# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import numpy as np from op_test import OpTest import paddle import paddle.fluid as fluid import paddle.fluid.core as core from paddle.fluid.op import Operator class TestUniqueOp(OpTest): def setUp(self): self.op_type = "unique" self.init_config() def test_check_output(self): self.check_output() def init_config(self): self.inputs = {'X': np.array([2, 3, 3, 1, 5, 3], dtype='int64'), } self.attrs = {'dtype': int(core.VarDesc.VarType.INT32)} self.outputs = { 'Out': np.array( [2, 3, 1, 5], dtype='int64'), 'Index': np.array( [0, 1, 1, 2, 3, 1], dtype='int32') } class TestOne(TestUniqueOp): def init_config(self): self.inputs = {'X': np.array([2], dtype='int64'), } self.attrs = {'dtype': int(core.VarDesc.VarType.INT32)} self.outputs = { 'Out': np.array( [2], dtype='int64'), 'Index': np.array( [0], dtype='int32') } class TestRandom(TestUniqueOp): def init_config(self): self.inputs = {'X': np.random.randint(0, 100, (150, ), dtype='int64')} self.attrs = {'dtype': int(core.VarDesc.VarType.INT64)} np_unique, np_index, reverse_index = np.unique(self.inputs['X'], True, True) np_tuple = [(np_unique[i], np_index[i]) for i in range(len(np_unique))] np_tuple.sort(key=lambda x: x[1]) target_out = np.array([i[0] for i in np_tuple], dtype='int64') target_index = np.array( [list(target_out).index(i) for i in self.inputs['X']], dtype='int64') self.outputs = {'Out': target_out, 'Index': target_index} class TestUniqueRaiseError(unittest.TestCase): def test_errors(self): def test_type(): fluid.layers.unique([10]) self.assertRaises(TypeError, test_type) def test_dtype(): data = fluid.data(shape=[10], dtype="float16", name="input") fluid.layers.unique(data) self.assertRaises(TypeError, test_dtype) @unittest.skipIf(not core.is_compiled_with_cuda(), "core is not compiled with CUDA") class TestOneGPU(TestUniqueOp): def init_config(self): self.inputs = {'X': np.array([2], dtype='int64'), } self.attrs = {'dtype': int(core.VarDesc.VarType.INT32)} self.outputs = { 'Out': np.array( [2], dtype='int64'), 'Index': np.array( [0], dtype='int32') } def test_check_output(self): if core.is_compiled_with_cuda(): place = core.CUDAPlace(0) self.check_output_with_place(place, atol=1e-5) @unittest.skipIf(not core.is_compiled_with_cuda(), "core is not compiled with CUDA") class TestRandomGPU(TestUniqueOp): def init_config(self): self.inputs = {'X': np.random.randint(0, 100, (150, ), dtype='int64')} self.attrs = {'dtype': int(core.VarDesc.VarType.INT64)} np_unique, np_index, reverse_index = np.unique(self.inputs['X'], True, True) np_tuple = [(np_unique[i], np_index[i]) for i in range(len(np_unique))] np_tuple.sort(key=lambda x: x[1]) target_out = np.array([i[0] for i in np_tuple], dtype='int64') target_index = np.array( [list(target_out).index(i) for i in self.inputs['X']], dtype='int64') self.outputs = {'Out': target_out, 'Index': target_index} def test_check_output(self): if core.is_compiled_with_cuda(): place = core.CUDAPlace(0) self.check_output_with_place(place, atol=1e-5) class TestSortedUniqueOp(TestUniqueOp): def init_config(self): self.inputs = {'X': np.array([2, 3, 3, 1, 5, 3], dtype='int64')} unique, indices, inverse, count = np.unique( self.inputs['X'], return_index=True, return_inverse=True, return_counts=True, axis=None) self.attrs = { 'dtype': int(core.VarDesc.VarType.INT32), "return_index": True, "return_inverse": True, "return_counts": True, "axis": None, "is_sorted": True } self.outputs = { 'Out': unique, 'Indices': indices, "Index": inverse, "Counts": count, } class TestUniqueOpAxisNone(TestUniqueOp): def init_config(self): self.inputs = {'X': np.random.random((4, 7, 10)).astype('float64')} unique, indices, inverse, counts = np.unique( self.inputs['X'], return_index=True, return_inverse=True, return_counts=True, axis=None) self.attrs = { 'dtype': int(core.VarDesc.VarType.INT32), "return_index": True, "return_inverse": True, "return_counts": True, "axis": None, "is_sorted": True } self.outputs = { 'Out': unique, 'Indices': indices, "Index": inverse, "Counts": counts, } class TestUniqueOpAxis1(TestUniqueOp): def init_config(self): self.inputs = {'X': np.random.random((3, 8, 8)).astype('float64')} unique, indices, inverse, counts = np.unique( self.inputs['X'], return_index=True, return_inverse=True, return_counts=True, axis=1) self.attrs = { 'dtype': int(core.VarDesc.VarType.INT32), "return_index": True, "return_inverse": True, "return_counts": True, "axis": [1], "is_sorted": True } self.outputs = { 'Out': unique, 'Indices': indices, "Index": inverse, "Counts": counts, } class TestUniqueAPI(unittest.TestCase): def test_dygraph_api_out(self): paddle.disable_static() x_data = x_data = np.random.randint(0, 10, (120)) x = paddle.to_tensor(x_data) out = paddle.unique(x) expected_out = np.unique(x_data) self.assertTrue((out.numpy() == expected_out).all(), True) paddle.enable_static() def test_dygraph_api_attr(self): paddle.disable_static() x_data = np.random.random((3, 5, 5)).astype("float32") x = paddle.to_tensor(x_data) out, index, inverse, counts = paddle.unique( x, return_index=True, return_inverse=True, return_counts=True, axis=0) np_out, np_index, np_inverse, np_counts = np.unique( x_data, return_index=True, return_inverse=True, return_counts=True, axis=0) self.assertTrue((out.numpy() == np_out).all(), True) self.assertTrue((index.numpy() == np_index).all(), True) self.assertTrue((inverse.numpy() == np_inverse).all(), True) self.assertTrue((counts.numpy() == np_counts).all(), True) paddle.enable_static() def test_dygraph_attr_dtype(self): paddle.disable_static() x_data = x_data = np.random.randint(0, 10, (120)) x = paddle.to_tensor(x_data) out, indices, inverse, counts = paddle.unique( x, return_index=True, return_inverse=True, return_counts=True, dtype="int32") expected_out, np_indices, np_inverse, np_counts = np.unique( x_data, return_index=True, return_inverse=True, return_counts=True) self.assertTrue((out.numpy() == expected_out).all(), True) self.assertTrue((indices.numpy() == np_indices).all(), True) self.assertTrue((inverse.numpy() == np_inverse).all(), True) self.assertTrue((counts.numpy() == np_counts).all(), True) paddle.enable_static() def test_static_graph(self): with paddle.static.program_guard(paddle.static.Program(), paddle.static.Program()): x = paddle.data(name='x', shape=[3, 2], dtype='float64') unique, inverse, counts = paddle.unique( x, return_inverse=True, return_counts=True, axis=0) place = paddle.CPUPlace() exe = paddle.static.Executor(place) x_np = np.array([[1, 2], [3, 4], [1, 2]]).astype('float64') result = exe.run(feed={"x": x_np}, fetch_list=[unique, inverse, counts]) np_unique, np_inverse, np_counts = np.unique( x_np, return_inverse=True, return_counts=True, axis=0) self.assertTrue(np.allclose(result[0], np_unique)) self.assertTrue(np.allclose(result[1], np_inverse)) self.assertTrue(np.allclose(result[2], np_counts)) class TestUniqueError(unittest.TestCase): def test_input_dtype(self): def test_x_dtype(): with paddle.static.program_guard(paddle.static.Program(), paddle.static.Program()): x = paddle.data(name='x', shape=[10, 10], dtype='float16') result = paddle.unique(x) self.assertRaises(TypeError, test_x_dtype) def test_attr(self): x = paddle.data(name='x', shape=[10, 10], dtype='float64') def test_return_index(): result = paddle.unique(x, return_index=0) self.assertRaises(TypeError, test_return_index) def test_return_inverse(): result = paddle.unique(x, return_inverse='s') self.assertRaises(TypeError, test_return_inverse) def test_return_counts(): result = paddle.unique(x, return_counts=3) self.assertRaises(TypeError, test_return_counts) def test_axis(): result = paddle.unique(x, axis='12') def test_dtype(): result = paddle.unique(x, dtype='float64') self.assertRaises(TypeError, test_axis) if __name__ == "__main__": unittest.main()