tensor_py.h 45.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14 15

#pragma once
16

L
Luo Tao 已提交
17
#include <Python.h>
18 19 20 21
// Avoid a problem with copysign defined in pyconfig.h on Windows.
#ifdef copysign
#undef copysign
#endif
22

W
wopeizl 已提交
23 24
#include <algorithm>
#include <memory>
Q
qijun 已提交
25
#include <string>
C
chengduoZH 已提交
26
#include <tuple>
27
#include <utility>
C
chengduoZH 已提交
28
#include <vector>
29

30
#include "paddle/fluid/framework/data_type.h"
Y
Yi Wang 已提交
31 32
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/memory/memcpy.h"
33
#include "paddle/fluid/operators/eigen/eigen_function.h"
W
wopeizl 已提交
34
#include "paddle/fluid/operators/math/concat_and_split.h"
35
#include "paddle/fluid/platform/bfloat16.h"
36
#include "paddle/fluid/platform/device/device_wrapper.h"
37
#include "paddle/phi/kernels/funcs/strided_memcpy.h"
38
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
39 40
#include "paddle/fluid/platform/cuda_device_guard.h"
#endif
41
#include "paddle/fluid/eager/api/generated/eager_generated/forwards/dygraph_functions.h"
42
#include "paddle/fluid/framework/convert_utils.h"
Z
zyfncg 已提交
43
#include "paddle/fluid/framework/eigen.h"
Y
Yi Wang 已提交
44
#include "paddle/fluid/platform/device_context.h"
45
#include "paddle/fluid/platform/float16.h"
46
#include "paddle/fluid/platform/profiler/event_tracing.h"
47
#include "paddle/phi/common/pstring.h"
J
Jack Zhou 已提交
48 49
#include "paddle/phi/core/string_tensor.h"
#include "paddle/phi/kernels/strings/unicode.h"
Q
qijun 已提交
50 51
#include "pybind11/numpy.h"
#include "pybind11/pybind11.h"
52

W
wopeizl 已提交
53 54
namespace py = pybind11;

55 56 57 58 59 60 61
namespace pybind11 {
namespace detail {

// Note: use same enum number of float16 in numpy.
// import numpy as np
// print np.dtype(np.float16).num  # 23
constexpr int NPY_FLOAT16_ = 23;
62
constexpr int NPY_UINT16_ = 4;
63 64
constexpr int NPY_COMPLEX64 = 14;
constexpr int NPY_COMPLEX128 = 15;
65

W
wanghuancoder 已提交
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
// cast numpy type form S to T, this may allocate new memory
template <class T, class S>
static py::array_t<T> CastNumpyType(py::array_t<S> array) {
  if (std::is_same<T, S>::value) {
    return array;
  }
  auto dim = array.ndim();
  std::vector<py::ssize_t> result_shape(dim);
  for (auto i = 0; i < dim; i++) {
    result_shape[i] = array.shape(i);
  }

  py::array_t<T> result(result_shape);

  return py::vectorize([](S s) { return static_cast<T>(s); })(array);
}

template <class T>
static py::array_t<T> CastNumpyArray(const py::object &array) {
  if (py::isinstance<py::array_t<float>>(array)) {
    return CastNumpyType<T>(array.cast<py::array_t<float>>());
  } else if (py::isinstance<py::array_t<double>>(array)) {
    return CastNumpyType<T>(array.cast<py::array_t<double>>());
  } else if (py::isinstance<py::array_t<int32_t>>(array)) {
    return CastNumpyType<T>(array.cast<py::array_t<int32_t>>());
  } else if (py::isinstance<py::array_t<int64_t>>(array)) {
    return CastNumpyType<T>(array.cast<py::array_t<int64_t>>());
  } else if (py::isinstance<py::array_t<bool>>(array)) {
    return CastNumpyType<T>(array.cast<py::array_t<bool>>());
  } else {
    PADDLE_THROW(paddle::platform::errors::InvalidArgument(
        "Value type error. The assign numpy value allows integer, float, "
        "double and bool, "
        "but received %s.",
        Py_TYPE(array.ptr())->tp_name));
  }
  // can't reach here
  return py::array_t<T>();
}

106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
// Note: Since float16 is not a builtin type in C++, we register
// paddle::platform::float16 as numpy.float16.
// Ref: https://github.com/pybind/pybind11/issues/1776
template <>
struct npy_format_descriptor<paddle::platform::float16> {
  static py::dtype dtype() {
    handle ptr = npy_api::get().PyArray_DescrFromType_(NPY_FLOAT16_);
    return reinterpret_borrow<py::dtype>(ptr);
  }
  static std::string format() {
    // Note: "e" represents float16.
    // Details at:
    // https://docs.python.org/3/library/struct.html#format-characters.
    return "e";
  }
121
  static constexpr auto name = _("float16");
122 123
};

124 125 126 127 128 129 130 131 132 133 134 135 136 137
// Note: Since bfloat16 is not a builtin type in C++ and in numpy,
// we register paddle::platform::bfloat16 as numpy.uint16.
template <>
struct npy_format_descriptor<paddle::platform::bfloat16> {
  static py::dtype dtype() {
    handle ptr = npy_api::get().PyArray_DescrFromType_(NPY_UINT16_);
    return reinterpret_borrow<py::dtype>(ptr);
  }
  static std::string format() {
    // Note: "H" represents UINT16.
    // Details at:
    // https://docs.python.org/3/library/struct.html#format-characters.
    return "H";
  }
138
  static constexpr auto name = _("bfloat16");
139 140
};

141
// we register paddle::platform::complex<float> as numpy.complex64.
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
template <>
struct npy_format_descriptor<paddle::platform::complex<float>> {
  static py::dtype dtype() {
    handle ptr = npy_api::get().PyArray_DescrFromType_(NPY_COMPLEX64);
    return reinterpret_borrow<py::dtype>(ptr);
  }

  static std::string format() {
    // Note: "F" represents complex64.
    // Details at:
    // https://stackoverflow.com/questions/13997087/what-are-the-available-datatypes-for-dtype-with-numpys-loadtxt-an-genfromtx
    // for k, v in np.sctypeDict.iteritems():
    //     print '{0:14s} : {1:40s}'.format(str(k), v)
    return "F";
  }
  static constexpr auto name = _("complext64");
};

template <>
struct npy_format_descriptor<paddle::platform::complex<double>> {
  static py::dtype dtype() {
    handle ptr = npy_api::get().PyArray_DescrFromType_(NPY_COMPLEX128);
    return reinterpret_borrow<py::dtype>(ptr);
  }

  static std::string format() {
    // Note: "D" represents complex128.
    // Details at:
    // https://stackoverflow.com/questions/13997087/what-are-the-available-datatypes-for-dtype-with-numpys-loadtxt-an-genfromtx
    // for k, v in np.sctypeDict.iteritems():
    //     print '{0:14s} : {1:40s}'.format(str(k), v)
    return "D";
  }
  static constexpr auto name = _("complext128");
};

178 179 180
}  // namespace detail
}  // namespace pybind11

181
namespace paddle {
182
namespace pybind {
183

184 185
namespace details {

186 187 188 189
template <typename T>
class PYBIND11_HIDDEN NumpyAllocation : public memory::Allocation {
 public:
  explicit NumpyAllocation(const py::array &arr)
190 191
      : Allocation(const_cast<void *>(arr.data()),
                   sizeof(T) * (arr.size()),
192 193
                   paddle::platform::CPUPlace()),
        arr_(arr.ptr()) {
194 195 196 197
    PADDLE_ENFORCE_NOT_NULL(
        arr_,
        platform::errors::InvalidArgument("The underlying PyObject pointer of "
                                          "numpy array cannot be nullptr"));
198
    PADDLE_ENFORCE_NE(
199 200
        arr_,
        Py_None,
201 202 203 204 205 206 207 208 209 210 211 212 213
        platform::errors::PreconditionNotMet(
            "The underlying PyObject pointer of numpy array cannot be None"));
    Py_INCREF(arr_);
  }
  ~NumpyAllocation() override {
    py::gil_scoped_acquire gil;
    Py_DECREF(arr_);
  }

 private:
  PyObject *arr_;
};

214 215 216 217 218 219 220 221 222 223 224 225
template <typename T>
struct ValidDTypeToPyArrayChecker {
  static constexpr bool kValue = false;
};

#define DECLARE_VALID_DTYPE_TO_PY_ARRAY(type) \
  template <>                                 \
  struct ValidDTypeToPyArrayChecker<type> {   \
    static constexpr bool kValue = true;      \
  }

DECLARE_VALID_DTYPE_TO_PY_ARRAY(platform::float16);
226
DECLARE_VALID_DTYPE_TO_PY_ARRAY(platform::bfloat16);
227 228
DECLARE_VALID_DTYPE_TO_PY_ARRAY(platform::complex<float>);
DECLARE_VALID_DTYPE_TO_PY_ARRAY(platform::complex<double>);
229 230 231 232
DECLARE_VALID_DTYPE_TO_PY_ARRAY(float);
DECLARE_VALID_DTYPE_TO_PY_ARRAY(double);
DECLARE_VALID_DTYPE_TO_PY_ARRAY(bool);
DECLARE_VALID_DTYPE_TO_PY_ARRAY(int8_t);
L
Leo Chen 已提交
233
DECLARE_VALID_DTYPE_TO_PY_ARRAY(int16_t);
234 235
DECLARE_VALID_DTYPE_TO_PY_ARRAY(int);
DECLARE_VALID_DTYPE_TO_PY_ARRAY(int64_t);
L
Leo Chen 已提交
236
DECLARE_VALID_DTYPE_TO_PY_ARRAY(uint8_t);
237 238 239 240 241 242 243

inline std::string TensorDTypeToPyDTypeStr(
    framework::proto::VarType::Type type) {
#define TENSOR_DTYPE_TO_PY_DTYPE(T, proto_type)                             \
  if (type == proto_type) {                                                 \
    if (std::is_same<T, platform::float16>::value) {                        \
      return "e";                                                           \
244 245 246
    } else if (std::is_same<T, platform::bfloat16>::value) {                \
      /* NumPy character code of uint16 due to no support for bfloat16 */   \
      return "H";                                                           \
247 248 249 250
    } else if (std::is_same<T, platform::complex<float>>::value) {          \
      return "F";                                                           \
    } else if (std::is_same<T, platform::complex<double>>::value) {         \
      return "D";                                                           \
251 252
    } else {                                                                \
      constexpr auto kIsValidDType = ValidDTypeToPyArrayChecker<T>::kValue; \
253
      PADDLE_ENFORCE_EQ(                                                    \
254 255
          kIsValidDType,                                                    \
          true,                                                             \
256 257 258
          platform::errors::Unimplemented(                                  \
              "This type [%s] of tensor cannot be expose to Python",        \
              typeid(T).name()));                                           \
259 260 261 262 263 264
      return py::format_descriptor<T>::format();                            \
    }                                                                       \
  }

  _ForEachDataType_(TENSOR_DTYPE_TO_PY_DTYPE);
#undef TENSOR_DTYPE_TO_PY_DTYPE
265 266
  PADDLE_THROW(platform::errors::Unimplemented(
      "Unsupported tensor data type: %s", framework::DataTypeToString(type)));
267 268 269 270
}

}  // namespace details

271
template <typename T>
272
T TensorGetElement(const phi::DenseTensor &self, size_t offset) {
273 274
  PADDLE_ENFORCE_LT(offset,
                    self.numel(),
275 276
                    platform::errors::InvalidArgument(
                        "The offset exceeds the size of tensor."));
277

Q
qingqing01 已提交
278
  T b = static_cast<T>(0);
279
  if (platform::is_cpu_place(self.place())) {
Q
qingqing01 已提交
280
    b = self.data<T>()[offset];
281 282 283
  } else if (platform::is_xpu_place(self.place())) {
#ifdef PADDLE_WITH_XPU
    const T *a = self.data<T>();
284
    auto p = self.place();
285 286
    paddle::memory::Copy(platform::CPUPlace(), &b, p, a + offset, sizeof(T));
#endif
287 288
  } else if (platform::is_gpu_place(self.place()) ||
             platform::is_cuda_pinned_place(self.place())) {
289
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
Q
qingqing01 已提交
290
    const T *a = self.data<T>();
291
    auto p = self.place();
292 293
    paddle::memory::Copy(
        platform::CPUPlace(), &b, p, a + offset, sizeof(T), nullptr);
294 295 296 297
#endif
  } else if (platform::is_mlu_place(self.place())) {
#ifdef PADDLE_WITH_MLU
    const T *a = self.data<T>();
298
    auto p = self.place();
299 300
    paddle::memory::Copy(
        platform::CPUPlace(), &b, p, a + offset, sizeof(T), nullptr);
301 302 303 304
#endif
  } else if (platform::is_npu_place(self.place())) {
#if defined(PADDLE_WITH_ASCEND_CL)
    const T *a = self.data<T>();
305
    auto p = self.place();
306 307
    paddle::memory::Copy(
        platform::CPUPlace(), &b, p, a + offset, sizeof(T), nullptr);
308 309 310 311 312
#endif
  } else if (platform::is_custom_place(self.place())) {
#if defined(PADDLE_WITH_CUSTOM_DEVICE)
    const T *a = self.data<T>();
    auto p = self.place();
313 314
    paddle::memory::Copy(
        platform::CPUPlace(), &b, p, a + offset, sizeof(T), nullptr);
Q
qingqing01 已提交
315
#endif
316
  }
317 318
  VLOG(10) << "TensorGetElement, place: " << self.place()
           << ", offset: " << offset << ", element: " << b;
Q
qingqing01 已提交
319
  return b;
320 321 322
}

template <typename T>
323
void TensorSetElement(phi::DenseTensor *self, size_t offset, T elem) {
324 325
  PADDLE_ENFORCE_LT(offset,
                    self->numel(),
326 327
                    platform::errors::InvalidArgument(
                        "The offset exceeds the size of tensor."));
328 329
  VLOG(10) << "TensorSetElement, place: " << self->place()
           << ", offset: " << offset << ", element: " << elem;
Q
qingqing01 已提交
330
  if (platform::is_cpu_place(self->place())) {
Y
Yu Yang 已提交
331
    self->mutable_data<T>(self->place())[offset] = elem;
332 333
  } else if (platform::is_xpu_place(self->place())) {
#ifdef PADDLE_WITH_XPU
334
    auto p = self->place();
335 336 337
    T *a = self->mutable_data<T>(p);
    paddle::memory::Copy(p, a + offset, platform::CPUPlace(), &elem, sizeof(T));
#endif
338 339
  } else if (platform::is_gpu_place(self->place()) ||
             platform::is_cuda_pinned_place(self->place())) {
340
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
341
    auto p = self->place();
Q
qingqing01 已提交
342
    T *a = self->mutable_data<T>(p);
343 344
    paddle::memory::Copy(
        p, a + offset, platform::CPUPlace(), &elem, sizeof(T), nullptr);
345 346 347
#endif
  } else if (platform::is_mlu_place(self->place())) {
#ifdef PADDLE_WITH_MLU
348
    auto p = self->place();
349
    T *a = self->mutable_data<T>(p);
350 351
    paddle::memory::Copy(
        p, a + offset, platform::CPUPlace(), &elem, sizeof(T), nullptr);
352 353 354
#endif
  } else if (platform::is_npu_place(self->place())) {
#if defined(PADDLE_WITH_ASCEND_CL)
355
    auto p = self->place();
356
    T *a = self->mutable_data<T>(p);
357 358
    paddle::memory::Copy(
        p, a + offset, platform::CPUPlace(), &elem, sizeof(T), nullptr);
359 360 361 362 363
#endif
  } else if (platform::is_custom_place(self->place())) {
#if defined(PADDLE_WITH_CUSTOM_DEVICE)
    auto p = self->place();
    T *a = self->mutable_data<T>(p);
364 365
    paddle::memory::Copy(
        p, a + offset, platform::CPUPlace(), &elem, sizeof(T), nullptr);
Q
qingqing01 已提交
366
#endif
367
  }
368 369
}

370 371
template <typename T, typename P>
void SetTensorFromPyArrayT(
372
    phi::DenseTensor *self,
373
    const py::array_t<T, py::array::c_style | py::array::forcecast> &array,
374 375
    const P &place,
    bool zero_copy) {
376 377 378
  std::vector<int64_t> dims;
  dims.reserve(array.ndim());
  for (decltype(array.ndim()) i = 0; i < array.ndim(); ++i) {
379
    dims.push_back(static_cast<int64_t>(array.shape()[i]));
380
  }
381
  self->Resize(phi::make_ddim(dims));
382 383

  if (paddle::platform::is_cpu_place(place)) {
384 385 386
    if (zero_copy) {
      auto holder = std::make_shared<details::NumpyAllocation<T>>(array);
      auto type = framework::ToDataType(std::type_index(typeid(T)));
387
      self->ResetHolderWithType(holder, framework::TransToPhiDataType(type));
388 389 390 391
    } else {
      auto dst = self->mutable_data<T>(place);
      std::memcpy(dst, array.data(), array.nbytes());
    }
392 393
  } else if (paddle::platform::is_xpu_place(place)) {
#ifdef PADDLE_WITH_XPU
W
WangXi 已提交
394 395 396
    // NOTE(wangxi): When copying data to the accelerator card,
    // we need set_device(dev_id) first.
    platform::Place tmp_place = place;
397
    platform::XPUDeviceGuard guard(tmp_place.device);
398
    auto dst = self->mutable_data<T>(place);
399 400 401 402 403
    memory::Copy(tmp_place,
                 static_cast<void *>(dst),
                 platform::CPUPlace(),
                 static_cast<const void *>(array.data()),
                 array.nbytes());
404 405 406 407
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Cannot use XPUPlace in CPU/GPU version, "
        "Please recompile or reinstall Paddle with XPU support."));
J
jianghaicheng 已提交
408 409 410 411 412 413
#endif
  } else if (paddle::platform::is_ipu_place(place)) {
#ifdef PADDLE_WITH_IPU
    if (zero_copy) {
      auto holder = std::make_shared<details::NumpyAllocation<T>>(array);
      auto type = framework::ToDataType(std::type_index(typeid(T)));
414
      self->ResetHolderWithType(holder, framework::TransToPhiDataType(type));
J
jianghaicheng 已提交
415
    } else {
416 417 418 419 420 421 422 423
      // IPU does not store Tensor data, Tensor will be created on CPU
      if (!self->initialized()) {
        auto dst = self->mutable_data<T>(place);
        std::memcpy(dst, array.data(), array.nbytes());
      } else {
        auto dst = self->mutable_data<T>(self->place());
        std::memcpy(dst, array.data(), array.nbytes());
      }
J
jianghaicheng 已提交
424 425 426 427 428
    }
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Cannot use IPUPlace in CPU/GPU/XPU/NPU version, "
        "Please recompile or reinstall Paddle with IPU support."));
429 430 431 432
#endif
  } else if (paddle::platform::is_npu_place(place)) {
#ifdef PADDLE_WITH_ASCEND_CL
    platform::Place tmp_place = place;
433
    platform::NPUDeviceGuard guard(tmp_place.device);
434
    auto dst = self->mutable_data<T>(place);
435 436
    platform::NPUMemcpySync(
        dst, array.data(), array.nbytes(), ACL_MEMCPY_HOST_TO_DEVICE);
437 438 439 440 441 442 443
    platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
    auto &ctx = *pool.Get(place);
    ctx.Wait();
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Cannot use NPUPlace in CPU/GPU/XPU version. "
        "Please recompile or reinstall Paddle with NPU support."));
444 445 446 447
#endif
  } else if (paddle::platform::is_mlu_place(place)) {
#ifdef PADDLE_WITH_MLU
    platform::Place tmp_place = place;
448
    platform::MLUDeviceGuard guard(tmp_place.device);
449
    auto dst = self->mutable_data<T>(place);
F
fwenguang 已提交
450 451 452 453 454
    platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
    auto dev_ctx = static_cast<platform::MLUDeviceContext *>(pool.Get(place));
    paddle::platform::MLUMemcpyH2DAsync(
        dst, array.data(), array.nbytes(), dev_ctx->stream());
    dev_ctx->Wait();
455 456 457 458
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Cannot use MLUPlace in CPU/GPU version, "
        "Please recompile or reinstall Paddle with MLU support."));
459 460 461 462
#endif
  } else if (paddle::platform::is_custom_place(place)) {
#ifdef PADDLE_WITH_CUSTOM_DEVICE
    platform::Place tmp_place = place;
463
    phi::DeviceGuard guard(tmp_place);
464 465
    auto dst = self->mutable_data<T>(place);

466
    phi::DeviceManager::GetDeviceWithPlace(tmp_place)->MemoryCopyH2D(
467 468 469 470 471 472 473 474 475 476
        reinterpret_cast<void *>(dst),
        const_cast<void *>(reinterpret_cast<const void *>(array.data())),
        array.nbytes());
    platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
    auto &ctx = *pool.Get(place);
    ctx.Wait();
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Cannot use CustomDevice in CPU/GPU/XPU version. "
        "Please recompile or reinstall Paddle with CustomDevice support."));
477
#endif
478
  } else {
479
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
480
    if (paddle::platform::is_gpu_place(place)) {
W
WangXi 已提交
481 482
      // NOTE(wangxi): When copying data to the accelerator card,
      // we need set_device(dev_id) first.
483
      platform::CUDADeviceGuard guard(place.device);
484
      auto dst = self->mutable_data<T>(place);
485
#ifdef PADDLE_WITH_HIP
486 487
      paddle::platform::GpuMemcpySync(
          dst, array.data(), array.nbytes(), hipMemcpyHostToDevice);
488
#else
489 490
      paddle::platform::GpuMemcpySync(
          dst, array.data(), array.nbytes(), cudaMemcpyHostToDevice);
491
#endif
492

493 494 495
    } else if (paddle::platform::is_cuda_pinned_place(place)) {
      auto dst = self->mutable_data<T>(place);
      std::memcpy(dst, array.data(), array.nbytes());
496
    } else {
497 498 499
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Incompatible place type: Tensor.set() supports "
          "CPUPlace, CUDAPlace "
500
          "and CUDAPinnedPlace, but got %s!",
501
          place));
502 503
    }
#else
504
    PADDLE_THROW(platform::errors::PermissionDenied(
505
        "Cannot use CUDAPlace or CUDAPinnedPlace in CPU only version, "
506
        "Please recompile or reinstall Paddle with CUDA support."));
507 508 509 510 511
#endif
  }
}

template <typename P>
512
void SetTensorFromPyArray(phi::DenseTensor *self,
513 514 515
                          const py::object &obj,
                          const P &place,
                          bool zero_copy) {
516
  auto array = obj.cast<py::array>();
517
  if (py::isinstance<py::array_t<float>>(array)) {
518
    SetTensorFromPyArrayT<float, P>(self, array, place, zero_copy);
519
  } else if (py::isinstance<py::array_t<int>>(array)) {
520
    SetTensorFromPyArrayT<int, P>(self, array, place, zero_copy);
521
  } else if (py::isinstance<py::array_t<int64_t>>(array)) {
522
    SetTensorFromPyArrayT<int64_t, P>(self, array, place, zero_copy);
523
  } else if (py::isinstance<py::array_t<double>>(array)) {
524
    SetTensorFromPyArrayT<double, P>(self, array, place, zero_copy);
525
  } else if (py::isinstance<py::array_t<int8_t>>(array)) {
526
    SetTensorFromPyArrayT<int8_t, P>(self, array, place, zero_copy);
L
Leo Chen 已提交
527 528
  } else if (py::isinstance<py::array_t<int16_t>>(array)) {
    SetTensorFromPyArrayT<int16_t, P>(self, array, place, zero_copy);
529
  } else if (py::isinstance<py::array_t<uint8_t>>(array)) {
530
    SetTensorFromPyArrayT<uint8_t, P>(self, array, place, zero_copy);
531
  } else if (py::isinstance<py::array_t<paddle::platform::float16>>(array)) {
532 533
    SetTensorFromPyArrayT<paddle::platform::float16, P>(
        self, array, place, zero_copy);
534 535 536 537 538 539 540 541
  } else if (py::isinstance<py::array_t<paddle::platform::complex<float>>>(
                 array)) {
    SetTensorFromPyArrayT<paddle::platform::complex<float>, P>(
        self, array, place, zero_copy);
  } else if (py::isinstance<py::array_t<paddle::platform::complex<double>>>(
                 array)) {
    SetTensorFromPyArrayT<paddle::platform::complex<double>, P>(
        self, array, place, zero_copy);
542
  } else if (py::isinstance<py::array_t<uint16_t>>(array)) {
543 544
    // since there is still no support for bfloat16 in NumPy,
    // uint16 is used for casting bfloat16
545 546
    SetTensorFromPyArrayT<paddle::platform::bfloat16, P>(
        self, array, place, zero_copy);
547
  } else if (py::isinstance<py::array_t<bool>>(array)) {
548
    SetTensorFromPyArrayT<bool, P>(self, array, place, zero_copy);
549
  } else {
550 551
    // obj may be any type, obj.cast<py::array>() may be failed,
    // then the array.dtype will be string of unknown meaning,
552
    PADDLE_THROW(platform::errors::InvalidArgument(
553 554 555 556
        "Input object type error or incompatible array data type. "
        "tensor.set() supports array with bool, float16, float32, "
        "float64, int8, int16, int32, int64, uint8 or uint16, "
        "please check your input or input array data type."));
557 558 559
  }
}

J
Jack Zhou 已提交
560
template <typename P>
561 562
void SetStringTensorFromPyArray(phi::StringTensor *self,
                                const py::array &array,
J
Jack Zhou 已提交
563 564 565
                                const P &place) {
  bool is_string_pyarray =
      array.dtype().kind() == 'S' || array.dtype().kind() == 'U';
566 567
  PADDLE_ENFORCE_EQ(is_string_pyarray,
                    true,
J
Jack Zhou 已提交
568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604
                    platform::errors::InvalidArgument(
                        "Expect the dtype of numpy array is string or "
                        "unicode, but recevie dtype %s",
                        array.dtype()));
  std::vector<int64_t> dims;
  dims.reserve(array.ndim());
  dims.reserve(array.ndim());
  for (decltype(array.ndim()) i = 0; i < array.ndim(); ++i) {
    dims.push_back(static_cast<int>(array.shape()[i]));
  }
  self->Resize(phi::make_ddim(dims));
  auto itemsize = array.itemsize();
  if (paddle::platform::is_cpu_place(place)) {
    auto dst = self->mutable_data(place);
    if (array.dtype().kind() == 'S') {
      for (int i = 0; i < self->numel(); ++i) {
        dst[i] =
            pstring(reinterpret_cast<const char *>(array.data()) + itemsize * i,
                    itemsize);
      }
    } else {
      // array.dtype().kind() == 'U'
      VLOG(6) << "numpy array itemsize: " << itemsize;
      for (int i = 0; i < self->numel(); ++i) {
        // Note(zhoushunjie): The itemsize of unicode numpy array is the
        // the size of each unicode string. Each unicode string is aligned
        // to max length of the array of unicode strings, so the size of
        // each unicode string is same. The size of each unicode character is
        // 4, so the size of unicode string is 4 times of the length of
        // unicode string.
        auto unicode_len = itemsize / 4;
        auto utf8_len = phi::strings::GetUTF8StrLen(
            reinterpret_cast<const uint32_t *>(array.data()) + unicode_len * i,
            unicode_len);
        pstring pstr(utf8_len - 1, 0);
        phi::strings::GetUTF8Str(
            reinterpret_cast<const uint32_t *>(array.data()) + unicode_len * i,
605 606
            pstr.mdata(),
            unicode_len);
J
Jack Zhou 已提交
607 608 609 610 611 612 613 614 615 616
        dst[i] = pstr;
      }
    }
  } else {
    PADDLE_THROW(platform::errors::InvalidArgument(
        "StringTensor only support CPUPlace now, but receive %s",
        place.DebugString()));
  }
}

S
Siming Dai 已提交
617
template <typename T>
S
Siming Dai 已提交
618
void SetUVATensorFromPyArrayImpl(
619
    phi::DenseTensor *self_tensor,
S
Siming Dai 已提交
620 621
    const py::array_t<T, py::array::c_style | py::array::forcecast> &array,
    int device_id) {
S
Siming Dai 已提交
622
#if defined(PADDLE_WITH_CUDA)
623
  VLOG(4) << "Running in SetUVATensorFromPyArrayImpl.";
S
Siming Dai 已提交
624 625 626 627
  std::vector<int64_t> dims;
  dims.reserve(array.ndim());
  int64_t numel = 1;
  for (decltype(array.ndim()) i = 0; i < array.ndim(); ++i) {
628 629
    dims.emplace_back(static_cast<int64_t>(array.shape()[i]));
    numel *= static_cast<int64_t>(array.shape()[i]);
S
Siming Dai 已提交
630
  }
631
  self_tensor->Resize(phi::make_ddim(dims));
S
Siming Dai 已提交
632 633 634 635

  auto data_type = framework::ToDataType(std::type_index(typeid(T)));
  const auto &need_allocate_size = numel * framework::SizeOfType(data_type);
  T *data_ptr;
636 637
  cudaHostAlloc(reinterpret_cast<void **>(&data_ptr),
                need_allocate_size,
S
Siming Dai 已提交
638 639 640 641 642
                cudaHostAllocWriteCombined | cudaHostAllocMapped);
  std::memcpy(data_ptr, array.data(), array.nbytes());

  void *cuda_device_pointer = nullptr;
  cudaHostGetDevicePointer(reinterpret_cast<void **>(&cuda_device_pointer),
643 644
                           reinterpret_cast<void *>(data_ptr),
                           0);
S
Siming Dai 已提交
645 646
  std::shared_ptr<memory::allocation::Allocation> holder =
      std::make_shared<memory::allocation::Allocation>(
647 648
          cuda_device_pointer,
          need_allocate_size,
S
Siming Dai 已提交
649
          platform::CUDAPlace(device_id));
650
  self_tensor->ResetHolderWithType(holder,
651
                                   framework::TransToPhiDataType(data_type));
S
Siming Dai 已提交
652 653 654
#endif
}

655 656 657
template <typename T>
void SetUVATensorFromPyArray(
    const std::shared_ptr<paddle::imperative::VarBase> &self,
S
Siming Dai 已提交
658
    const py::array_t<T, py::array::c_style | py::array::forcecast> &array,
659
    int device_id) {
660 661
#if defined(PADDLE_WITH_CUDA)
  VLOG(4) << "Running in SetUVATensorFromPyArray for VarBase.";
662
  auto *self_tensor = self->MutableVar()->GetMutable<phi::DenseTensor>();
663 664 665 666 667
  SetUVATensorFromPyArrayImpl<T>(self_tensor, array, device_id);
#endif
}

template <typename T>
668 669 670
void SetUVATensorFromPyArray(const std::shared_ptr<paddle::Tensor> &self,
                             const py::array_t<T> &array,
                             int device_id) {
671 672 673 674 675 676 677 678 679 680
#if defined(PADDLE_WITH_CUDA)
  VLOG(4) << "Running in SetUVATensorFromPyArray for Phi::Tensor.";
  phi::DenseTensorMeta meta =
      phi::DenseTensorMeta(phi::DataType::FLOAT32, phi::make_ddim({1, 1}));
  std::shared_ptr<phi::DenseTensor> tmp_t = std::make_shared<phi::DenseTensor>(
      std::make_unique<paddle::experimental::DefaultAllocator>(
          paddle::platform::CPUPlace())
          .get(),
      meta);
  self.get()->set_impl(tmp_t);
681
  auto *self_tensor = static_cast<phi::DenseTensor *>(self.get()->impl().get());
682 683 684 685 686

  SetUVATensorFromPyArrayImpl<T>(self_tensor, array, device_id);
#endif
}

W
wopeizl 已提交
687
template <typename T, size_t D>
688 689
void _sliceCompute(const phi::DenseTensor *in,
                   phi::DenseTensor *out,
L
Leo Chen 已提交
690
                   const phi::CPUContext &ctx,
W
wopeizl 已提交
691 692 693
                   const std::vector<int> &axes,
                   const std::vector<int> &starts) {
  auto &eigen_place = *ctx.eigen_device();
694
  auto out_dims = phi::vectorize<int>(out->dims());
W
wopeizl 已提交
695 696
  auto in_dims = in->dims();

697 698
  auto offsets = Eigen::DSizes<Eigen::DenseIndex, D>();
  auto extents = Eigen::DSizes<Eigen::DenseIndex, D>();
W
wopeizl 已提交
699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717
  for (size_t i = 0; i < D; ++i) {
    offsets[i] = 0;
    extents[i] = out_dims[i];
  }
  int start;
  for (size_t i = 0; i < axes.size(); ++i) {
    start = starts[i];
    if (start < 0) {
      start = (start + in_dims[axes[i]]);
    }
    start = std::max(start, 0);
    offsets[axes[i]] = start;
  }
  auto in_t =
      framework::EigenTensor<T, D, Eigen::RowMajor, Eigen::DenseIndex>::From(
          *in);
  auto out_t =
      framework::EigenTensor<T, D, Eigen::RowMajor, Eigen::DenseIndex>::From(
          *out);
718 719
  operators::EigenSlice<std::decay_t<decltype(eigen_place)>, T, D>::Eval(
      eigen_place, out_t, in_t, offsets, extents);
W
wopeizl 已提交
720 721 722
}

template <typename T>
723 724
void _concatCompute(const std::vector<phi::DenseTensor> &ins,
                    phi::DenseTensor *out,
L
Leo Chen 已提交
725
                    const phi::CPUContext &ctx,
726
                    int64_t axis) {
W
wopeizl 已提交
727 728 729
  if (axis == 0 && ins.size() < 10) {
    size_t output_offset = 0;
    for (auto &in : ins) {
730 731
      auto in_stride = phi::stride_numel(in.dims());
      auto out_stride = phi::stride_numel(out->dims());
732 733 734 735 736 737 738 739
      phi::funcs::StridedNumelCopyWithAxis<T, phi::CPUContext>(
          ctx,
          axis,
          out->data<T>() + output_offset,
          out_stride,
          in.data<T>(),
          in_stride,
          in_stride[axis]);
W
wopeizl 已提交
740 741 742
      output_offset += in_stride[axis];
    }
  } else {
L
Leo Chen 已提交
743
    paddle::operators::math::ConcatFunctor<phi::CPUContext, T> concat_functor;
W
wopeizl 已提交
744 745 746 747
    concat_functor(ctx, ins, static_cast<int>(axis), out);
  }
}

748
inline void _getSliceinfo(const phi::DenseTensor &self,
749 750 751 752 753 754
                          py::object obj,
                          const int64_t dim,
                          int64_t *pstart,
                          int64_t *pstop,
                          int64_t *pstep,
                          int64_t *pslicelength) {
W
wopeizl 已提交
755 756 757 758 759
  auto &start = *pstart;
  auto &stop = *pstop;
  auto &step = *pstep;
  auto &slicelength = *pslicelength;
  const framework::DDim &srcDDim = self.dims();
Z
zyfncg 已提交
760 761 762 763
  PADDLE_ENFORCE(
      0 <= dim && dim < srcDDim.size(),
      platform::errors::OutOfRange("The dim %d of slice is out of bounds, it "
                                   "shound be in the range of [0, %d).",
764 765
                                   dim,
                                   srcDDim.size()));
Z
zyfncg 已提交
766

W
wopeizl 已提交
767 768 769 770
  if (py::isinstance<py::slice>(obj)) {
    size_t lstart, lstop, lstep, lslicelength;
    py::slice s = static_cast<py::slice>(obj);
    if (!s.compute(srcDDim[dim], &lstart, &lstop, &lstep, &lslicelength)) {
Z
zyfncg 已提交
771 772 773 774
      PADDLE_THROW(platform::errors::OutOfRange(
          "Slice on dim: %d is error, please check the validity of tensor "
          "dims or slice item.",
          dim));
W
wopeizl 已提交
775 776 777 778 779 780 781
    }
    start = static_cast<int64_t>(lstart);
    stop = static_cast<int64_t>(lstop);
    step = static_cast<int64_t>(lstep);
    slicelength = static_cast<int64_t>(lslicelength);
  } else if (py::isinstance<py::int_>(obj)) {
    start = static_cast<int64_t>(static_cast<py::int_>(obj));
Z
zyfncg 已提交
782 783 784 785
    PADDLE_ENFORCE(
        std::abs(start) < srcDDim[dim],
        platform::errors::OutOfRange("The start %d of slice is out of bounds, "
                                     "it shound be in the range of (%d, %d).",
786 787 788
                                     start,
                                     -srcDDim[dim],
                                     srcDDim[dim]));
W
wopeizl 已提交
789 790 791 792 793
    start = (start >= 0) ? start : srcDDim[dim] - start;
    stop = start + 1;
    step = 1;
    slicelength = 1;
  } else {
Z
zyfncg 已提交
794 795 796
    PADDLE_THROW(
        platform::errors::OutOfRange("Index object error, the index object for "
                                     "slice only supports slice(::) and int."));
W
wopeizl 已提交
797 798 799
  }
}

800 801 802
inline phi::DenseTensor *_getTensor(const phi::DenseTensor &self,
                                    const framework::DDim &ddim) {
  phi::DenseTensor *output = new phi::DenseTensor();
W
wopeizl 已提交
803 804 805
  output->Resize(ddim);
  auto place = self.place();
  if (platform::is_cpu_place(place)) {
806
    output->mutable_data(place, self.dtype());
807 808
  } else if (platform::is_xpu_place(place)) {
#ifdef PADDLE_WITH_XPU
809
    output->mutable_data(place, self.dtype());
810 811 812
#endif
  } else if (platform::is_mlu_place(place)) {
#ifdef PADDLE_WITH_MLU
813
    output->mutable_data(place, self.dtype());
814
#endif
W
wopeizl 已提交
815
  } else {
816
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
W
wopeizl 已提交
817
    if (platform::is_cuda_pinned_place(place)) {
818
      output->mutable_data(place, self.dtype());
W
wopeizl 已提交
819
    } else if ((platform::is_gpu_place(place))) {
820
      output->mutable_data(place, self.dtype());
W
wopeizl 已提交
821 822 823 824 825 826 827
    }
#endif
  }
  return output;
}

template <typename T>
828 829
void _sliceDapper(const phi::DenseTensor *in,
                  phi::DenseTensor *out,
L
Leo Chen 已提交
830
                  const phi::CPUContext &ctx,
831 832
                  const std::vector<int> &axes,
                  const std::vector<int> &starts,
W
wopeizl 已提交
833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862
                  int size) {
  switch (size) {
    case 1:
      _sliceCompute<T, 1>(in, out, ctx, axes, starts);
      break;
    case 2:
      _sliceCompute<T, 2>(in, out, ctx, axes, starts);
      break;
    case 3:
      _sliceCompute<T, 3>(in, out, ctx, axes, starts);
      break;
    case 4:
      _sliceCompute<T, 4>(in, out, ctx, axes, starts);
      break;
    case 5:
      _sliceCompute<T, 5>(in, out, ctx, axes, starts);
      break;
    case 6:
      _sliceCompute<T, 6>(in, out, ctx, axes, starts);
      break;
    case 7:
      _sliceCompute<T, 7>(in, out, ctx, axes, starts);
      break;
    case 8:
      _sliceCompute<T, 8>(in, out, ctx, axes, starts);
      break;
    case 9:
      _sliceCompute<T, 9>(in, out, ctx, axes, starts);
      break;
    default:
863 864
      PADDLE_THROW(platform::errors::InvalidArgument(
          "The dim size should be 1 to 9, current is %d", size));
W
wopeizl 已提交
865 866 867 868 869
      break;
  }
}

template <typename T>
870 871 872 873 874 875
inline phi::DenseTensor *_sliceWrapper(const phi::DenseTensor &self,
                                       const phi::CPUContext &ctx,
                                       py::object obj,
                                       int dim,
                                       int64_t start,
                                       int64_t slicelength) {
W
wopeizl 已提交
876 877 878 879
  framework::DDim dstDDim = self.dims();
  dstDDim[dim] = static_cast<int64_t>(slicelength);
  std::vector<int> axes({dim});
  std::vector<int> starts({static_cast<int>(start)});
880
  phi::DenseTensor *output = _getTensor(self, dstDDim);
W
wopeizl 已提交
881 882 883 884 885
  _sliceDapper<T>(&self, output, ctx, axes, starts, dstDDim.size());
  return output;
}

template <typename T>
886 887 888
inline phi::DenseTensor *_sliceAndConcat(const phi::DenseTensor &self,
                                         py::object obj,
                                         int dim) {
L
Leo Chen 已提交
889
  phi::CPUContext ctx;
W
wopeizl 已提交
890 891 892 893 894
  int64_t start, stop, step, slicelength;
  _getSliceinfo(self, obj, dim, &start, &stop, &step, &slicelength);
  if (step == 1 || slicelength == 1) {
    return _sliceWrapper<T>(self, ctx, obj, dim, start, slicelength);
  } else {
895
    std::vector<phi::DenseTensor> ins;
W
wopeizl 已提交
896 897 898 899 900 901 902
    for (auto i = 0; i < slicelength; ++i, start += step) {
      ins.emplace_back(*_sliceWrapper<T>(self, ctx, obj, dim, start, 1));
    }

    // do the concat operation
    framework::DDim dstDDim = self.dims();
    dstDDim[dim] = static_cast<int64_t>(slicelength);
903
    phi::DenseTensor *output1 = _getTensor(self, dstDDim);
W
wopeizl 已提交
904 905 906 907 908
    _concatCompute<T>(ins, output1, ctx, dim);
    return output1;
  }
}

909 910 911
inline phi::DenseTensor *_sliceTensor(const phi::DenseTensor &self,
                                      py::object obj,
                                      int dim) {
912
  auto src_type = framework::TransToProtoVarType(self.dtype());
W
wopeizl 已提交
913 914 915
  switch (src_type) {
    case framework::proto::VarType::FP16:
      return _sliceAndConcat<paddle::platform::float16>(self, obj, dim);
916 917
    case framework::proto::VarType::BF16:
      return _sliceAndConcat<paddle::platform::bfloat16>(self, obj, dim);
918
    case framework::proto::VarType::COMPLEX64:
919
      return _sliceAndConcat<paddle::platform::complex<float>>(self, obj, dim);
920
    case framework::proto::VarType::COMPLEX128:
921
      return _sliceAndConcat<paddle::platform::complex<double>>(self, obj, dim);
W
wopeizl 已提交
922 923 924 925
    case framework::proto::VarType::FP32:
      return _sliceAndConcat<float>(self, obj, dim);
    case framework::proto::VarType::FP64:
      return _sliceAndConcat<double>(self, obj, dim);
L
Leo Chen 已提交
926 927 928 929
    case framework::proto::VarType::INT8:
      return _sliceAndConcat<int8_t>(self, obj, dim);
    case framework::proto::VarType::INT16:
      return _sliceAndConcat<int16_t>(self, obj, dim);
W
wopeizl 已提交
930 931 932 933 934 935 936
    case framework::proto::VarType::INT32:
      return _sliceAndConcat<int>(self, obj, dim);
    case framework::proto::VarType::INT64:
      return _sliceAndConcat<int64_t>(self, obj, dim);
    case framework::proto::VarType::BOOL:
      return _sliceAndConcat<bool>(self, obj, dim);
    case framework::proto::VarType::UINT8:
L
Leo Chen 已提交
937
      return _sliceAndConcat<uint8_t>(self, obj, dim);
W
wopeizl 已提交
938
    default:
939 940 941
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Not support tensor type: %s",
          framework::DataTypeToString(src_type)));
W
wopeizl 已提交
942 943 944
  }
}

945 946
inline phi::DenseTensor *_pySliceTensor(const phi::DenseTensor &self,
                                        py::object obj) {
W
wopeizl 已提交
947 948
  if (py::isinstance<py::tuple>(obj)) {
    py::list l = static_cast<py::list>(obj);
949 950
    std::unique_ptr<phi::DenseTensor> target;
    phi::DenseTensor *src = const_cast<phi::DenseTensor *>(&self);
W
wopeizl 已提交
951 952 953 954 955 956 957 958 959 960 961 962 963 964
    for (auto i = 0; i < static_cast<int>(l.size()); ++i) {
      src = _sliceTensor(*src, l[i], i);
      if (i + 1 == static_cast<int>(l.size())) {
        return src;
      } else {
        target.reset(src);
      }
    }
    return nullptr;
  } else {
    return _sliceTensor(self, obj, 0);
  }
}

965 966
inline phi::DenseTensor *PySliceTensor(const phi::DenseTensor &self,
                                       py::object obj) {
W
wopeizl 已提交
967
  if (platform::is_gpu_place(self.place())) {
968 969
    std::unique_ptr<phi::DenseTensor> holder;
    phi::DenseTensor src;
W
wopeizl 已提交
970
    framework::TensorCopySync(self, platform::CPUPlace(), &src);
971
    phi::DenseTensor *output = _pySliceTensor(src, obj);
W
wopeizl 已提交
972
    holder.reset(output);
973
    phi::DenseTensor *dst = _getTensor(*output, output->dims());
W
wopeizl 已提交
974 975 976 977 978 979 980
    framework::TensorCopySync(*output, self.place(), dst);
    return dst;
  } else {
    return _pySliceTensor(self, obj);
  }
}

981
inline py::array TensorToPyArray(const phi::DenseTensor &tensor,
982
                                 bool need_deep_copy = false) {
Q
qingqing01 已提交
983 984 985
  if (!tensor.IsInitialized()) {
    return py::array();
  }
986
  bool is_gpu_tensor = platform::is_gpu_place(tensor.place());
987
  bool is_xpu_tensor = platform::is_xpu_place(tensor.place());
988
  bool is_npu_tensor = platform::is_npu_place(tensor.place());
989
  bool is_mlu_tensor = platform::is_mlu_place(tensor.place());
990
  bool is_custom_device_tensor = platform::is_custom_place(tensor.place());
991
  const auto &tensor_dims = tensor.dims();
992
  auto tensor_dtype = framework::TransToProtoVarType(tensor.dtype());
993 994 995 996 997 998 999
  size_t sizeof_dtype = framework::SizeOfType(tensor_dtype);

  std::vector<size_t> py_dims(tensor_dims.size());
  std::vector<size_t> py_strides(tensor_dims.size());

  size_t numel = 1;
  for (int i = tensor_dims.size() - 1; i >= 0; --i) {
1000
    py_dims[i] = static_cast<size_t>(tensor_dims[i]);
1001 1002 1003 1004
    py_strides[i] = sizeof_dtype * numel;
    numel *= py_dims[i];
  }

1005
  const void *tensor_buf_ptr = tensor.data();
1006

1007 1008
  std::string py_dtype_str = details::TensorDTypeToPyDTypeStr(
      framework::TransToProtoVarType(tensor.dtype()));
1009

1010 1011
  if (!is_gpu_tensor && !is_xpu_tensor && !is_npu_tensor && !is_mlu_tensor &&
      !is_custom_device_tensor) {
1012
    if (!need_deep_copy) {
1013
      auto base = py::cast(std::move(tensor));
1014 1015 1016 1017 1018
      return py::array(py::dtype(py_dtype_str.c_str()),
                       py_dims,
                       py_strides,
                       const_cast<void *>(tensor_buf_ptr),
                       base);
1019 1020
    } else {
      py::array py_arr(py::dtype(py_dtype_str.c_str()), py_dims, py_strides);
1021
      PADDLE_ENFORCE_EQ(
1022 1023
          py_arr.writeable(),
          true,
1024 1025 1026 1027
          platform::errors::InvalidArgument(
              "PyArray is not writable, in which case memory leak "
              "or double free would occur"));
      PADDLE_ENFORCE_EQ(
1028 1029
          py_arr.owndata(),
          true,
1030 1031 1032
          platform::errors::InvalidArgument(
              "PyArray does not own data, in which case  memory leak "
              "or double free would occur"));
1033 1034
      platform::CPUPlace place;
      size_t copy_bytes = sizeof_dtype * numel;
1035 1036
      paddle::memory::Copy(
          place, py_arr.mutable_data(), place, tensor_buf_ptr, copy_bytes);
1037 1038
      return py_arr;
    }
1039 1040 1041
  } else if (is_xpu_tensor) {
#ifdef PADDLE_WITH_XPU
    py::array py_arr(py::dtype(py_dtype_str.c_str()), py_dims, py_strides);
1042 1043
    PADDLE_ENFORCE_EQ(py_arr.writeable(),
                      true,
1044 1045 1046 1047
                      platform::errors::InvalidArgument(
                          "PyArray is not writable, in which case memory leak "
                          "or double free would occur"));
    PADDLE_ENFORCE_EQ(
1048 1049
        py_arr.owndata(),
        true,
1050 1051 1052 1053 1054
        platform::errors::InvalidArgument(
            "PyArray does not own data, in which case  memory leak "
            "or double free would occur"));

    size_t copy_bytes = sizeof_dtype * numel;
1055
    auto p = tensor.place();
1056 1057 1058 1059 1060
    paddle::memory::Copy(platform::CPUPlace(),
                         py_arr.mutable_data(),
                         p,
                         tensor_buf_ptr,
                         copy_bytes);
1061 1062 1063 1064 1065 1066 1067
    return py_arr;
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Cannot use XPUPlace in CPU/GPU version, "
        "Please recompile or reinstall Paddle with XPU support."));
#endif
  } else if (is_gpu_tensor) {
1068
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1069
    py::array py_arr(py::dtype(py_dtype_str.c_str()), py_dims, py_strides);
1070 1071
    PADDLE_ENFORCE_EQ(py_arr.writeable(),
                      true,
1072 1073 1074 1075
                      platform::errors::InvalidArgument(
                          "PyArray is not writable, in which case memory leak "
                          "or double free would occur"));
    PADDLE_ENFORCE_EQ(
1076 1077
        py_arr.owndata(),
        true,
1078 1079 1080 1081 1082
        platform::errors::InvalidArgument(
            "PyArray does not own data, in which case  memory leak "
            "or double free would occur"));

    size_t copy_bytes = sizeof_dtype * numel;
1083
    auto p = tensor.place();
1084 1085 1086 1087 1088 1089
    paddle::memory::Copy(platform::CPUPlace(),
                         py_arr.mutable_data(),
                         p,
                         tensor_buf_ptr,
                         copy_bytes,
                         nullptr);
1090
    return py_arr;
1091
#else
1092 1093 1094
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Cannot use CUDAPlace in CPU only version, "
        "Please recompile or reinstall Paddle with CUDA support."));
1095 1096 1097 1098
#endif
  } else if (is_npu_tensor) {
#ifdef PADDLE_WITH_ASCEND_CL
    py::array py_arr(py::dtype(py_dtype_str.c_str()), py_dims, py_strides);
1099 1100
    PADDLE_ENFORCE_EQ(py_arr.writeable(),
                      true,
1101 1102 1103 1104
                      platform::errors::InvalidArgument(
                          "PyArray is not writable, in which case memory leak "
                          "or double free would occur"));
    PADDLE_ENFORCE_EQ(
1105 1106
        py_arr.owndata(),
        true,
1107 1108 1109 1110 1111
        platform::errors::InvalidArgument(
            "PyArray does not own data, in which case  memory leak "
            "or double free would occur"));

    size_t copy_bytes = sizeof_dtype * numel;
1112
    auto p = tensor.place();
1113 1114 1115
    platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
    auto &ctx = *pool.Get(tensor.place());
    paddle::memory::Copy(
1116 1117 1118 1119
        platform::CPUPlace(),
        py_arr.mutable_data(),
        p,
        tensor_buf_ptr,
1120 1121 1122 1123 1124 1125 1126 1127
        copy_bytes,
        reinterpret_cast<const platform::NPUDeviceContext &>(ctx).stream());
    ctx.Wait();
    return py_arr;
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Cannot use NPUPlace in CPU/GPU/XPU version, "
        "Please recompile or reinstall Paddle with NPU support."));
1128 1129 1130 1131
#endif
  } else if (is_mlu_tensor) {
#ifdef PADDLE_WITH_MLU
    py::array py_arr(py::dtype(py_dtype_str.c_str()), py_dims, py_strides);
1132 1133
    PADDLE_ENFORCE_EQ(py_arr.writeable(),
                      true,
1134 1135 1136 1137
                      platform::errors::InvalidArgument(
                          "PyArray is not writable, in which case memory leak "
                          "or double free would occur"));
    PADDLE_ENFORCE_EQ(
1138 1139
        py_arr.owndata(),
        true,
1140 1141 1142 1143 1144
        platform::errors::InvalidArgument(
            "PyArray does not own data, in which case  memory leak "
            "or double free would occur"));

    size_t copy_bytes = sizeof_dtype * numel;
1145
    auto p = tensor.place();
1146 1147 1148
    platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
    auto &ctx = *pool.Get(tensor.place());
    paddle::memory::Copy(
1149 1150 1151 1152
        platform::CPUPlace(),
        py_arr.mutable_data(),
        p,
        tensor_buf_ptr,
1153 1154 1155
        copy_bytes,
        reinterpret_cast<const platform::MLUDeviceContext &>(ctx).stream());
    ctx.Wait();
1156 1157 1158 1159 1160
    return py_arr;
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Cannot use MLUPlace in CPU/GPU/XPU/NPU version, "
        "Please recompile or reinstall Paddle with MLU support."));
1161 1162 1163 1164
#endif
  } else if (is_custom_device_tensor) {
#ifdef PADDLE_WITH_CUSTOM_DEVICE
    py::array py_arr(py::dtype(py_dtype_str.c_str()), py_dims, py_strides);
1165 1166
    PADDLE_ENFORCE_EQ(py_arr.writeable(),
                      true,
1167 1168 1169 1170
                      platform::errors::InvalidArgument(
                          "PyArray is not writable, in which case memory leak "
                          "or double free would occur"));
    PADDLE_ENFORCE_EQ(
1171 1172
        py_arr.owndata(),
        true,
1173 1174 1175 1176
        platform::errors::InvalidArgument(
            "PyArray does not own data, in which case  memory leak "
            "or double free would occur"));

1177 1178
    // TODO(qili93): temporary for ascned npu performance to be removed along
    // with npu_identity op
1179
    paddle::Tensor tensor_out(std::make_shared<phi::DenseTensor>());
1180
    if (tensor.storage_properties_initialized()) {
1181
      paddle::Tensor tensor_in(std::make_shared<phi::DenseTensor>(tensor));
1182 1183 1184 1185 1186 1187
      tensor_out = npu_identity_ad_func(tensor_in, -1);
      auto dense_tensor =
          std::dynamic_pointer_cast<phi::DenseTensor>(tensor_out.impl());
      tensor_buf_ptr = dense_tensor->data();
    }

1188 1189 1190 1191
    size_t copy_bytes = sizeof_dtype * numel;
    platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
    auto &ctx = *pool.Get(tensor.place());
    paddle::memory::Copy(
1192 1193 1194 1195 1196
        platform::CPUPlace(),
        py_arr.mutable_data(),
        tensor.place(),
        tensor_buf_ptr,
        copy_bytes,
1197 1198 1199 1200 1201 1202 1203 1204
        reinterpret_cast<const platform::CustomDeviceContext &>(ctx).stream());
    ctx.Wait();
    return py_arr;
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Cannot use CustomPlace in CPU/GPU/XPU/NPU version, "
        "Please recompile or reinstall Paddle with CustomPlace "
        "support."));
1205
#endif
1206 1207 1208
  }
  PADDLE_THROW(platform::errors::Unimplemented("Place is not supported"));
  return py::array();
1209 1210
}

1211 1212
}  // namespace pybind
}  // namespace paddle