::errors::InvalidArgument(
532 533 534 535
        "Input object type error or incompatible array data type. "
        "tensor.set() supports array with bool, float16, float32, "
        "float64, int8, int16, int32, int64, uint8 or uint16, "
        "please check your input or input array data type."));
536 537 538
  }
}

J
Jack Zhou 已提交
539
template <typename P>
540 541
void SetStringTensorFromPyArray(phi::StringTensor *self,
                                const py::array &array,
J
Jack Zhou 已提交
542 543 544
                                const P &place) {
  bool is_string_pyarray =
      array.dtype().kind() == 'S' || array.dtype().kind() == 'U';
545 546
  PADDLE_ENFORCE_EQ(is_string_pyarray,
                    true,
J
Jack Zhou 已提交
547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583
                    platform::errors::InvalidArgument(
                        "Expect the dtype of numpy array is string or "
                        "unicode, but recevie dtype %s",
                        array.dtype()));
  std::vector<int64_t> dims;
  dims.reserve(array.ndim());
  dims.reserve(array.ndim());
  for (decltype(array.ndim()) i = 0; i < array.ndim(); ++i) {
    dims.push_back(static_cast<int>(array.shape()[i]));
  }
  self->Resize(phi::make_ddim(dims));
  auto itemsize = array.itemsize();
  if (paddle::platform::is_cpu_place(place)) {
    auto dst = self->mutable_data(place);
    if (array.dtype().kind() == 'S') {
      for (int i = 0; i < self->numel(); ++i) {
        dst[i] =
            pstring(reinterpret_cast<const char *>(array.data()) + itemsize * i,
                    itemsize);
      }
    } else {
      // array.dtype().kind() == 'U'
      VLOG(6) << "numpy array itemsize: " << itemsize;
      for (int i = 0; i < self->numel(); ++i) {
        // Note(zhoushunjie): The itemsize of unicode numpy array is the
        // the size of each unicode string. Each unicode string is aligned
        // to max length of the array of unicode strings, so the size of
        // each unicode string is same. The size of each unicode character is
        // 4, so the size of unicode string is 4 times of the length of
        // unicode string.
        auto unicode_len = itemsize / 4;
        auto utf8_len = phi::strings::GetUTF8StrLen(
            reinterpret_cast<const uint32_t *>(array.data()) + unicode_len * i,
            unicode_len);
        pstring pstr(utf8_len - 1, 0);
        phi::strings::GetUTF8Str(
            reinterpret_cast<const uint32_t *>(array.data()) + unicode_len * i,
584 585
            pstr.mdata(),
            unicode_len);
J
Jack Zhou 已提交
586 587 588 589 590 591 592 593 594 595
        dst[i] = pstr;
      }
    }
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "StringTensor only support CPUPlace now, but receive %s",
        place.DebugString()));
  }
}

S
Siming Dai 已提交
596
template <typename T>
S
Siming Dai 已提交
597
void SetUVATensorFromPyArrayImpl(
598
    phi::DenseTensor *self_tensor,
S
Siming Dai 已提交
599 600
    const py::array_t<T, py::array::c_style | py::array::forcecast> &array,
    int device_id) {
S
Siming Dai 已提交
601
#if defined(PADDLE_WITH_CUDA)
602
  VLOG(4) << "Running in SetUVATensorFromPyArrayImpl.";
S
Siming Dai 已提交
603 604 605 606
  std::vector<int64_t> dims;
  dims.reserve(array.ndim());
  int64_t numel = 1;
  for (decltype(array.ndim()) i = 0; i < array.ndim(); ++i) {
607 608
    dims.emplace_back(static_cast<int64_t>(array.shape()[i]));
    numel *= static_cast<int64_t>(array.shape()[i]);
S
Siming Dai 已提交
609
  }
610
  self_tensor->Resize(phi::make_ddim(dims));
S
Siming Dai 已提交
611 612 613 614

  auto data_type = framework::ToDataType(std::type_index(typeid(T)));
  const auto &need_allocate_size = numel * framework::SizeOfType(data_type);
  T *data_ptr;
615 616
  cudaHostAlloc(reinterpret_cast<void **>(&data_ptr),
                need_allocate_size,
S
Siming Dai 已提交
617 618 619 620 621
                cudaHostAllocWriteCombined | cudaHostAllocMapped);
  std::memcpy(data_ptr, array.data(), array.nbytes());

  void *cuda_device_pointer = nullptr;
  cudaHostGetDevicePointer(reinterpret_cast<void **>(&cuda_device_pointer),
622 623
                           reinterpret_cast<void *>(data_ptr),
                           0);
S
Siming Dai 已提交
624 625
  std::shared_ptr<memory::allocation::Allocation> holder =
      std::make_shared<memory::allocation::Allocation>(
626 627
          cuda_device_pointer,
          need_allocate_size,
S
Siming Dai 已提交
628
          platform::CUDAPlace(device_id));
629
  self_tensor->ResetHolderWithType(holder,
630
                                   framework::TransToPhiDataType(data_type));
S
Siming Dai 已提交
631 632 633
#endif
}

634 635 636
template <typename T>
void SetUVATensorFromPyArray(
    const std::shared_ptr<paddle::imperative::VarBase> &self,
S
Siming Dai 已提交
637
    const py::array_t<T, py::array::c_style | py::array::forcecast> &array,
638
    int device_id) {
639 640
#if defined(PADDLE_WITH_CUDA)
  VLOG(4) << "Running in SetUVATensorFromPyArray for VarBase.";
641
  auto *self_tensor = self->MutableVar()->GetMutable<phi::DenseTensor>();
642 643 644 645 646
  SetUVATensorFromPyArrayImpl<T>(self_tensor, array, device_id);
#endif
}

template <typename T>
647 648 649
void SetUVATensorFromPyArray(const std::shared_ptr<paddle::Tensor> &self,
                             const py::array_t<T> &array,
                             int device_id) {
650 651 652 653 654 655 656 657 658 659
#if defined(PADDLE_WITH_CUDA)
  VLOG(4) << "Running in SetUVATensorFromPyArray for Phi::Tensor.";
  phi::DenseTensorMeta meta =
      phi::DenseTensorMeta(phi::DataType::FLOAT32, phi::make_ddim({1, 1}));
  std::shared_ptr<phi::DenseTensor> tmp_t = std::make_shared<phi::DenseTensor>(
      std::make_unique<paddle::experimental::DefaultAllocator>(
          paddle::platform::CPUPlace())
          .get(),
      meta);
  self.get()->set_impl(tmp_t);
660
  auto *self_tensor = static_cast<phi::DenseTensor *>(self.get()->impl().get());
661 662 663 664 665

  SetUVATensorFromPyArrayImpl<T>(self_tensor, array, device_id);
#endif
}

W
wopeizl 已提交
666
template <typename T, size_t D>
667 668
void _sliceCompute(const phi::DenseTensor *in,
                   phi::DenseTensor *out,
L
Leo Chen 已提交
669
                   const phi::CPUContext &ctx,
W
wopeizl 已提交
670 671 672
                   const std::vector<int> &axes,
                   const std::vector<int> &starts) {
  auto &eigen_place = *ctx.eigen_device();
673
  auto out_dims = phi::vectorize<int>(out->dims());
W
wopeizl 已提交
674 675
  auto in_dims = in->dims();

676 677
  auto offsets = Eigen::DSizes<Eigen::DenseIndex, D>();
  auto extents = Eigen::DSizes<Eigen::DenseIndex, D>();
W
wopeizl 已提交
678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696
  for (size_t i = 0; i < D; ++i) {
    offsets[i] = 0;
    extents[i] = out_dims[i];
  }
  int start;
  for (size_t i = 0; i < axes.size(); ++i) {
    start = starts[i];
    if (start < 0) {
      start = (start + in_dims[axes[i]]);
    }
    start = std::max(start, 0);
    offsets[axes[i]] = start;
  }
  auto in_t =
      framework::EigenTensor<T, D, Eigen::RowMajor, Eigen::DenseIndex>::From(
          *in);
  auto out_t =
      framework::EigenTensor<T, D, Eigen::RowMajor, Eigen::DenseIndex>::From(
          *out);
697 698
  operators::EigenSlice<std::decay_t<decltype(eigen_place)>, T, D>::Eval(
      eigen_place, out_t, in_t, offsets, extents);
W
wopeizl 已提交
699 700 701
}

template <typename T>
702 703
void _concatCompute(const std::vector<phi::DenseTensor> &ins,
                    phi::DenseTensor *out,
L
Leo Chen 已提交
704
                    const phi::CPUContext &ctx,
705
                    int64_t axis) {
W
wopeizl 已提交
706 707 708
  if (axis == 0 && ins.size() < 10) {
    size_t output_offset = 0;
    for (auto &in : ins) {
709 710
      auto in_stride = phi::stride_numel(in.dims());
      auto out_stride = phi::stride_numel(out->dims());
711 712 713 714 715 716 717 718
      phi::funcs::StridedNumelCopyWithAxis<T, phi::CPUContext>(
          ctx,
          axis,
          out->data<T>() + output_offset,
          out_stride,
          in.data<T>(),
          in_stride,
          in_stride[axis]);
W
wopeizl 已提交
719 720 721
      output_offset += in_stride[axis];
    }
  } else {
L
Leo Chen 已提交
722
    paddle::operators::math::ConcatFunctor<phi::CPUContext, T> concat_functor;
W
wopeizl 已提交
723 724 725 726
    concat_functor(ctx, ins, static_cast<int>(axis), out);
  }
}

727
inline void _getSliceinfo(const phi::DenseTensor &self,
728 729 730 731 732 733
                          py::object obj,
                          const int64_t dim,
                          int64_t *pstart,
                          int64_t *pstop,
                          int64_t *pstep,
                          int64_t *pslicelength) {
W
wopeizl 已提交
734 735 736 737 738
  auto &start = *pstart;
  auto &stop = *pstop;
  auto &step = *pstep;
  auto &slicelength = *pslicelength;
  const framework::DDim &srcDDim = self.dims();
Z
zyfncg 已提交
739 740 741 742
  PADDLE_ENFORCE(
      0 <= dim && dim < srcDDim.size(),
      platform::errors::OutOfRange("The dim %d of slice is out of bounds, it "
                                   "shound be in the range of [0, %d).",
743 744
                                   dim,
                                   srcDDim.size()));
Z
zyfncg 已提交
745

W
wopeizl 已提交
746 747 748 749
  if (py::isinstance<py::slice>(obj)) {
    size_t lstart, lstop, lstep, lslicelength;
    py::slice s = static_cast<py::slice>(obj);
    if (!s.compute(srcDDim[dim], &lstart, &lstop, &lstep, &lslicelength)) {
Z
zyfncg 已提交
750 751 752 753
      PADDLE_THROW(platform::errors::OutOfRange(
          "Slice on dim: %d is error, please check the validity of tensor "
          "dims or slice item.",
          dim));
W
wopeizl 已提交
754 755 756 757 758 759 760
    }
    start = static_cast<int64_t>(lstart);
    stop = static_cast<int64_t>(lstop);
    step = static_cast<int64_t>(lstep);
    slicelength = static_cast<int64_t>(lslicelength);
  } else if (py::isinstance<py::int_>(obj)) {
    start = static_cast<int64_t>(static_cast<py::int_>(obj));
Z
zyfncg 已提交
761 762 763 764
    PADDLE_ENFORCE(
        std::abs(start) < srcDDim[dim],
        platform::errors::OutOfRange("The start %d of slice is out of bounds, "
                                     "it shound be in the range of (%d, %d).",
765 766 767
                                     start,
                                     -srcDDim[dim],
                                     srcDDim[dim]));
W
wopeizl 已提交
768 769 770 771 772
    start = (start >= 0) ? start : srcDDim[dim] - start;
    stop = start + 1;
    step = 1;
    slicelength = 1;
  } else {
Z
zyfncg 已提交
773 774 775
    PADDLE_THROW(
        platform::errors::OutOfRange("Index object error, the index object for "
                                     "slice only supports slice(::) and int."));
W
wopeizl 已提交
776 777 778
  }
}

779 780 781
inline phi::DenseTensor *_getTensor(const phi::DenseTensor &self,
                                    const framework::DDim &ddim) {
  phi::DenseTensor *output = new phi::DenseTensor();
W
wopeizl 已提交
782 783 784
  output->Resize(ddim);
  auto place = self.place();
  if (platform::is_cpu_place(place)) {
785
    output->mutable_data(place, self.dtype());
786 787
  } else if (platform::is_xpu_place(place)) {
#ifdef PADDLE_WITH_XPU
788
    output->mutable_data(place, self.dtype());
789
#endif
W
wopeizl 已提交
790
  } else {
791
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
W
wopeizl 已提交
792
    if (platform::is_cuda_pinned_place(place)) {
793
      output->mutable_data(place, self.dtype());
W
wopeizl 已提交
794
    } else if ((platform::is_gpu_place(place))) {
795
      output->mutable_data(place, self.dtype());
W
wopeizl 已提交
796 797 798 799 800 801 802
    }
#endif
  }
  return output;
}

template <typename T>
803 804
void _sliceDapper(const phi::DenseTensor *in,
                  phi::DenseTensor *out,
L
Leo Chen 已提交
805
                  const phi::CPUContext &ctx,
806 807
                  const std::vector<int> &axes,
                  const std::vector<int> &starts,
W
wopeizl 已提交
808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837
                  int size) {
  switch (size) {
    case 1:
      _sliceCompute<T, 1>(in, out, ctx, axes, starts);
      break;
    case 2:
      _sliceCompute<T, 2>(in, out, ctx, axes, starts);
      break;
    case 3:
      _sliceCompute<T, 3>(in, out, ctx, axes, starts);
      break;
    case 4:
      _sliceCompute<T, 4>(in, out, ctx, axes, starts);
      break;
    case 5:
      _sliceCompute<T, 5>(in, out, ctx, axes, starts);
      break;
    case 6:
      _sliceCompute<T, 6>(in, out, ctx, axes, starts);
      break;
    case 7:
      _sliceCompute<T, 7>(in, out, ctx, axes, starts);
      break;
    case 8:
      _sliceCompute<T, 8>(in, out, ctx, axes, starts);
      break;
    case 9:
      _sliceCompute<T, 9>(in, out, ctx, axes, starts);
      break;
    default:
838 839
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The dim size should be 1 to 9, current is %d", size));
W
wopeizl 已提交
840 841 842 843 844
      break;
  }
}

template <typename T>
845 846
inline phi::DenseTensor *_sliceWrapper(const phi::DenseTensor &self,
                                       const phi::CPUContext &ctx,
847
                                       py::object obj UNUSED,
848 849 850
                                       int dim,
                                       int64_t start,
                                       int64_t slicelength) {
W
wopeizl 已提交
851 852 853 854
  framework::DDim dstDDim = self.dims();
  dstDDim[dim] = static_cast<int64_t>(slicelength);
  std::vector<int> axes({dim});
  std::vector<int> starts({static_cast<int>(start)});
855
  phi::DenseTensor *output = _getTensor(self, dstDDim);
W
wopeizl 已提交
856 857 858 859 860
  _sliceDapper<T>(&self, output, ctx, axes, starts, dstDDim.size());
  return output;
}

template <typename T>
861 862 863
inline phi::DenseTensor *_sliceAndConcat(const phi::DenseTensor &self,
                                         py::object obj,
                                         int dim) {
L
Leo Chen 已提交
864
  phi::CPUContext ctx;
W
wopeizl 已提交
865 866 867 868 869
  int64_t start, stop, step, slicelength;
  _getSliceinfo(self, obj, dim, &start, &stop, &step, &slicelength);
  if (step == 1 || slicelength == 1) {
    return _sliceWrapper<T>(self, ctx, obj, dim, start, slicelength);
  } else {
870
    std::vector<phi::DenseTensor> ins;
W
wopeizl 已提交
871 872 873 874 875 876 877
    for (auto i = 0; i < slicelength; ++i, start += step) {
      ins.emplace_back(*_sliceWrapper<T>(self, ctx, obj, dim, start, 1));
    }

    // do the concat operation
    framework::DDim dstDDim = self.dims();
    dstDDim[dim] = static_cast<int64_t>(slicelength);
878
    phi::DenseTensor *output1 = _getTensor(self, dstDDim);
W
wopeizl 已提交
879 880 881 882 883
    _concatCompute<T>(ins, output1, ctx, dim);
    return output1;
  }
}

884 885 886
inline phi::DenseTensor *_sliceTensor(const phi::DenseTensor &self,
                                      py::object obj,
                                      int dim) {
887
  auto src_type = framework::TransToProtoVarType(self.dtype());
W
wopeizl 已提交
888 889 890
  switch (src_type) {
    case framework::proto::VarType::FP16:
      return _sliceAndConcat<paddle::platform::float16>(self, obj, dim);
891 892
    case framework::proto::VarType::BF16:
      return _sliceAndConcat<paddle::platform::bfloat16>(self, obj, dim);
893
    case framework::proto::VarType::COMPLEX64:
894
      return _sliceAndConcat<paddle::platform::complex<float>>(self, obj, dim);
895
    case framework::proto::VarType::COMPLEX128:
896
      return _sliceAndConcat<paddle::platform::complex<double>>(self, obj, dim);
W
wopeizl 已提交
897 898 899 900
    case framework::proto::VarType::FP32:
      return _sliceAndConcat<float>(self, obj, dim);
    case framework::proto::VarType::FP64:
      return _sliceAndConcat<double>(self, obj, dim);
L
Leo Chen 已提交
901 902 903 904
    case framework::proto::VarType::INT8:
      return _sliceAndConcat<int8_t>(self, obj, dim);
    case framework::proto::VarType::INT16:
      return _sliceAndConcat<int16_t>(self, obj, dim);
W
wopeizl 已提交
905 906 907 908 909 910 911
    case framework::proto::VarType::INT32:
      return _sliceAndConcat<int>(self, obj, dim);
    case framework::proto::VarType::INT64:
      return _sliceAndConcat<int64_t>(self, obj, dim);
    case framework::proto::VarType::BOOL:
      return _sliceAndConcat<bool>(self, obj, dim);
    case framework::proto::VarType::UINT8:
L
Leo Chen 已提交
912
      return _sliceAndConcat<uint8_t>(self, obj, dim);
W
wopeizl 已提交
913
    default:
914 915 916
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Not support tensor type: %s",
          framework::DataTypeToString(src_type)));
W
wopeizl 已提交
917 918 919
  }
}

920 921
inline phi::DenseTensor *_pySliceTensor(const phi::DenseTensor &self,
                                        py::object obj) {
W
wopeizl 已提交
922 923
  if (py::isinstance<py::tuple>(obj)) {
    py::list l = static_cast<py::list>(obj);
924 925
    std::unique_ptr<phi::DenseTensor> target;
    phi::DenseTensor *src = const_cast<phi::DenseTensor *>(&self);
W
wopeizl 已提交
926 927 928 929 930 931 932 933 934 935 936 937 938 939
    for (auto i = 0; i < static_cast<int>(l.size()); ++i) {
      src = _sliceTensor(*src, l[i], i);
      if (i + 1 == static_cast<int>(l.size())) {
        return src;
      } else {
        target.reset(src);
      }
    }
    return nullptr;
  } else {
    return _sliceTensor(self, obj, 0);
  }
}

940 941
inline phi::DenseTensor *PySliceTensor(const phi::DenseTensor &self,
                                       py::object obj) {
W
wopeizl 已提交
942
  if (platform::is_gpu_place(self.place())) {
943 944
    std::unique_ptr<phi::DenseTensor> holder;
    phi::DenseTensor src;
W
wopeizl 已提交
945
    framework::TensorCopySync(self, platform::CPUPlace(), &src);
946
    phi::DenseTensor *output = _pySliceTensor(src, obj);
W
wopeizl 已提交
947
    holder.reset(output);
948
    phi::DenseTensor *dst = _getTensor(*output, output->dims());
W
wopeizl 已提交
949 950 951 952 953 954 955
    framework::TensorCopySync(*output, self.place(), dst);
    return dst;
  } else {
    return _pySliceTensor(self, obj);
  }
}

956
inline py::array TensorToPyArray(const phi::DenseTensor &tensor,
957
                                 bool need_deep_copy = false) {
Q
qingqing01 已提交
958 959 960
  if (!tensor.IsInitialized()) {
    return py::array();
  }
961
  bool is_gpu_tensor = platform::is_gpu_place(tensor.place());
962
  bool is_xpu_tensor = platform::is_xpu_place(tensor.place());
963
  bool is_custom_device_tensor = platform::is_custom_place(tensor.place());
964
  const auto &tensor_dims = tensor.dims();
965
  auto tensor_dtype = framework::TransToProtoVarType(tensor.dtype());
966 967 968 969 970 971 972
  size_t sizeof_dtype = framework::SizeOfType(tensor_dtype);

  std::vector<size_t> py_dims(tensor_dims.size());
  std::vector<size_t> py_strides(tensor_dims.size());

  size_t numel = 1;
  for (int i = tensor_dims.size() - 1; i >= 0; --i) {
973
    py_dims[i] = static_cast<size_t>(tensor_dims[i]);
974 975 976 977
    py_strides[i] = sizeof_dtype * numel;
    numel *= py_dims[i];
  }

978
  const void *tensor_buf_ptr = tensor.data();
979

980 981
  std::string py_dtype_str = details::TensorDTypeToPyDTypeStr(
      framework::TransToProtoVarType(tensor.dtype()));
982

张春乔 已提交
983
  if (!is_gpu_tensor && !is_xpu_tensor && !is_custom_device_tensor) {
984
    if (!need_deep_copy) {
985
      auto base = py::cast(std::move(tensor));
986 987 988 989 990
      return py::array(py::dtype(py_dtype_str.c_str()),
                       py_dims,
                       py_strides,
                       const_cast<void *>(tensor_buf_ptr),
                       base);
991 992
    } else {
      py::array py_arr(py::dtype(py_dtype_str.c_str()), py_dims, py_strides);
993
      PADDLE_ENFORCE_EQ(
994 995
          py_arr.writeable(),
          true,
996 997 998 999
          platform::errors::InvalidArgument(
              "PyArray is not writable, in which case memory leak "
              "or double free would occur"));
      PADDLE_ENFORCE_EQ(
1000 1001
          py_arr.owndata(),
          true,
1002 1003 1004
          platform::errors::InvalidArgument(
              "PyArray does not own data, in which case  memory leak "
              "or double free would occur"));
1005 1006
      platform::CPUPlace place;
      size_t copy_bytes = sizeof_dtype * numel;
1007 1008
      paddle::memory::Copy(
          place, py_arr.mutable_data(), place, tensor_buf_ptr, copy_bytes);
1009 1010
      return py_arr;
    }
1011 1012 1013
  } else if (is_xpu_tensor) {
#ifdef PADDLE_WITH_XPU
    py::array py_arr(py::dtype(py_dtype_str.c_str()), py_dims, py_strides);
1014 1015
    PADDLE_ENFORCE_EQ(py_arr.writeable(),
                      true,
1016 1017 1018 1019
                      platform::errors::InvalidArgument(
                          "PyArray is not writable, in which case memory leak "
                          "or double free would occur"));
    PADDLE_ENFORCE_EQ(
1020 1021
        py_arr.owndata(),
        true,
1022 1023 1024 1025 1026
        platform::errors::InvalidArgument(
            "PyArray does not own data, in which case  memory leak "
            "or double free would occur"));

    size_t copy_bytes = sizeof_dtype * numel;
1027
    auto p = tensor.place();
1028 1029 1030 1031 1032
    paddle::memory::Copy(platform::CPUPlace(),
                         py_arr.mutable_data(),
                         p,
                         tensor_buf_ptr,
                         copy_bytes);
1033 1034 1035 1036 1037 1038 1039
    return py_arr;
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Cannot use XPUPlace in CPU/GPU version, "
        "Please recompile or reinstall Paddle with XPU support."));
#endif
  } else if (is_gpu_tensor) {
1040
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1041
    py::array py_arr(py::dtype(py_dtype_str.c_str()), py_dims, py_strides);
1042 1043
    PADDLE_ENFORCE_EQ(py_arr.writeable(),
                      true,
1044 1045 1046 1047
                      platform::errors::InvalidArgument(
                          "PyArray is not writable, in which case memory leak "
                          "or double free would occur"));
    PADDLE_ENFORCE_EQ(
1048 1049
        py_arr.owndata(),
        true,
1050 1051 1052 1053 1054
        platform::errors::InvalidArgument(
            "PyArray does not own data, in which case  memory leak "
            "or double free would occur"));

    size_t copy_bytes = sizeof_dtype * numel;
1055
    auto p = tensor.place();
1056 1057 1058 1059 1060 1061
    paddle::memory::Copy(platform::CPUPlace(),
                         py_arr.mutable_data(),
                         p,
                         tensor_buf_ptr,
                         copy_bytes,
                         nullptr);
1062
    return py_arr;
1063
#else
1064 1065 1066
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Cannot use CUDAPlace in CPU only version, "
        "Please recompile or reinstall Paddle with CUDA support."));
1067 1068 1069 1070
#endif
  } else if (is_custom_device_tensor) {
#ifdef PADDLE_WITH_CUSTOM_DEVICE
    py::array py_arr(py::dtype(py_dtype_str.c_str()), py_dims, py_strides);
1071 1072
    PADDLE_ENFORCE_EQ(py_arr.writeable(),
                      true,
1073 1074 1075 1076
                      platform::errors::InvalidArgument(
                          "PyArray is not writable, in which case memory leak "
                          "or double free would occur"));
    PADDLE_ENFORCE_EQ(
1077 1078
        py_arr.owndata(),
        true,
1079 1080 1081 1082
        platform::errors::InvalidArgument(
            "PyArray does not own data, in which case  memory leak "
            "or double free would occur"));

1083 1084
    // TODO(qili93): temporary for ascned npu performance to be removed along
    // with npu_identity op
1085
    paddle::Tensor tensor_out(std::make_shared<phi::DenseTensor>());
1086
    if (tensor.storage_properties_initialized()) {
1087
      paddle::Tensor tensor_in(std::make_shared<phi::DenseTensor>(tensor));
1088 1089 1090 1091 1092 1093
      tensor_out = npu_identity_ad_func(tensor_in, -1);
      auto dense_tensor =
          std::dynamic_pointer_cast<phi::DenseTensor>(tensor_out.impl());
      tensor_buf_ptr = dense_tensor->data();
    }

1094 1095 1096 1097
    size_t copy_bytes = sizeof_dtype * numel;
    platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
    auto &ctx = *pool.Get(tensor.place());
    paddle::memory::Copy(
1098 1099 1100 1101 1102
        platform::CPUPlace(),
        py_arr.mutable_data(),
        tensor.place(),
        tensor_buf_ptr,
        copy_bytes,
1103 1104 1105 1106 1107 1108 1109 1110
        reinterpret_cast<const platform::CustomDeviceContext &>(ctx).stream());
    ctx.Wait();
    return py_arr;
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Cannot use CustomPlace in CPU/GPU/XPU/NPU version, "
        "Please recompile or reinstall Paddle with CustomPlace "
        "support."));
1111
#endif
1112 1113 1114
  }
  PADDLE_THROW(platform::errors::Unimplemented("Place is not supported"));
  return py::array();
1115 1116
}

1117 1118
}  // namespace pybind
}  // namespace paddle