test_unique.py 4.4 KB
Newer Older
Z
zhoukunsheng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import numpy as np
from op_test import OpTest
20
import paddle.fluid as fluid
Z
zhoukunsheng 已提交
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
import paddle.fluid.core as core
from paddle.fluid.op import Operator


class TestUniqueOp(OpTest):
    def setUp(self):
        self.op_type = "unique"
        self.init_config()

    def test_check_output(self):
        self.check_output()

    def init_config(self):
        self.inputs = {'X': np.array([2, 3, 3, 1, 5, 3], dtype='int64'), }
        self.attrs = {'dtype': int(core.VarDesc.VarType.INT32)}
        self.outputs = {
            'Out': np.array(
                [2, 3, 1, 5], dtype='int64'),
            'Index': np.array(
                [0, 1, 1, 2, 3, 1], dtype='int32')
        }


class TestOne(TestUniqueOp):
    def init_config(self):
        self.inputs = {'X': np.array([2], dtype='int64'), }
        self.attrs = {'dtype': int(core.VarDesc.VarType.INT32)}
        self.outputs = {
            'Out': np.array(
                [2], dtype='int64'),
            'Index': np.array(
                [0], dtype='int32')
        }


class TestRandom(TestUniqueOp):
    def init_config(self):
        self.inputs = {'X': np.random.randint(0, 100, (150, ), dtype='int64')}
        self.attrs = {'dtype': int(core.VarDesc.VarType.INT64)}
        np_unique, np_index, reverse_index = np.unique(self.inputs['X'], True,
                                                       True)
        np_tuple = [(np_unique[i], np_index[i]) for i in range(len(np_unique))]
        np_tuple.sort(key=lambda x: x[1])
        target_out = np.array([i[0] for i in np_tuple], dtype='int64')
        target_index = np.array(
            [list(target_out).index(i) for i in self.inputs['X']],
            dtype='int64')

        self.outputs = {'Out': target_out, 'Index': target_index}


72 73 74 75 76 77 78 79 80 81 82 83 84 85
class TestUniqueRaiseError(unittest.TestCase):
    def test_errors(self):
        def test_type():
            fluid.layers.unique([10])

        self.assertRaises(TypeError, test_type)

        def test_dtype():
            data = fluid.data(shape=[10], dtype="float16", name="input")
            fluid.layers.unique(data)

        self.assertRaises(TypeError, test_dtype)


86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestOneGPU(TestUniqueOp):
    def init_config(self):
        self.inputs = {'X': np.array([2], dtype='int64'), }
        self.attrs = {'dtype': int(core.VarDesc.VarType.INT32)}
        self.outputs = {
            'Out': np.array(
                [2], dtype='int64'),
            'Index': np.array(
                [0], dtype='int32')
        }

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            self.check_output_with_place(place, atol=1e-5)


@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestRandomGPU(TestUniqueOp):
    def init_config(self):
        self.inputs = {'X': np.random.randint(0, 100, (150, ), dtype='int64')}
        self.attrs = {'dtype': int(core.VarDesc.VarType.INT64)}
        np_unique, np_index, reverse_index = np.unique(self.inputs['X'], True,
                                                       True)
        np_tuple = [(np_unique[i], np_index[i]) for i in range(len(np_unique))]
        np_tuple.sort(key=lambda x: x[1])
        target_out = np.array([i[0] for i in np_tuple], dtype='int64')
        target_index = np.array(
            [list(target_out).index(i) for i in self.inputs['X']],
            dtype='int64')

        self.outputs = {'Out': target_out, 'Index': target_index}

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            self.check_output_with_place(place, atol=1e-5)


Z
zhoukunsheng 已提交
128 129
if __name__ == "__main__":
    unittest.main()