test_unique.py 10.6 KB
Newer Older
Z
zhoukunsheng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import numpy as np
from op_test import OpTest
Z
Zhang Ting 已提交
20
import paddle
21
import paddle.fluid as fluid
Z
zhoukunsheng 已提交
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
import paddle.fluid.core as core
from paddle.fluid.op import Operator


class TestUniqueOp(OpTest):
    def setUp(self):
        self.op_type = "unique"
        self.init_config()

    def test_check_output(self):
        self.check_output()

    def init_config(self):
        self.inputs = {'X': np.array([2, 3, 3, 1, 5, 3], dtype='int64'), }
        self.attrs = {'dtype': int(core.VarDesc.VarType.INT32)}
        self.outputs = {
            'Out': np.array(
                [2, 3, 1, 5], dtype='int64'),
            'Index': np.array(
                [0, 1, 1, 2, 3, 1], dtype='int32')
        }


class TestOne(TestUniqueOp):
    def init_config(self):
        self.inputs = {'X': np.array([2], dtype='int64'), }
        self.attrs = {'dtype': int(core.VarDesc.VarType.INT32)}
        self.outputs = {
            'Out': np.array(
                [2], dtype='int64'),
            'Index': np.array(
                [0], dtype='int32')
        }


class TestRandom(TestUniqueOp):
    def init_config(self):
        self.inputs = {'X': np.random.randint(0, 100, (150, ), dtype='int64')}
        self.attrs = {'dtype': int(core.VarDesc.VarType.INT64)}
        np_unique, np_index, reverse_index = np.unique(self.inputs['X'], True,
                                                       True)
        np_tuple = [(np_unique[i], np_index[i]) for i in range(len(np_unique))]
        np_tuple.sort(key=lambda x: x[1])
        target_out = np.array([i[0] for i in np_tuple], dtype='int64')
        target_index = np.array(
            [list(target_out).index(i) for i in self.inputs['X']],
            dtype='int64')

        self.outputs = {'Out': target_out, 'Index': target_index}


73 74 75 76 77 78 79 80 81 82 83 84 85 86
class TestUniqueRaiseError(unittest.TestCase):
    def test_errors(self):
        def test_type():
            fluid.layers.unique([10])

        self.assertRaises(TypeError, test_type)

        def test_dtype():
            data = fluid.data(shape=[10], dtype="float16", name="input")
            fluid.layers.unique(data)

        self.assertRaises(TypeError, test_dtype)


87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestOneGPU(TestUniqueOp):
    def init_config(self):
        self.inputs = {'X': np.array([2], dtype='int64'), }
        self.attrs = {'dtype': int(core.VarDesc.VarType.INT32)}
        self.outputs = {
            'Out': np.array(
                [2], dtype='int64'),
            'Index': np.array(
                [0], dtype='int32')
        }

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            self.check_output_with_place(place, atol=1e-5)


@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestRandomGPU(TestUniqueOp):
    def init_config(self):
        self.inputs = {'X': np.random.randint(0, 100, (150, ), dtype='int64')}
        self.attrs = {'dtype': int(core.VarDesc.VarType.INT64)}
        np_unique, np_index, reverse_index = np.unique(self.inputs['X'], True,
                                                       True)
        np_tuple = [(np_unique[i], np_index[i]) for i in range(len(np_unique))]
        np_tuple.sort(key=lambda x: x[1])
        target_out = np.array([i[0] for i in np_tuple], dtype='int64')
        target_index = np.array(
            [list(target_out).index(i) for i in self.inputs['X']],
            dtype='int64')

        self.outputs = {'Out': target_out, 'Index': target_index}

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            self.check_output_with_place(place, atol=1e-5)


Z
Zhang Ting 已提交
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
class TestSortedUniqueOp(TestUniqueOp):
    def init_config(self):
        self.inputs = {'X': np.array([2, 3, 3, 1, 5, 3], dtype='int64')}
        unique, indices, inverse, count = np.unique(
            self.inputs['X'],
            return_index=True,
            return_inverse=True,
            return_counts=True,
            axis=None)
        self.attrs = {
            'dtype': int(core.VarDesc.VarType.INT32),
            "return_index": True,
            "return_inverse": True,
            "return_counts": True,
            "axis": None,
            "is_sorted": True
        }
        self.outputs = {
            'Out': unique,
            'Indices': indices,
            "Index": inverse,
            "Counts": count,
        }


class TestUniqueOpAxisNone(TestUniqueOp):
    def init_config(self):
        self.inputs = {'X': np.random.random((4, 7, 10)).astype('float64')}
        unique, indices, inverse, counts = np.unique(
            self.inputs['X'],
            return_index=True,
            return_inverse=True,
            return_counts=True,
            axis=None)
        self.attrs = {
            'dtype': int(core.VarDesc.VarType.INT32),
            "return_index": True,
            "return_inverse": True,
            "return_counts": True,
            "axis": None,
            "is_sorted": True
        }
        self.outputs = {
            'Out': unique,
            'Indices': indices,
            "Index": inverse,
            "Counts": counts,
        }


class TestUniqueOpAxis1(TestUniqueOp):
    def init_config(self):
        self.inputs = {'X': np.random.random((3, 8, 8)).astype('float64')}
        unique, indices, inverse, counts = np.unique(
            self.inputs['X'],
            return_index=True,
            return_inverse=True,
            return_counts=True,
            axis=1)
        self.attrs = {
            'dtype': int(core.VarDesc.VarType.INT32),
            "return_index": True,
            "return_inverse": True,
            "return_counts": True,
            "axis": [1],
            "is_sorted": True
        }
        self.outputs = {
            'Out': unique,
            'Indices': indices,
            "Index": inverse,
            "Counts": counts,
        }


class TestUniqueAPI(unittest.TestCase):
    def test_dygraph_api_out(self):
        paddle.disable_static()
        x_data = x_data = np.random.randint(0, 10, (120))
        x = paddle.to_tensor(x_data)
        out = paddle.unique(x)
        expected_out = np.unique(x_data)
        self.assertTrue((out.numpy() == expected_out).all(), True)
        paddle.enable_static()

    def test_dygraph_api_attr(self):
        paddle.disable_static()
        x_data = np.random.random((3, 5, 5)).astype("float32")
        x = paddle.to_tensor(x_data)
        out, index, inverse, counts = paddle.unique(
            x,
            return_index=True,
            return_inverse=True,
            return_counts=True,
            axis=0)
        np_out, np_index, np_inverse, np_counts = np.unique(
            x_data,
            return_index=True,
            return_inverse=True,
            return_counts=True,
            axis=0)
        self.assertTrue((out.numpy() == np_out).all(), True)
        self.assertTrue((index.numpy() == np_index).all(), True)
        self.assertTrue((inverse.numpy() == np_inverse).all(), True)
        self.assertTrue((counts.numpy() == np_counts).all(), True)
        paddle.enable_static()

Z
Zhang Ting 已提交
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
    def test_dygraph_attr_dtype(self):
        paddle.disable_static()
        x_data = x_data = np.random.randint(0, 10, (120))
        x = paddle.to_tensor(x_data)
        out, indices, inverse, counts = paddle.unique(
            x,
            return_index=True,
            return_inverse=True,
            return_counts=True,
            dtype="int32")
        expected_out, np_indices, np_inverse, np_counts = np.unique(
            x_data, return_index=True, return_inverse=True, return_counts=True)
        self.assertTrue((out.numpy() == expected_out).all(), True)
        self.assertTrue((indices.numpy() == np_indices).all(), True)
        self.assertTrue((inverse.numpy() == np_inverse).all(), True)
        self.assertTrue((counts.numpy() == np_counts).all(), True)
        paddle.enable_static()

Z
Zhang Ting 已提交
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
    def test_static_graph(self):
        with paddle.static.program_guard(paddle.static.Program(),
                                         paddle.static.Program()):
            x = paddle.data(name='x', shape=[3, 2], dtype='float64')
            unique, inverse, counts = paddle.unique(
                x, return_inverse=True, return_counts=True, axis=0)
            place = paddle.CPUPlace()
            exe = paddle.static.Executor(place)
            x_np = np.array([[1, 2], [3, 4], [1, 2]]).astype('float64')
            result = exe.run(feed={"x": x_np},
                             fetch_list=[unique, inverse, counts])
        np_unique, np_inverse, np_counts = np.unique(
            x_np, return_inverse=True, return_counts=True, axis=0)
        self.assertTrue(np.allclose(result[0], np_unique))
        self.assertTrue(np.allclose(result[1], np_inverse))
        self.assertTrue(np.allclose(result[2], np_counts))


class TestUniqueError(unittest.TestCase):
    def test_input_dtype(self):
        def test_x_dtype():
            with paddle.static.program_guard(paddle.static.Program(),
                                             paddle.static.Program()):
                x = paddle.data(name='x', shape=[10, 10], dtype='float16')
                result = paddle.unique(x)

            self.assertRaises(TypeError, test_x_dtype)

    def test_attr(self):
        x = paddle.data(name='x', shape=[10, 10], dtype='float64')

        def test_return_index():
            result = paddle.unique(x, return_index=0)

        self.assertRaises(TypeError, test_return_index)

        def test_return_inverse():
            result = paddle.unique(x, return_inverse='s')

        self.assertRaises(TypeError, test_return_inverse)

        def test_return_counts():
            result = paddle.unique(x, return_counts=3)

        self.assertRaises(TypeError, test_return_counts)

        def test_axis():
            result = paddle.unique(x, axis='12')

Z
Zhang Ting 已提交
303 304 305
        def test_dtype():
            result = paddle.unique(x, dtype='float64')

Z
Zhang Ting 已提交
306 307 308
        self.assertRaises(TypeError, test_axis)


Z
zhoukunsheng 已提交
309 310
if __name__ == "__main__":
    unittest.main()