test_variable.py 41.7 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Y
Yu Yang 已提交
15
import unittest
W
WeiXin 已提交
16 17
from functools import reduce

18 19
import numpy as np

20
import paddle
21 22 23
from paddle import base
from paddle.base import core
from paddle.base.framework import (
24 25 26 27
    Program,
    convert_np_dtype_to_dtype_,
    default_main_program,
)
Y
Yu Yang 已提交
28

29 30
paddle.enable_static()

Y
Yu Yang 已提交
31 32

class TestVariable(unittest.TestCase):
33 34 35
    def setUp(self):
        np.random.seed(2022)

Y
Yu Yang 已提交
36
    def test_np_dtype_convert(self):
37
        DT = core.VarDesc.VarType
38
        convert = convert_np_dtype_to_dtype_
Y
Yu Yang 已提交
39 40 41 42 43 44 45
        self.assertEqual(DT.FP32, convert(np.float32))
        self.assertEqual(DT.FP16, convert("float16"))
        self.assertEqual(DT.FP64, convert("float64"))
        self.assertEqual(DT.INT32, convert("int32"))
        self.assertEqual(DT.INT16, convert("int16"))
        self.assertEqual(DT.INT64, convert("int64"))
        self.assertEqual(DT.BOOL, convert("bool"))
Q
qingqing01 已提交
46 47
        self.assertEqual(DT.INT8, convert("int8"))
        self.assertEqual(DT.UINT8, convert("uint8"))
Y
Yu Yang 已提交
48

Y
Yu Yang 已提交
49
    def test_var(self):
Y
Yu Yang 已提交
50
        b = default_main_program().current_block()
51 52 53
        w = b.create_var(
            dtype="float64", shape=[784, 100], lod_level=0, name="fc.w"
        )
54
        self.assertNotEqual(str(w), "")
55
        self.assertEqual(core.VarDesc.VarType.FP64, w.dtype)
Y
Yu Yang 已提交
56 57
        self.assertEqual((784, 100), w.shape)
        self.assertEqual("fc.w", w.name)
58
        self.assertEqual("fc.w@GRAD", w.grad_name)
Y
Yu Yang 已提交
59 60 61
        self.assertEqual(0, w.lod_level)

        w = b.create_var(name='fc.w')
62
        self.assertEqual(core.VarDesc.VarType.FP64, w.dtype)
Y
Yu Yang 已提交
63 64
        self.assertEqual((784, 100), w.shape)
        self.assertEqual("fc.w", w.name)
65
        self.assertEqual("fc.w@GRAD", w.grad_name)
Y
Yu Yang 已提交
66 67
        self.assertEqual(0, w.lod_level)

68 69 70
        self.assertRaises(
            ValueError, lambda: b.create_var(name="fc.w", shape=(24, 100))
        )
Y
Yu Yang 已提交
71

72
        w = b.create_var(
73
            dtype=paddle.base.core.VarDesc.VarType.STRINGS,
74 75 76
            shape=[1],
            name="str_var",
        )
77 78
        self.assertEqual(None, w.lod_level)

79
    def test_element_size(self):
80
        with base.program_guard(Program(), Program()):
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
            x = paddle.static.data(name='x1', shape=[2], dtype='bool')
            self.assertEqual(x.element_size(), 1)

            x = paddle.static.data(name='x2', shape=[2], dtype='float16')
            self.assertEqual(x.element_size(), 2)

            x = paddle.static.data(name='x3', shape=[2], dtype='float32')
            self.assertEqual(x.element_size(), 4)

            x = paddle.static.data(name='x4', shape=[2], dtype='float64')
            self.assertEqual(x.element_size(), 8)

            x = paddle.static.data(name='x5', shape=[2], dtype='int8')
            self.assertEqual(x.element_size(), 1)

            x = paddle.static.data(name='x6', shape=[2], dtype='int16')
            self.assertEqual(x.element_size(), 2)

            x = paddle.static.data(name='x7', shape=[2], dtype='int32')
            self.assertEqual(x.element_size(), 4)

            x = paddle.static.data(name='x8', shape=[2], dtype='int64')
            self.assertEqual(x.element_size(), 8)

            x = paddle.static.data(name='x9', shape=[2], dtype='uint8')
            self.assertEqual(x.element_size(), 1)

Y
Yu Yang 已提交
108 109 110
    def test_step_scopes(self):
        prog = Program()
        b = prog.current_block()
111 112 113
        var = b.create_var(
            name='step_scopes', type=core.VarDesc.VarType.STEP_SCOPES
        )
Y
Yu Yang 已提交
114 115
        self.assertEqual(core.VarDesc.VarType.STEP_SCOPES, var.type)

W
wopeizl 已提交
116
    def _test_slice(self, place):
W
wopeizl 已提交
117 118 119 120 121
        b = default_main_program().current_block()
        w = b.create_var(dtype="float64", shape=[784, 100, 100], lod_level=0)

        for i in range(3):
            nw = w[i]
H
Hongyu Liu 已提交
122
            self.assertEqual((100, 100), nw.shape)
W
wopeizl 已提交
123 124 125 126

        nw = w[:]
        self.assertEqual((784, 100, 100), nw.shape)

H
Hongyu Liu 已提交
127
        nw = w[:, :]
W
wopeizl 已提交
128 129
        self.assertEqual((784, 100, 100), nw.shape)

H
Hongyu Liu 已提交
130 131
        nw = w[:, :, -1]
        self.assertEqual((784, 100), nw.shape)
W
wopeizl 已提交
132

H
Hongyu Liu 已提交
133 134
        nw = w[1, 1, 1]

135
        self.assertEqual(len(nw.shape), 0)
H
Hongyu Liu 已提交
136 137 138

        nw = w[:, :, :-1]
        self.assertEqual((784, 100, 99), nw.shape)
W
wopeizl 已提交
139 140 141

        self.assertEqual(0, nw.lod_level)

142 143 144
        main = base.Program()
        with base.program_guard(main):
            exe = base.Executor(place)
145 146 147 148 149 150 151
            tensor_array = np.array(
                [
                    [[1, 2, 3], [4, 5, 6], [7, 8, 9]],
                    [[10, 11, 12], [13, 14, 15], [16, 17, 18]],
                    [[19, 20, 21], [22, 23, 24], [25, 26, 27]],
                ]
            ).astype('float32')
152
            var = paddle.assign(tensor_array)
W
wopeizl 已提交
153 154 155
            var1 = var[0, 1, 1]
            var2 = var[1:]
            var3 = var[0:1]
H
Hongyu Liu 已提交
156 157
            var4 = var[::-1]
            var5 = var[1, 1:, 1:]
158
            var_reshape = paddle.reshape(var, [3, -1, 3])
H
Hongyu Liu 已提交
159 160 161 162 163 164 165 166 167 168
            var6 = var_reshape[:, :, -1]
            var7 = var[:, :, :-1]
            var8 = var[:1, :1, :1]
            var9 = var[:-1, :-1, :-1]
            var10 = var[::-1, :1, :-1]
            var11 = var[:-1, ::-1, -1:]
            var12 = var[1:2, 2:, ::-1]
            var13 = var[2:10, 2:, -2:-1]
            var14 = var[1:-1, 0:2, ::-1]
            var15 = var[::-1, ::-1, ::-1]
W
wopeizl 已提交
169

G
GGBond8488 已提交
170
            x = paddle.static.data(name='x', shape=[-1, 13], dtype='float32')
C
Charles-hit 已提交
171
            y = paddle.static.nn.fc(x, size=1, activation=None)
H
Hongyu Liu 已提交
172
            y_1 = y[:, 0]
173
            feeder = base.DataFeeder(place=place, feed_list=[x])
W
wopeizl 已提交
174
            data = []
175
            data.append(np.random.randint(10, size=[13]).astype('float32'))
176
            exe.run(base.default_startup_program())
W
wopeizl 已提交
177

178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
            local_out = exe.run(
                main,
                feed=feeder.feed([data]),
                fetch_list=[
                    var,
                    var1,
                    var2,
                    var3,
                    var4,
                    var5,
                    var6,
                    var7,
                    var8,
                    var9,
                    var10,
                    var11,
                    var12,
                    var13,
                    var14,
                    var15,
                ],
            )
W
wopeizl 已提交
200

201 202 203 204 205 206
            np.testing.assert_array_equal(local_out[1], tensor_array[0, 1, 1:2])
            np.testing.assert_array_equal(local_out[2], tensor_array[1:])
            np.testing.assert_array_equal(local_out[3], tensor_array[0:1])
            np.testing.assert_array_equal(local_out[4], tensor_array[::-1])
            np.testing.assert_array_equal(local_out[5], tensor_array[1, 1:, 1:])
            np.testing.assert_array_equal(
207 208
                local_out[6], tensor_array.reshape((3, -1, 3))[:, :, -1]
            )
209
            np.testing.assert_array_equal(local_out[7], tensor_array[:, :, :-1])
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
            np.testing.assert_array_equal(
                local_out[8], tensor_array[:1, :1, :1]
            )
            np.testing.assert_array_equal(
                local_out[9], tensor_array[:-1, :-1, :-1]
            )
            np.testing.assert_array_equal(
                local_out[10], tensor_array[::-1, :1, :-1]
            )
            np.testing.assert_array_equal(
                local_out[11], tensor_array[:-1, ::-1, -1:]
            )
            np.testing.assert_array_equal(
                local_out[12], tensor_array[1:2, 2:, ::-1]
            )
            np.testing.assert_array_equal(
                local_out[13], tensor_array[2:10, 2:, -2:-1]
            )
            np.testing.assert_array_equal(
                local_out[14], tensor_array[1:-1, 0:2, ::-1]
            )
            np.testing.assert_array_equal(
                local_out[15], tensor_array[::-1, ::-1, ::-1]
            )
W
wopeizl 已提交
234

235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
    def _test_slice_index_tensor(self, place):
        data = np.random.rand(2, 3).astype("float32")
        prog = paddle.static.Program()
        with paddle.static.program_guard(prog):
            x = paddle.assign(data)
            idx0 = [1, 0]
            idx1 = [0, 1]
            idx2 = [0, 0]
            idx3 = [1, 1]

            out0 = x[paddle.assign(np.array(idx0))]
            out1 = x[paddle.assign(np.array(idx1))]
            out2 = x[paddle.assign(np.array(idx2))]
            out3 = x[paddle.assign(np.array(idx3))]

        exe = paddle.static.Executor(place)
        result = exe.run(prog, fetch_list=[out0, out1, out2, out3])

        expected = [data[idx0], data[idx1], data[idx2], data[idx3]]

        self.assertTrue((result[0] == expected[0]).all())
        self.assertTrue((result[1] == expected[1]).all())
        self.assertTrue((result[2] == expected[2]).all())
        self.assertTrue((result[3] == expected[3]).all())

    def _test_slice_index_list(self, place):
        data = np.random.rand(2, 3).astype("float32")
        prog = paddle.static.Program()
        with paddle.static.program_guard(prog):
            x = paddle.assign(data)
            idx0 = [1, 0]
            idx1 = [0, 1]
            idx2 = [0, 0]
            idx3 = [1, 1]

            out0 = x[idx0]
            out1 = x[idx1]
            out2 = x[idx2]
            out3 = x[idx3]

        exe = paddle.static.Executor(place)
        result = exe.run(prog, fetch_list=[out0, out1, out2, out3])

        expected = [data[idx0], data[idx1], data[idx2], data[idx3]]

        self.assertTrue((result[0] == expected[0]).all())
        self.assertTrue((result[1] == expected[1]).all())
        self.assertTrue((result[2] == expected[2]).all())
        self.assertTrue((result[3] == expected[3]).all())

285 286 287 288 289
    def _test_slice_index_ellipsis(self, place):
        data = np.random.rand(2, 3, 4).astype("float32")
        prog = paddle.static.Program()
        with paddle.static.program_guard(prog):
            x = paddle.assign(data)
290
            y = paddle.assign([1, 2, 3, 4])
291 292 293 294
            out1 = x[0:, ..., 1:]
            out2 = x[0:, ...]
            out3 = x[..., 1:]
            out4 = x[...]
W
WeiXin 已提交
295 296
            out5 = x[[1, 0], [0, 0]]
            out6 = x[([1, 0], [0, 0])]
297
            out7 = y[..., 0]
298 299

        exe = paddle.static.Executor(place)
300 301 302
        result = exe.run(
            prog, fetch_list=[out1, out2, out3, out4, out5, out6, out7]
        )
303

W
WeiXin 已提交
304
        expected = [
305 306 307 308 309 310 311
            data[0:, ..., 1:],
            data[0:, ...],
            data[..., 1:],
            data[...],
            data[[1, 0], [0, 0]],
            data[([1, 0], [0, 0])],
            np.array([1]),
W
WeiXin 已提交
312
        ]
313 314 315 316 317

        self.assertTrue((result[0] == expected[0]).all())
        self.assertTrue((result[1] == expected[1]).all())
        self.assertTrue((result[2] == expected[2]).all())
        self.assertTrue((result[3] == expected[3]).all())
W
WeiXin 已提交
318 319
        self.assertTrue((result[4] == expected[4]).all())
        self.assertTrue((result[5] == expected[5]).all())
320
        self.assertTrue((result[6] == expected[6]).all())
321

322
    def _test_slice_index_list_bool(self, place):
Z
zyfncg 已提交
323 324
        data = np.random.rand(2, 3, 4).astype("float32")
        np_idx = np.array([[True, False, False], [True, False, True]])
325 326 327 328 329
        prog = paddle.static.Program()
        with paddle.static.program_guard(prog):
            x = paddle.assign(data)
            idx0 = [True, False]
            idx1 = [False, True]
Z
zyfncg 已提交
330 331 332 333
            idx2 = [True, True]
            idx3 = [False, False, 1]
            idx4 = [True, False, 0]
            idx5 = paddle.assign(np_idx)
334 335 336 337 338

            out0 = x[idx0]
            out1 = x[idx1]
            out2 = x[idx2]
            out3 = x[idx3]
Z
zyfncg 已提交
339 340 341 342
            out4 = x[idx4]
            out5 = x[idx5]
            out6 = x[x < 0.36]
            out7 = x[x > 0.6]
343 344

        exe = paddle.static.Executor(place)
Z
zyfncg 已提交
345
        result = exe.run(
346 347
            prog, fetch_list=[out0, out1, out2, out3, out4, out5, out6, out7]
        )
348

Z
zyfncg 已提交
349
        expected = [
350 351 352 353 354 355 356 357
            data[idx0],
            data[idx1],
            data[idx2],
            data[idx3],
            data[idx4],
            data[np_idx],
            data[data < 0.36],
            data[data > 0.6],
Z
zyfncg 已提交
358
        ]
359 360 361 362 363

        self.assertTrue((result[0] == expected[0]).all())
        self.assertTrue((result[1] == expected[1]).all())
        self.assertTrue((result[2] == expected[2]).all())
        self.assertTrue((result[3] == expected[3]).all())
Z
zyfncg 已提交
364 365 366 367
        self.assertTrue((result[4] == expected[4]).all())
        self.assertTrue((result[5] == expected[5]).all())
        self.assertTrue((result[6] == expected[6]).all())
        self.assertTrue((result[7] == expected[7]).all())
368

Z
zyfncg 已提交
369 370
        with self.assertRaises(IndexError):
            res = x[[True, False, False]]
371

372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
    def _test_slice_index_scalar_bool(self, place):
        data = np.random.rand(1, 3, 4).astype("float32")
        np_idx = np.array([True])
        prog = paddle.static.Program()
        with paddle.static.program_guard(prog):
            x = paddle.assign(data)
            idx = paddle.assign(np_idx)

            out = x[idx]

        exe = paddle.static.Executor(place)
        result = exe.run(prog, fetch_list=[out])

        expected = [data[np_idx]]

        self.assertTrue((result[0] == expected[0]).all())

389
    def test_slice(self):
390
        places = [base.CPUPlace()]
W
wopeizl 已提交
391
        if core.is_compiled_with_cuda():
392 393 394 395 396 397
            places.append(core.CUDAPlace(0))

        for place in places:
            self._test_slice(place)
            self._test_slice_index_tensor(place)
            self._test_slice_index_list(place)
398
            self._test_slice_index_ellipsis(place)
399
            self._test_slice_index_list_bool(place)
400
            self._test_slice_index_scalar_bool(place)
W
wopeizl 已提交
401

402 403 404 405 406 407 408 409 410 411
    def _tostring(self):
        b = default_main_program().current_block()
        w = b.create_var(dtype="float64", lod_level=0)
        self.assertTrue(isinstance(str(w), str))

        if core.is_compiled_with_cuda():
            wc = b.create_var(dtype="int", lod_level=0)
            self.assertTrue(isinstance(str(wc), str))

    def test_tostring(self):
412
        with base.dygraph.guard():
413 414
            self._tostring()

415
        with base.program_guard(default_main_program()):
416 417
            self._tostring()

418
    def test_fake_interface_only_api(self):
419 420
        b = default_main_program().current_block()
        var = b.create_var(dtype="float64", lod_level=0)
421
        with base.dygraph.guard():
422 423 424 425 426 427 428 429
            self.assertRaises(AssertionError, var.numpy)
            self.assertRaises(AssertionError, var.backward)
            self.assertRaises(AssertionError, var.gradient)
            self.assertRaises(AssertionError, var.clear_gradient)

    def test_variable_in_dygraph_mode(self):
        b = default_main_program().current_block()
        var = b.create_var(dtype="float64", shape=[1, 1])
430
        with base.dygraph.guard():
431 432 433 434 435 436 437
            self.assertTrue(var.to_string(True).startswith('name:'))

            self.assertFalse(var.persistable)
            var.persistable = True
            self.assertTrue(var.persistable)

            self.assertFalse(var.stop_gradient)
438
            var.stop_gradient = True
439 440 441 442
            self.assertTrue(var.stop_gradient)

            self.assertTrue(var.name.startswith('_generated_var_'))
            self.assertEqual(var.shape, (1, 1))
443 444
            self.assertEqual(var.dtype, base.core.VarDesc.VarType.FP64)
            self.assertEqual(var.type, base.core.VarDesc.VarType.LOD_TENSOR)
445

446 447 448
    def test_create_selected_rows(self):
        b = default_main_program().current_block()

449 450 451 452
        var = b.create_var(
            name="var",
            shape=[1, 1],
            dtype="float32",
453
            type=base.core.VarDesc.VarType.SELECTED_ROWS,
454 455
            persistable=True,
        )
456 457 458 459 460 461

        def _test():
            var.lod_level()

        self.assertRaises(Exception, _test)

462 463 464 465
    def test_size(self):
        prog = paddle.static.Program()
        with paddle.static.program_guard(prog):
            x = paddle.assign(np.random.rand(2, 3, 4).astype("float32"))
466
            exe = paddle.static.Executor(base.CPUPlace())
467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
            exe.run(paddle.static.default_startup_program())

            output = exe.run(prog, fetch_list=[x.size()])
            self.assertEqual(output[0], [24])

    def test_detach(self):
        b = default_main_program().current_block()
        x = b.create_var(shape=[2, 3, 5], dtype="float64", lod_level=0)
        detach_x = x.detach()
        self.assertEqual(x.persistable, detach_x.persistable)
        self.assertEqual(x.shape, detach_x.shape)
        self.assertEqual(x.dtype, detach_x.dtype)
        self.assertEqual(x.type, detach_x.type)
        self.assertTrue(detach_x.stop_gradient)

        xx = b.create_var(name='xx', type=core.VarDesc.VarType.STEP_SCOPES)
        self.assertRaises(AssertionError, xx.detach)

        startup = paddle.static.Program()
        main = paddle.static.Program()
487
        scope = base.core.Scope()
488 489
        with paddle.static.scope_guard(scope):
            with paddle.static.program_guard(main, startup):
490 491 492
                x = paddle.static.data(
                    name='x', shape=[3, 2, 1], dtype='float32'
                )
493 494 495 496 497
                x.persistable = True
                feed_data = np.ones(shape=[3, 2, 1], dtype=np.float32)
                detach_x = x.detach()
                exe = paddle.static.Executor(paddle.CPUPlace())
                exe.run(startup)
498 499 500
                result = exe.run(
                    main, feed={'x': feed_data}, fetch_list=[x, detach_x]
                )
501 502 503 504 505 506 507 508 509
                self.assertTrue((result[1] == feed_data).all())
                self.assertTrue((result[0] == result[1]).all())

                modified_value = np.zeros(shape=[3, 2, 1], dtype=np.float32)
                detach_x.set_value(modified_value, scope)
                result = exe.run(main, fetch_list=[x, detach_x])
                self.assertTrue((result[1] == modified_value).all())
                self.assertTrue((result[0] == result[1]).all())

510 511 512
                modified_value = np.random.uniform(
                    -1, 1, size=[3, 2, 1]
                ).astype('float32')
513 514 515 516 517
                x.set_value(modified_value, scope)
                result = exe.run(main, fetch_list=[x, detach_x])
                self.assertTrue((result[1] == modified_value).all())
                self.assertTrue((result[0] == result[1]).all())

Y
Yu Yang 已提交
518

519
class TestVariableSlice(unittest.TestCase):
520 521 522
    def setUp(self):
        np.random.seed(2022)

523 524 525 526 527 528 529 530 531
    def _test_item_none(self, place):
        data = np.random.rand(2, 3, 4).astype("float32")
        prog = paddle.static.Program()
        with paddle.static.program_guard(prog):
            x = paddle.assign(data)
            out0 = x[0:, None, 1:]
            out1 = x[0:, None]
            out2 = x[None, 1:]
            out3 = x[None]
532
            out4 = x[..., None, :, None]
533

534
        outs = [out0, out1, out2, out3, out4]
535 536 537 538
        exe = paddle.static.Executor(place)
        result = exe.run(prog, fetch_list=outs)

        expected = [
539 540 541 542 543
            data[0:, None, 1:],
            data[0:, None],
            data[None, 1:],
            data[None],
            data[..., None, :, None],
544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
        ]
        for i in range(len(outs)):
            self.assertEqual(outs[i].shape, expected[i].shape)
            self.assertTrue((result[i] == expected[i]).all())

    def _test_item_none_and_decrease(self, place):
        data = np.random.rand(2, 3, 4).astype("float32")
        prog = paddle.static.Program()
        with paddle.static.program_guard(prog):
            x = paddle.assign(data)
            out0 = x[0, 1:, None]
            out1 = x[0, None]
            out2 = x[None, 1]
            out3 = x[None]
            out4 = x[0, 0, 0, None]
            out5 = x[None, 0, 0, 0, None]

        outs = [out0, out1, out2, out3, out4, out5]
        exe = paddle.static.Executor(place)
        result = exe.run(prog, fetch_list=outs)
        expected = [
565 566 567 568 569 570
            data[0, 1:, None],
            data[0, None],
            data[None, 1],
            data[None],
            data[0, 0, 0, None],
            data[None, 0, 0, 0, None],
571 572 573 574 575 576 577
        ]

        for i in range(len(outs)):
            self.assertEqual(outs[i].shape, expected[i].shape)
            self.assertTrue((result[i] == expected[i]).all())

    def test_slice(self):
578
        places = [base.CPUPlace()]
579 580 581 582 583 584 585 586
        if core.is_compiled_with_cuda():
            places.append(core.CUDAPlace(0))

        for place in places:
            self._test_item_none(place)
            self._test_item_none_and_decrease(place)


W
WeiXin 已提交
587
class TestListIndex(unittest.TestCase):
588 589 590
    def setUp(self):
        np.random.seed(2022)

W
WeiXin 已提交
591
    def numel(self, shape):
592
        return reduce(lambda x, y: x * y, shape, 1)
W
WeiXin 已提交
593 594 595 596 597

    def test_static_graph_list_index(self):
        paddle.enable_static()

        inps_shape = [3, 4, 5, 2]
598 599 600
        array = np.arange(self.numel(inps_shape), dtype='float32').reshape(
            inps_shape
        )
W
WeiXin 已提交
601 602 603 604 605 606 607 608 609 610

        index_shape = [3, 3, 2, 1]
        index = np.arange(self.numel(index_shape)).reshape(index_shape)

        for _ in range(3):
            program = paddle.static.Program()

            index_mod = (index % (array.shape[0])).tolist()

            with paddle.static.program_guard(program):
611 612 613
                x = paddle.static.data(
                    name='x', shape=array.shape, dtype='float32'
                )
W
WeiXin 已提交
614 615 616

                y = x[index_mod]

617
                place = (
618 619 620
                    paddle.base.CPUPlace()
                    if not paddle.base.core.is_compiled_with_cuda()
                    else paddle.base.CUDAPlace(0)
621
                )
W
WeiXin 已提交
622 623 624 625 626 627 628

                prog = paddle.static.default_main_program()
                exe = paddle.static.Executor(place)

                exe.run(paddle.static.default_startup_program())
                fetch_list = [y.name]

629
                getitem_np = array[np.array(index_mod)]
630 631 632
                getitem_pp = exe.run(
                    prog, feed={x.name: array}, fetch_list=fetch_list
                )
633
                np.testing.assert_array_equal(getitem_np, getitem_pp[0])
W
WeiXin 已提交
634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649

            array = array[0]
            index = index[0]

    def test_dygraph_list_index(self):
        paddle.disable_static()

        inps_shape = [3, 4, 5, 3]
        array = np.arange(self.numel(inps_shape)).reshape(inps_shape)

        index_shape = [2, 3, 4, 5, 6]
        index = np.arange(self.numel(index_shape)).reshape(index_shape)
        for _ in range(len(inps_shape) - 1):
            pt = paddle.to_tensor(array)
            index_mod = (index % (array.shape[-1])).tolist()
            try:
650
                getitem_np = array[np.array(index_mod)]
W
WeiXin 已提交
651 652 653 654 655 656 657 658

            except:
                with self.assertRaises(ValueError):
                    getitem_pp = pt[index_mod]
                array = array[0]
                index = index[0]
                continue
            getitem_pp = pt[index_mod]
659
            np.testing.assert_array_equal(getitem_np, getitem_pp.numpy())
W
WeiXin 已提交
660 661 662 663 664 665 666

            array = array[0]
            index = index[0]

    def test_static_graph_list_index_muti_dim(self):
        paddle.enable_static()
        inps_shape = [3, 4, 5]
667 668 669
        array = np.arange(self.numel(inps_shape), dtype='float32').reshape(
            inps_shape
        )
W
WeiXin 已提交
670 671 672 673 674 675

        index_shape = [2, 2]
        index1 = np.arange(self.numel(index_shape)).reshape(index_shape)
        index2 = np.arange(self.numel(index_shape)).reshape(index_shape) + 2

        value_shape = [3, 2, 2, 3]
676 677 678 679 680 681
        value_np = (
            np.arange(self.numel(value_shape), dtype='float32').reshape(
                value_shape
            )
            + 100
        )
W
WeiXin 已提交
682 683 684 685 686 687 688 689

        index_mod1 = (index1 % (min(array.shape))).tolist()
        index_mod2 = (index2 % (min(array.shape))).tolist()

        program = paddle.static.Program()
        with paddle.static.program_guard(program):
            x = paddle.static.data(name='x', shape=array.shape, dtype='float32')

690 691 692 693 694 695 696 697 698
            value = paddle.static.data(
                name='value', shape=value_np.shape, dtype='float32'
            )
            index1 = paddle.static.data(
                name='index1', shape=index1.shape, dtype='int32'
            )
            index2 = paddle.static.data(
                name='index2', shape=index2.shape, dtype='int32'
            )
W
WeiXin 已提交
699 700 701

            y = x[index1, index2]

702
            place = (
703 704 705
                paddle.base.CPUPlace()
                if not paddle.base.core.is_compiled_with_cuda()
                else paddle.base.CUDAPlace(0)
706
            )
W
WeiXin 已提交
707 708 709 710 711 712 713 714 715 716

            prog = paddle.static.default_main_program()
            exe = paddle.static.Executor(place)

            exe.run(paddle.static.default_startup_program())
            fetch_list = [y.name]
            array2 = array.copy()

            y2 = array2[index_mod1, index_mod2]

717 718 719 720 721 722 723 724 725
            getitem_pp = exe.run(
                prog,
                feed={
                    x.name: array,
                    index1.name: index_mod1,
                    index2.name: index_mod2,
                },
                fetch_list=fetch_list,
            )
W
WeiXin 已提交
726

727 728 729
            np.testing.assert_array_equal(
                y2,
                getitem_pp[0],
730
                err_msg=f'\n numpy:{y2},\n paddle:{getitem_pp[0]}',
731
            )
W
WeiXin 已提交
732 733 734 735

    def test_dygraph_list_index_muti_dim(self):
        paddle.disable_static()
        inps_shape = [3, 4, 5]
736 737 738
        array = np.arange(self.numel(inps_shape), dtype='float32').reshape(
            inps_shape
        )
W
WeiXin 已提交
739 740 741 742 743 744

        index_shape = [2, 2]
        index1 = np.arange(self.numel(index_shape)).reshape(index_shape)
        index2 = np.arange(self.numel(index_shape)).reshape(index_shape) + 2

        value_shape = [3, 2, 2, 3]
745 746 747 748 749 750
        value_np = (
            np.arange(self.numel(value_shape), dtype='float32').reshape(
                value_shape
            )
            + 100
        )
W
WeiXin 已提交
751 752 753 754 755 756 757 758 759 760

        index_mod1 = (index1 % (min(array.shape))).tolist()
        index_mod2 = (index2 % (min(array.shape))).tolist()

        x = paddle.to_tensor(array)
        index_t1 = paddle.to_tensor(index_mod1)
        index_t2 = paddle.to_tensor(index_mod2)

        y_np = array[index_t1, index_t2]
        y = x[index_t1, index_t2]
761
        np.testing.assert_array_equal(y.numpy(), y_np)
W
WeiXin 已提交
762

763 764 765 766
    def run_getitem_list_index(self, array, index):
        x = paddle.static.data(name='x', shape=array.shape, dtype='float32')

        y = x[index]
767
        place = paddle.base.CPUPlace()
768 769 770 771 772 773 774 775 776 777 778 779

        prog = paddle.static.default_main_program()
        exe = paddle.static.Executor(place)

        exe.run(paddle.static.default_startup_program())
        fetch_list = [y.name]
        array2 = array.copy()

        try:
            value_np = array2[index]
        except:
            with self.assertRaises(ValueError):
780 781 782
                getitem_pp = exe.run(
                    prog, feed={x.name: array}, fetch_list=fetch_list
                )
783 784 785
            return
        getitem_pp = exe.run(prog, feed={x.name: array}, fetch_list=fetch_list)

786 787 788
        np.testing.assert_allclose(
            value_np, getitem_pp[0], rtol=1e-5, atol=1e-8
        )
789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816

    def test_static_graph_getitem_bool_index(self):
        paddle.enable_static()

        # case 1:
        array = np.ones((4, 2, 3), dtype='float32')
        value_np = np.random.random((2, 3)).astype('float32')
        index = np.array([True, False, False, False])
        program = paddle.static.Program()
        with paddle.static.program_guard(program):
            self.run_getitem_list_index(array, index)

        # case 2:
        array = np.ones((4, 2, 3), dtype='float32')
        value_np = np.random.random((2, 3)).astype('float32')
        index = np.array([False, True, False, False])
        program = paddle.static.Program()
        with paddle.static.program_guard(program):
            self.run_getitem_list_index(array, index)

        # case 3:
        array = np.ones((4, 2, 3), dtype='float32')
        value_np = np.random.random((2, 3)).astype('float32')
        index = np.array([True, True, True, True])
        program = paddle.static.Program()
        with paddle.static.program_guard(program):
            self.run_getitem_list_index(array, index)

W
WeiXin 已提交
817 818 819
    def run_setitem_list_index(self, array, index, value_np):
        x = paddle.static.data(name='x', shape=array.shape, dtype='float32')

820 821 822
        value = paddle.static.data(
            name='value', shape=value_np.shape, dtype='float32'
        )
W
WeiXin 已提交
823

824
        y = paddle.static.setitem(x, index, value)
825
        place = paddle.base.CPUPlace()
W
WeiXin 已提交
826 827 828 829 830 831 832 833

        prog = paddle.static.default_main_program()
        exe = paddle.static.Executor(place)

        exe.run(paddle.static.default_startup_program())
        fetch_list = [y.name]
        array2 = array.copy()
        try:
J
JYChen 已提交
834
            index = (
835
                np.array(index)
J
JYChen 已提交
836 837 838
                if isinstance(index, list) and isinstance(index[0], list)
                else index
            )
W
WeiXin 已提交
839 840 841
            array2[index] = value_np
        except:
            with self.assertRaises(ValueError):
842 843 844 845 846
                setitem_pp = exe.run(
                    prog,
                    feed={x.name: array, value.name: value_np},
                    fetch_list=fetch_list,
                )
W
WeiXin 已提交
847
            return
848 849 850 851 852
        setitem_pp = exe.run(
            prog,
            feed={x.name: array, value.name: value_np},
            fetch_list=fetch_list,
        )
W
WeiXin 已提交
853

854
        np.testing.assert_allclose(array2, setitem_pp[0], rtol=1e-5, atol=1e-8)
W
WeiXin 已提交
855 856 857 858

    def test_static_graph_setitem_list_index(self):
        paddle.enable_static()
        # case 1:
859
        inps_shape = [4, 5, 2]
860 861 862
        array = np.arange(self.numel(inps_shape), dtype='float32').reshape(
            inps_shape
        )
W
WeiXin 已提交
863

864
        index_shape = [3, 3, 1]
W
WeiXin 已提交
865 866 867
        index = np.arange(self.numel(index_shape)).reshape(index_shape)

        value_shape = inps_shape[3:]
868 869 870 871 872 873
        value_np = (
            np.arange(self.numel(value_shape), dtype='float32').reshape(
                value_shape
            )
            + 100
        )
W
WeiXin 已提交
874 875 876 877 878 879 880 881 882 883 884 885 886

        for _ in range(3):
            program = paddle.static.Program()

            index_mod = (index % (min(array.shape))).tolist()

            with paddle.static.program_guard(program):
                self.run_setitem_list_index(array, index_mod, value_np)

            array = array[0]
            index = index[0]

        # case 2:
887
        inps_shape = [4, 5, 4]
888 889 890
        array = np.arange(self.numel(inps_shape), dtype='float32').reshape(
            inps_shape
        )
W
WeiXin 已提交
891

892
        index_shape = [4, 3, 2]
W
WeiXin 已提交
893 894 895
        index = np.arange(self.numel(index_shape)).reshape(index_shape)

        value_shape = [3]
896 897 898 899 900 901
        value_np = (
            np.arange(self.numel(value_shape), dtype='float32').reshape(
                value_shape
            )
            + 100
        )
W
WeiXin 已提交
902

903
        for _ in range(3):
W
WeiXin 已提交
904 905 906 907 908 909 910 911 912 913 914
            program = paddle.static.Program()
            index_mod = (index % (min(array.shape))).tolist()

            with paddle.static.program_guard(program):
                self.run_setitem_list_index(array, index_mod, value_np)

            array = array[0]
            index = index[0]

        # case 3:
        inps_shape = [3, 4, 5, 3, 3]
915 916 917
        array = np.arange(self.numel(inps_shape), dtype='float32').reshape(
            inps_shape
        )
W
WeiXin 已提交
918 919 920 921 922

        index_shape = [4, 3, 2, 2]
        index = np.arange(self.numel(index_shape)).reshape(index_shape)

        value_shape = [3, 2, 2, 3]
923 924 925 926 927 928
        value_np = (
            np.arange(self.numel(value_shape), dtype='float32').reshape(
                value_shape
            )
            + 100
        )
W
WeiXin 已提交
929 930 931
        index_mod = (index % (min(array.shape))).tolist()
        self.run_setitem_list_index(array, index_mod, value_np)

932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967
    def test_static_graph_setitem_bool_index(self):
        paddle.enable_static()

        # case 1:
        array = np.ones((4, 2, 3), dtype='float32')
        value_np = np.random.random((2, 3)).astype('float32')
        index = np.array([True, False, False, False])
        program = paddle.static.Program()
        with paddle.static.program_guard(program):
            self.run_setitem_list_index(array, index, value_np)

        # case 2:
        array = np.ones((4, 2, 3), dtype='float32')
        value_np = np.random.random((2, 3)).astype('float32')
        index = np.array([False, True, False, False])
        program = paddle.static.Program()
        with paddle.static.program_guard(program):
            self.run_setitem_list_index(array, index, value_np)

        # case 3:
        array = np.ones((4, 2, 3), dtype='float32')
        value_np = np.random.random((2, 3)).astype('float32')
        index = np.array([True, True, True, True])
        program = paddle.static.Program()
        with paddle.static.program_guard(program):
            self.run_setitem_list_index(array, index, value_np)

    def test_static_graph_setitem_bool_scalar_index(self):
        paddle.enable_static()
        array = np.ones((1, 2, 3), dtype='float32')
        value_np = np.random.random((2, 3)).astype('float32')
        index = np.array([True])
        program = paddle.static.Program()
        with paddle.static.program_guard(program):
            self.run_setitem_list_index(array, index, value_np)

W
WeiXin 已提交
968 969 970
    def test_static_graph_tensor_index_setitem_muti_dim(self):
        paddle.enable_static()
        inps_shape = [3, 4, 5, 4]
971 972 973
        array = np.arange(self.numel(inps_shape), dtype='float32').reshape(
            inps_shape
        )
W
WeiXin 已提交
974 975

        index_shape = [2, 3, 4]
976 977 978 979 980 981 982 983 984
        index1 = np.arange(self.numel(index_shape), dtype='int32').reshape(
            index_shape
        )
        index2 = (
            np.arange(self.numel(index_shape), dtype='int32').reshape(
                index_shape
            )
            + 2
        )
W
WeiXin 已提交
985 986

        value_shape = [4]
987 988 989 990 991 992
        value_np = (
            np.arange(self.numel(value_shape), dtype='float32').reshape(
                value_shape
            )
            + 100
        )
W
WeiXin 已提交
993 994 995 996 997 998 999 1000 1001 1002 1003
        for _ in range(3):
            index_mod1 = index1 % (min(array.shape))
            index_mod2 = index2 % (min(array.shape))

            array2 = array.copy()
            array2[index_mod1, index_mod2] = value_np
            array3 = array.copy()
            array3[index_mod1] = value_np

            program = paddle.static.Program()
            with paddle.static.program_guard(program):
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
                x1 = paddle.static.data(
                    name='x1', shape=array.shape, dtype='float32'
                )
                x2 = paddle.static.data(
                    name='x2', shape=array.shape, dtype='float32'
                )

                value = paddle.static.data(
                    name='value', shape=value_np.shape, dtype='float32'
                )
                index_1 = paddle.static.data(
                    name='index_1', shape=index1.shape, dtype='int32'
                )
                index_2 = paddle.static.data(
                    name='index_2', shape=index2.shape, dtype='int32'
                )
W
WeiXin 已提交
1020

1021 1022
                x1_out = paddle.static.setitem(x1, (index_1, index_2), value)
                x2_out = paddle.static.setitem(x2, index_1, value)
1023
                place = (
1024 1025 1026
                    paddle.base.CPUPlace()
                    if not paddle.base.core.is_compiled_with_cuda()
                    else paddle.base.CUDAPlace(0)
1027
                )
W
WeiXin 已提交
1028 1029 1030 1031 1032

                prog = paddle.static.default_main_program()
                exe = paddle.static.Executor(place)

                exe.run(paddle.static.default_startup_program())
1033
                fetch_list = [x1_out.name, x2_out.name]
W
WeiXin 已提交
1034

1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
                setitem_pp = exe.run(
                    prog,
                    feed={
                        x1.name: array,
                        x2.name: array,
                        value.name: value_np,
                        index_1.name: index_mod1,
                        index_2.name: index_mod2,
                    },
                    fetch_list=fetch_list,
                )
1046 1047 1048 1049
                np.testing.assert_array_equal(
                    array2,
                    setitem_pp[0],
                    err_msg='\n numpy:{},\n paddle:{}'.format(
1050 1051 1052
                        array2, setitem_pp[0]
                    ),
                )
1053 1054 1055 1056
                np.testing.assert_array_equal(
                    array3,
                    setitem_pp[1],
                    err_msg='\n numpy:{},\n paddle:{}'.format(
1057 1058 1059
                        array3, setitem_pp[1]
                    ),
                )
W
WeiXin 已提交
1060 1061 1062 1063 1064 1065 1066
            array = array[0]
            index1 = index1[0]
            index2 = index2[0]

    def test_static_graph_array_index_muti_dim(self):
        paddle.enable_static()
        inps_shape = [3, 4, 5, 4]
1067 1068 1069
        array = np.arange(self.numel(inps_shape), dtype='float32').reshape(
            inps_shape
        )
W
WeiXin 已提交
1070 1071

        index_shape = [2, 3, 4]
1072 1073 1074 1075 1076 1077 1078 1079 1080
        index1 = np.arange(self.numel(index_shape), dtype='int32').reshape(
            index_shape
        )
        index2 = (
            np.arange(self.numel(index_shape), dtype='int32').reshape(
                index_shape
            )
            + 2
        )
W
WeiXin 已提交
1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094

        for _ in range(3):
            index_mod1 = index1 % (min(array.shape))
            index_mod2 = index2 % (min(array.shape))

            array2 = array.copy()
            array2[index_mod1, index_mod2] = 1
            y_np1 = array2[index_mod2, index_mod1]
            array3 = array.copy()
            array3[index_mod1] = 2.5
            y_np2 = array3[index_mod2]

            program = paddle.static.Program()
            with paddle.static.program_guard(program):
1095 1096 1097 1098 1099 1100
                x1 = paddle.static.data(
                    name='x1', shape=array.shape, dtype='float32'
                )
                x2 = paddle.static.data(
                    name='x2', shape=array.shape, dtype='float32'
                )
W
WeiXin 已提交
1101

1102 1103 1104 1105
                x1_out = paddle.static.setitem(x1, (index_mod1, index_mod2), 1)
                x2_out = paddle.static.setitem(x2, index_mod1, 2.5)
                y1 = x1_out[index_mod2, index_mod1]
                y2 = x2_out[index_mod2]
1106
                place = (
1107 1108 1109
                    paddle.base.CPUPlace()
                    if not paddle.base.core.is_compiled_with_cuda()
                    else paddle.base.CUDAPlace(0)
1110
                )
W
WeiXin 已提交
1111 1112 1113 1114

                prog = paddle.static.default_main_program()
                exe = paddle.static.Executor(place)
                exe.run(paddle.static.default_startup_program())
1115
                fetch_list = [x1_out.name, x2_out.name, y1.name, y2.name]
W
WeiXin 已提交
1116

1117 1118 1119 1120 1121
                setitem_pp = exe.run(
                    prog,
                    feed={x1.name: array, x2.name: array},
                    fetch_list=fetch_list,
                )
1122 1123 1124 1125
                np.testing.assert_array_equal(
                    array2,
                    setitem_pp[0],
                    err_msg='\n numpy:{},\n paddle:{}'.format(
1126 1127 1128
                        array2, setitem_pp[0]
                    ),
                )
1129 1130 1131 1132
                np.testing.assert_array_equal(
                    array3,
                    setitem_pp[1],
                    err_msg='\n numpy:{},\n paddle:{}'.format(
1133 1134 1135
                        array3, setitem_pp[1]
                    ),
                )
1136 1137 1138 1139 1140

                np.testing.assert_array_equal(
                    y_np1,
                    setitem_pp[2],
                    err_msg='\n numpy:{},\n paddle:{}'.format(
1141 1142 1143
                        y_np1, setitem_pp[2]
                    ),
                )
1144 1145 1146 1147
                np.testing.assert_array_equal(
                    y_np2,
                    setitem_pp[3],
                    err_msg='\n numpy:{},\n paddle:{}'.format(
1148 1149 1150
                        y_np2, setitem_pp[3]
                    ),
                )
W
WeiXin 已提交
1151 1152 1153 1154 1155 1156 1157
            array = array[0]
            index1 = index1[0]
            index2 = index2[0]

    def test_dygraph_array_index_muti_dim(self):
        paddle.disable_static()
        inps_shape = [3, 4, 5, 4]
1158 1159 1160
        array = np.arange(self.numel(inps_shape), dtype='float32').reshape(
            inps_shape
        )
W
WeiXin 已提交
1161
        index_shape = [2, 3, 4]
1162 1163 1164 1165 1166 1167 1168 1169 1170
        index1 = np.arange(self.numel(index_shape), dtype='int32').reshape(
            index_shape
        )
        index2 = (
            np.arange(self.numel(index_shape), dtype='int32').reshape(
                index_shape
            )
            + 2
        )
W
WeiXin 已提交
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183

        for _ in range(3):
            index_mod1 = index1 % (min(array.shape))
            index_mod2 = index2 % (min(array.shape))
            index_mod_t1 = paddle.to_tensor(index_mod1)
            index_mod_t2 = paddle.to_tensor(index_mod2)
            # 2 dim getitem
            array1 = array.copy()
            y_np1 = array1[index_mod2, index_mod1]
            tensor1 = paddle.to_tensor(array)

            y_t1 = tensor1[index_mod_t2, index_mod_t1]

1184 1185 1186
            np.testing.assert_array_equal(
                y_t1.numpy(),
                y_np1,
1187
                err_msg=f'\n numpy:{y_np1},\n paddle:{y_t1.numpy()}',
1188
            )
W
WeiXin 已提交
1189 1190 1191 1192 1193 1194
            # 1 dim getitem
            array2 = array.copy()
            y_np2 = array2[index_mod2]
            tensor2 = paddle.to_tensor(array)

            y_t2 = tensor2[index_mod_t2]
1195 1196 1197
            np.testing.assert_array_equal(
                y_t2.numpy(),
                y_np2,
1198
                err_msg=f'\n numpy:{y_np2},\n paddle:{y_t2.numpy()}',
1199
            )
W
WeiXin 已提交
1200 1201 1202 1203 1204

            # 2 dim setitem
            array1 = array.copy()
            array1[index_mod1, index_mod2] = 1
            tensor1[index_mod_t1, index_mod_t2] = 1
1205 1206 1207 1208
            np.testing.assert_array_equal(
                tensor1.numpy(),
                array1,
                err_msg='\n numpy:{},\n paddle:{}'.format(
1209 1210 1211
                    array1, tensor1.numpy()
                ),
            )
W
WeiXin 已提交
1212 1213 1214 1215 1216 1217 1218
            # 1 dim setitem
            array2 = array.copy()

            array2[index_mod1] = 2.5

            tensor2[index_mod_t1] = 2.5

1219 1220 1221 1222
            np.testing.assert_array_equal(
                tensor2.numpy(),
                array2,
                err_msg='\n numpy:{},\n paddle:{}'.format(
1223 1224 1225
                    array2, tensor2.numpy()
                ),
            )
W
WeiXin 已提交
1226 1227 1228 1229 1230 1231

            array = array[0]
            index1 = index1[0]
            index2 = index2[0]


Y
Yu Yang 已提交
1232 1233
if __name__ == '__main__':
    unittest.main()