tensor_py.h 21.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14 15

#pragma once
16

L
Luo Tao 已提交
17
#include <Python.h>
W
wopeizl 已提交
18 19
#include <algorithm>
#include <memory>
Q
qijun 已提交
20
#include <string>
C
chengduoZH 已提交
21 22
#include <tuple>
#include <vector>
23
#include "paddle/fluid/framework/data_type.h"
Y
Yi Wang 已提交
24 25
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/memory/memcpy.h"
W
wopeizl 已提交
26 27
#include "paddle/fluid/operators/math/concat_and_split.h"
#include "paddle/fluid/operators/strided_memcpy.h"
Y
Yi Wang 已提交
28
#include "paddle/fluid/platform/device_context.h"
29
#include "paddle/fluid/platform/float16.h"
Q
qijun 已提交
30 31
#include "pybind11/numpy.h"
#include "pybind11/pybind11.h"
32

W
wopeizl 已提交
33 34
namespace py = pybind11;

35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
namespace pybind11 {
namespace detail {

// Note: use same enum number of float16 in numpy.
// import numpy as np
// print np.dtype(np.float16).num  # 23
constexpr int NPY_FLOAT16_ = 23;

// Note: Since float16 is not a builtin type in C++, we register
// paddle::platform::float16 as numpy.float16.
// Ref: https://github.com/pybind/pybind11/issues/1776
template <>
struct npy_format_descriptor<paddle::platform::float16> {
  static py::dtype dtype() {
    handle ptr = npy_api::get().PyArray_DescrFromType_(NPY_FLOAT16_);
    return reinterpret_borrow<py::dtype>(ptr);
  }
  static std::string format() {
    // Note: "e" represents float16.
    // Details at:
    // https://docs.python.org/3/library/struct.html#format-characters.
    return "e";
  }
  static PYBIND11_DESCR name() { return _("float16"); }
};

}  // namespace detail
}  // namespace pybind11

64
namespace paddle {
65
namespace pybind {
66

67 68
namespace details {

69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
template <typename T>
class PYBIND11_HIDDEN NumpyAllocation : public memory::Allocation {
 public:
  explicit NumpyAllocation(const py::array &arr)
      : Allocation(const_cast<void *>(arr.data()), sizeof(T) * (arr.size()),
                   paddle::platform::CPUPlace()),
        arr_(arr.ptr()) {
    PADDLE_ENFORCE_NOT_NULL(arr_, platform::errors::InvalidArgument(
                                      "The underlying PyObject pointer of "
                                      "numpy array cannot be nullptr"));
    PADDLE_ENFORCE_NE(
        arr_, Py_None,
        platform::errors::PreconditionNotMet(
            "The underlying PyObject pointer of numpy array cannot be None"));
    Py_INCREF(arr_);
  }
  ~NumpyAllocation() override {
    py::gil_scoped_acquire gil;
    Py_DECREF(arr_);
  }

 private:
  PyObject *arr_;
};

94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
template <typename T>
struct ValidDTypeToPyArrayChecker {
  static constexpr bool kValue = false;
};

#define DECLARE_VALID_DTYPE_TO_PY_ARRAY(type) \
  template <>                                 \
  struct ValidDTypeToPyArrayChecker<type> {   \
    static constexpr bool kValue = true;      \
  }

DECLARE_VALID_DTYPE_TO_PY_ARRAY(platform::float16);
DECLARE_VALID_DTYPE_TO_PY_ARRAY(float);
DECLARE_VALID_DTYPE_TO_PY_ARRAY(double);
DECLARE_VALID_DTYPE_TO_PY_ARRAY(bool);
DECLARE_VALID_DTYPE_TO_PY_ARRAY(int8_t);
L
Leo Chen 已提交
110
DECLARE_VALID_DTYPE_TO_PY_ARRAY(int16_t);
111 112
DECLARE_VALID_DTYPE_TO_PY_ARRAY(int);
DECLARE_VALID_DTYPE_TO_PY_ARRAY(int64_t);
L
Leo Chen 已提交
113
DECLARE_VALID_DTYPE_TO_PY_ARRAY(uint8_t);
114 115 116 117 118 119 120 121 122

inline std::string TensorDTypeToPyDTypeStr(
    framework::proto::VarType::Type type) {
#define TENSOR_DTYPE_TO_PY_DTYPE(T, proto_type)                             \
  if (type == proto_type) {                                                 \
    if (std::is_same<T, platform::float16>::value) {                        \
      return "e";                                                           \
    } else {                                                                \
      constexpr auto kIsValidDType = ValidDTypeToPyArrayChecker<T>::kValue; \
123 124 125 126 127
      PADDLE_ENFORCE_EQ(                                                    \
          kIsValidDType, true,                                              \
          platform::errors::Unimplemented(                                  \
              "This type [%s] of tensor cannot be expose to Python",        \
              typeid(T).name()));                                           \
128 129 130 131 132 133
      return py::format_descriptor<T>::format();                            \
    }                                                                       \
  }

  _ForEachDataType_(TENSOR_DTYPE_TO_PY_DTYPE);
#undef TENSOR_DTYPE_TO_PY_DTYPE
134 135
  PADDLE_THROW(platform::errors::Unimplemented(
      "Unsupported tensor data type: %s", framework::DataTypeToString(type)));
136 137 138 139
}

}  // namespace details

140
template <typename T>
141
T TensorGetElement(const framework::Tensor &self, size_t offset) {
142 143 144
  PADDLE_ENFORCE_LT(offset, self.numel(),
                    platform::errors::InvalidArgument(
                        "The offset exceeds the size of tensor."));
Q
qingqing01 已提交
145
  T b = static_cast<T>(0);
146
  if (platform::is_cpu_place(self.place())) {
Q
qingqing01 已提交
147 148
    b = self.data<T>()[offset];
#ifdef PADDLE_WITH_CUDA
149
  } else {
Q
qingqing01 已提交
150
    const T *a = self.data<T>();
151
    auto p = BOOST_GET_CONST(platform::CUDAPlace, self.place());
Q
qingqing01 已提交
152 153 154
    paddle::memory::Copy(platform::CPUPlace(), &b, p, a + offset, sizeof(T),
                         nullptr);
#endif
155
  }
Q
qingqing01 已提交
156
  return b;
157 158 159
}

template <typename T>
160
void TensorSetElement(framework::Tensor *self, size_t offset, T elem) {
161 162 163
  PADDLE_ENFORCE_LT(offset, self->numel(),
                    platform::errors::InvalidArgument(
                        "The offset exceeds the size of tensor."));
Q
qingqing01 已提交
164
  if (platform::is_cpu_place(self->place())) {
Y
Yu Yang 已提交
165
    self->mutable_data<T>(self->place())[offset] = elem;
Q
qingqing01 已提交
166 167
#ifdef PADDLE_WITH_CUDA
  } else {
168
    auto p = BOOST_GET_CONST(platform::CUDAPlace, self->place());
Q
qingqing01 已提交
169 170 171 172
    T *a = self->mutable_data<T>(p);
    paddle::memory::Copy(p, a + offset, platform::CPUPlace(), &elem, sizeof(T),
                         nullptr);
#endif
173
  }
174 175
}

176 177 178
template <typename T, typename P>
void SetTensorFromPyArrayT(
    framework::Tensor *self,
179
    const py::array_t<T, py::array::c_style | py::array::forcecast> &array,
180
    const P &place, bool zero_copy) {
181 182 183 184 185 186 187 188
  std::vector<int64_t> dims;
  dims.reserve(array.ndim());
  for (decltype(array.ndim()) i = 0; i < array.ndim(); ++i) {
    dims.push_back(static_cast<int>(array.shape()[i]));
  }
  self->Resize(framework::make_ddim(dims));

  if (paddle::platform::is_cpu_place(place)) {
189 190 191 192 193 194 195 196
    if (zero_copy) {
      auto holder = std::make_shared<details::NumpyAllocation<T>>(array);
      auto type = framework::ToDataType(std::type_index(typeid(T)));
      self->ResetHolderWithType(holder, type);
    } else {
      auto dst = self->mutable_data<T>(place);
      std::memcpy(dst, array.data(), array.nbytes());
    }
197 198
  } else {
#ifdef PADDLE_WITH_CUDA
199
    auto dst = self->mutable_data<T>(place);
200 201 202
    if (paddle::platform::is_cuda_pinned_place(place)) {
      std::memcpy(dst, array.data(), array.nbytes());
    } else if (paddle::platform::is_gpu_place(place)) {
203 204
      paddle::platform::GpuMemcpySync(dst, array.data(), array.nbytes(),
                                      cudaMemcpyHostToDevice);
205
    } else {
206 207 208
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Incompatible place type: Tensor.set() supports "
          "CPUPlace, CUDAPlace "
209
          "and CUDAPinnedPlace, but got %s!",
210
          place));
211 212
    }
#else
213
    PADDLE_THROW(platform::errors::PermissionDenied(
214
        "Cannot use CUDAPlace or CUDAPinnedPlace in CPU only version, "
215
        "Please recompile or reinstall Paddle with CUDA support."));
216 217 218 219 220
#endif
  }
}

template <typename P>
221
void SetTensorFromPyArray(framework::Tensor *self, const py::object &obj,
222
                          const P &place, bool zero_copy) {
223
  auto array = obj.cast<py::array>();
224
  if (py::isinstance<py::array_t<float>>(array)) {
225
    SetTensorFromPyArrayT<float, P>(self, array, place, zero_copy);
226
  } else if (py::isinstance<py::array_t<int>>(array)) {
227
    SetTensorFromPyArrayT<int, P>(self, array, place, zero_copy);
228
  } else if (py::isinstance<py::array_t<int64_t>>(array)) {
229
    SetTensorFromPyArrayT<int64_t, P>(self, array, place, zero_copy);
230
  } else if (py::isinstance<py::array_t<double>>(array)) {
231
    SetTensorFromPyArrayT<double, P>(self, array, place, zero_copy);
232
  } else if (py::isinstance<py::array_t<int8_t>>(array)) {
233
    SetTensorFromPyArrayT<int8_t, P>(self, array, place, zero_copy);
L
Leo Chen 已提交
234 235
  } else if (py::isinstance<py::array_t<int16_t>>(array)) {
    SetTensorFromPyArrayT<int16_t, P>(self, array, place, zero_copy);
236
  } else if (py::isinstance<py::array_t<uint8_t>>(array)) {
237
    SetTensorFromPyArrayT<uint8_t, P>(self, array, place, zero_copy);
238
  } else if (py::isinstance<py::array_t<paddle::platform::float16>>(array)) {
239 240
    SetTensorFromPyArrayT<paddle::platform::float16, P>(self, array, place,
                                                        zero_copy);
241
  } else if (py::isinstance<py::array_t<uint16_t>>(array)) {
L
Leo Chen 已提交
242 243
    // TODO(cql): temporary keeping uint16, which is used for casting float16
    // before. It should be depracated later.
244 245
    SetTensorFromPyArrayT<paddle::platform::float16, P>(self, array, place,
                                                        zero_copy);
246
  } else if (py::isinstance<py::array_t<bool>>(array)) {
247
    SetTensorFromPyArrayT<bool, P>(self, array, place, zero_copy);
248
  } else {
249 250
    // obj may be any type, obj.cast<py::array>() may be failed,
    // then the array.dtype will be string of unknown meaning,
251
    PADDLE_THROW(platform::errors::InvalidArgument(
252 253 254 255
        "Input object type error or incompatible array data type. "
        "tensor.set() supports array with bool, float16, float32, "
        "float64, int8, int16, int32, int64, uint8 or uint16, "
        "please check your input or input array data type."));
256 257 258
  }
}

W
wopeizl 已提交
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
template <typename T, size_t D>
void _sliceCompute(const framework::Tensor *in, framework::Tensor *out,
                   const platform::CPUDeviceContext &ctx,
                   const std::vector<int> &axes,
                   const std::vector<int> &starts) {
  auto &eigen_place = *ctx.eigen_device();
  auto place = in->place();
  auto out_dims = out->dims();
  auto in_dims = in->dims();

  auto offsets = Eigen::array<int, D>();
  auto extents = Eigen::array<int, D>();
  for (size_t i = 0; i < D; ++i) {
    offsets[i] = 0;
    extents[i] = out_dims[i];
  }
  int start;
  for (size_t i = 0; i < axes.size(); ++i) {
    start = starts[i];
    if (start < 0) {
      start = (start + in_dims[axes[i]]);
    }
    start = std::max(start, 0);
    offsets[axes[i]] = start;
  }
  auto in_t =
      framework::EigenTensor<T, D, Eigen::RowMajor, Eigen::DenseIndex>::From(
          *in);
  auto out_t =
      framework::EigenTensor<T, D, Eigen::RowMajor, Eigen::DenseIndex>::From(
          *out);
  out_t.device(eigen_place) = in_t.slice(offsets, extents);
}

template <typename T>
void _concatCompute(const std::vector<paddle::framework::Tensor> &ins,
                    paddle::framework::Tensor *out,
                    const platform::CPUDeviceContext &ctx, int64_t axis) {
  if (axis == 0 && ins.size() < 10) {
    size_t output_offset = 0;
    for (auto &in : ins) {
      auto in_stride = framework::stride_numel(in.dims());
      auto out_stride = framework::stride_numel(out->dims());
      paddle::operators::StridedNumelCopyWithAxis<T>(
          ctx, axis, out->data<T>() + output_offset, out_stride, in.data<T>(),
          in_stride, in_stride[axis]);
      output_offset += in_stride[axis];
    }
  } else {
    paddle::operators::math::ConcatFunctor<platform::CPUDeviceContext, T>
        concat_functor;
    concat_functor(ctx, ins, static_cast<int>(axis), out);
  }
}

L
Leo Chen 已提交
314 315 316
inline void _getSliceinfo(const framework::Tensor &self, py::object obj,
                          const int64_t dim, int64_t *pstart, int64_t *pstop,
                          int64_t *pstep, int64_t *pslicelength) {
W
wopeizl 已提交
317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
  auto &start = *pstart;
  auto &stop = *pstop;
  auto &step = *pstep;
  auto &slicelength = *pslicelength;
  const framework::DDim &srcDDim = self.dims();
  if (dim < 0 || dim >= srcDDim.size()) {
    throw py::index_error();
  }
  if (py::isinstance<py::slice>(obj)) {
    size_t lstart, lstop, lstep, lslicelength;
    py::slice s = static_cast<py::slice>(obj);
    if (!s.compute(srcDDim[dim], &lstart, &lstop, &lstep, &lslicelength)) {
      throw py::index_error();
    }
    start = static_cast<int64_t>(lstart);
    stop = static_cast<int64_t>(lstop);
    step = static_cast<int64_t>(lstep);
    slicelength = static_cast<int64_t>(lslicelength);
  } else if (py::isinstance<py::int_>(obj)) {
    start = static_cast<int64_t>(static_cast<py::int_>(obj));
    if (std::abs(start) >= srcDDim[dim]) {
      throw py::index_error();
    }
    start = (start >= 0) ? start : srcDDim[dim] - start;
    stop = start + 1;
    step = 1;
    slicelength = 1;
  } else {
    throw py::index_error();
  }
}

inline framework::Tensor *_getTensor(const framework::Tensor &self,
                                     const framework::DDim &ddim) {
  framework::Tensor *output = new framework::Tensor();
  output->Resize(ddim);
  auto place = self.place();
  if (platform::is_cpu_place(place)) {
355 356
    output->mutable_data(BOOST_GET_CONST(platform::CPUPlace, place),
                         self.type());
W
wopeizl 已提交
357 358 359
#ifdef PADDLE_WITH_CUDA
  } else {
    if (platform::is_cuda_pinned_place(place)) {
360
      output->mutable_data(BOOST_GET_CONST(platform::CUDAPinnedPlace, place),
W
wopeizl 已提交
361 362
                           self.type());
    } else if ((platform::is_gpu_place(place))) {
363 364
      output->mutable_data(BOOST_GET_CONST(platform::CUDAPlace, place),
                           self.type());
W
wopeizl 已提交
365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
    }
#endif
  }
  return output;
}

template <typename T>
void _sliceDapper(const framework::Tensor *in, framework::Tensor *out,
                  const platform::CPUDeviceContext &ctx,
                  const std::vector<int> &axes, const std::vector<int> &starts,
                  int size) {
  switch (size) {
    case 1:
      _sliceCompute<T, 1>(in, out, ctx, axes, starts);
      break;
    case 2:
      _sliceCompute<T, 2>(in, out, ctx, axes, starts);
      break;
    case 3:
      _sliceCompute<T, 3>(in, out, ctx, axes, starts);
      break;
    case 4:
      _sliceCompute<T, 4>(in, out, ctx, axes, starts);
      break;
    case 5:
      _sliceCompute<T, 5>(in, out, ctx, axes, starts);
      break;
    case 6:
      _sliceCompute<T, 6>(in, out, ctx, axes, starts);
      break;
    case 7:
      _sliceCompute<T, 7>(in, out, ctx, axes, starts);
      break;
    case 8:
      _sliceCompute<T, 8>(in, out, ctx, axes, starts);
      break;
    case 9:
      _sliceCompute<T, 9>(in, out, ctx, axes, starts);
      break;
    default:
405 406
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The dim size should be 1 to 9, current is %d", size));
W
wopeizl 已提交
407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
      break;
  }
}

template <typename T>
inline framework::Tensor *_sliceWrapper(const framework::Tensor &self,
                                        const platform::CPUDeviceContext &ctx,
                                        py::object obj, int dim, int64_t start,
                                        int64_t slicelength) {
  framework::DDim dstDDim = self.dims();
  dstDDim[dim] = static_cast<int64_t>(slicelength);
  std::vector<int> axes({dim});
  std::vector<int> starts({static_cast<int>(start)});
  framework::Tensor *output = _getTensor(self, dstDDim);
  _sliceDapper<T>(&self, output, ctx, axes, starts, dstDDim.size());
  return output;
}

template <typename T>
inline framework::Tensor *_sliceAndConcat(const framework::Tensor &self,
                                          py::object obj, int dim) {
  platform::CPUDeviceContext ctx;
  int64_t start, stop, step, slicelength;
  _getSliceinfo(self, obj, dim, &start, &stop, &step, &slicelength);
  if (step == 1 || slicelength == 1) {
    return _sliceWrapper<T>(self, ctx, obj, dim, start, slicelength);
  } else {
    std::vector<framework::Tensor> ins;
    for (auto i = 0; i < slicelength; ++i, start += step) {
      ins.emplace_back(*_sliceWrapper<T>(self, ctx, obj, dim, start, 1));
    }

    // do the concat operation
    framework::DDim dstDDim = self.dims();
    dstDDim[dim] = static_cast<int64_t>(slicelength);
    framework::Tensor *output1 = _getTensor(self, dstDDim);
    _concatCompute<T>(ins, output1, ctx, dim);
    return output1;
  }
}

inline framework::Tensor *_sliceTensor(const framework::Tensor &self,
                                       py::object obj, int dim) {
  auto src_type = self.type();
  switch (src_type) {
    case framework::proto::VarType::FP16:
      return _sliceAndConcat<paddle::platform::float16>(self, obj, dim);
    case framework::proto::VarType::FP32:
      return _sliceAndConcat<float>(self, obj, dim);
    case framework::proto::VarType::FP64:
      return _sliceAndConcat<double>(self, obj, dim);
L
Leo Chen 已提交
458 459 460 461
    case framework::proto::VarType::INT8:
      return _sliceAndConcat<int8_t>(self, obj, dim);
    case framework::proto::VarType::INT16:
      return _sliceAndConcat<int16_t>(self, obj, dim);
W
wopeizl 已提交
462 463 464 465 466 467 468
    case framework::proto::VarType::INT32:
      return _sliceAndConcat<int>(self, obj, dim);
    case framework::proto::VarType::INT64:
      return _sliceAndConcat<int64_t>(self, obj, dim);
    case framework::proto::VarType::BOOL:
      return _sliceAndConcat<bool>(self, obj, dim);
    case framework::proto::VarType::UINT8:
L
Leo Chen 已提交
469
      return _sliceAndConcat<uint8_t>(self, obj, dim);
W
wopeizl 已提交
470
    default:
471 472 473
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Not support tensor type: %s",
          framework::DataTypeToString(src_type)));
W
wopeizl 已提交
474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
  }
}

inline framework::Tensor *_pySliceTensor(const framework::Tensor &self,
                                         py::object obj) {
  if (py::isinstance<py::tuple>(obj)) {
    py::list l = static_cast<py::list>(obj);
    std::unique_ptr<framework::Tensor> target;
    framework::Tensor *src = const_cast<framework::Tensor *>(&self);
    for (auto i = 0; i < static_cast<int>(l.size()); ++i) {
      src = _sliceTensor(*src, l[i], i);
      if (i + 1 == static_cast<int>(l.size())) {
        return src;
      } else {
        target.reset(src);
      }
    }
    return nullptr;
  } else {
    return _sliceTensor(self, obj, 0);
  }
}

inline framework::Tensor *PySliceTensor(const framework::Tensor &self,
                                        py::object obj) {
  if (platform::is_gpu_place(self.place())) {
    std::unique_ptr<framework::Tensor> holder;
    framework::Tensor src;
    framework::TensorCopySync(self, platform::CPUPlace(), &src);
    framework::Tensor *output = _pySliceTensor(src, obj);
    holder.reset(output);
    framework::Tensor *dst = _getTensor(*output, output->dims());
    framework::TensorCopySync(*output, self.place(), dst);
    return dst;
  } else {
    return _pySliceTensor(self, obj);
  }
}

513 514
inline py::array TensorToPyArray(const framework::Tensor &tensor,
                                 bool need_deep_copy = false) {
Q
qingqing01 已提交
515 516 517
  if (!tensor.IsInitialized()) {
    return py::array();
  }
518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
  bool is_gpu_tensor = platform::is_gpu_place(tensor.place());
  const auto &tensor_dims = tensor.dims();
  auto tensor_dtype = tensor.type();
  size_t sizeof_dtype = framework::SizeOfType(tensor_dtype);

  std::vector<size_t> py_dims(tensor_dims.size());
  std::vector<size_t> py_strides(tensor_dims.size());

  size_t numel = 1;
  for (int i = tensor_dims.size() - 1; i >= 0; --i) {
    py_dims[i] = (size_t)tensor_dims[i];
    py_strides[i] = sizeof_dtype * numel;
    numel *= py_dims[i];
  }

  const void *tensor_buf_ptr = tensor.data<void>();

  std::string py_dtype_str = details::TensorDTypeToPyDTypeStr(tensor.type());

  if (!is_gpu_tensor) {
538 539 540 541 542 543
    if (!need_deep_copy) {
      return py::array(py::buffer_info(
          const_cast<void *>(tensor_buf_ptr), sizeof_dtype, py_dtype_str,
          static_cast<size_t>(tensor.dims().size()), py_dims, py_strides));
    } else {
      py::array py_arr(py::dtype(py_dtype_str.c_str()), py_dims, py_strides);
544 545 546 547 548 549 550 551 552 553
      PADDLE_ENFORCE_EQ(
          py_arr.writeable(), true,
          platform::errors::InvalidArgument(
              "PyArray is not writable, in which case memory leak "
              "or double free would occur"));
      PADDLE_ENFORCE_EQ(
          py_arr.owndata(), true,
          platform::errors::InvalidArgument(
              "PyArray does not own data, in which case  memory leak "
              "or double free would occur"));
554 555 556 557 558 559
      platform::CPUPlace place;
      size_t copy_bytes = sizeof_dtype * numel;
      paddle::memory::Copy(place, py_arr.mutable_data(), place, tensor_buf_ptr,
                           copy_bytes);
      return py_arr;
    }
560 561 562 563
  }

#ifdef PADDLE_WITH_CUDA
  py::array py_arr(py::dtype(py_dtype_str.c_str()), py_dims, py_strides);
564 565 566 567 568 569 570 571
  PADDLE_ENFORCE_EQ(py_arr.writeable(), true,
                    platform::errors::InvalidArgument(
                        "PyArray is not writable, in which case memory leak "
                        "or double free would occur"));
  PADDLE_ENFORCE_EQ(py_arr.owndata(), true,
                    platform::errors::InvalidArgument(
                        "PyArray does not own data, in which case  memory leak "
                        "or double free would occur"));
572 573 574 575 576 577

  size_t copy_bytes = sizeof_dtype * numel;
  paddle::platform::GpuMemcpySync(py_arr.mutable_data(), tensor_buf_ptr,
                                  copy_bytes, cudaMemcpyDeviceToHost);
  return py_arr;
#else
578 579 580
  PADDLE_THROW(platform::errors::PermissionDenied(
      "Cannot use CUDAPlace in CPU only version, "
      "Please recompile or reinstall Paddle with CUDA support."));
581 582 583
#endif
}

584 585
}  // namespace pybind
}  // namespace paddle