test_variable.py 42.6 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Y
Yu Yang 已提交
15
import unittest
W
WeiXin 已提交
16 17
from functools import reduce

18 19
import numpy as np

20
import paddle
21 22
from paddle import fluid
from paddle.fluid import core
23 24 25 26 27
from paddle.fluid.framework import (
    Program,
    convert_np_dtype_to_dtype_,
    default_main_program,
)
Y
Yu Yang 已提交
28

29 30
paddle.enable_static()

Y
Yu Yang 已提交
31 32

class TestVariable(unittest.TestCase):
33 34 35
    def setUp(self):
        np.random.seed(2022)

Y
Yu Yang 已提交
36
    def test_np_dtype_convert(self):
37
        DT = core.VarDesc.VarType
38
        convert = convert_np_dtype_to_dtype_
Y
Yu Yang 已提交
39 40 41 42 43 44 45
        self.assertEqual(DT.FP32, convert(np.float32))
        self.assertEqual(DT.FP16, convert("float16"))
        self.assertEqual(DT.FP64, convert("float64"))
        self.assertEqual(DT.INT32, convert("int32"))
        self.assertEqual(DT.INT16, convert("int16"))
        self.assertEqual(DT.INT64, convert("int64"))
        self.assertEqual(DT.BOOL, convert("bool"))
Q
qingqing01 已提交
46 47
        self.assertEqual(DT.INT8, convert("int8"))
        self.assertEqual(DT.UINT8, convert("uint8"))
Y
Yu Yang 已提交
48

Y
Yu Yang 已提交
49
    def test_var(self):
Y
Yu Yang 已提交
50
        b = default_main_program().current_block()
51 52 53
        w = b.create_var(
            dtype="float64", shape=[784, 100], lod_level=0, name="fc.w"
        )
54
        self.assertNotEqual(str(w), "")
55
        self.assertEqual(core.VarDesc.VarType.FP64, w.dtype)
Y
Yu Yang 已提交
56 57
        self.assertEqual((784, 100), w.shape)
        self.assertEqual("fc.w", w.name)
58
        self.assertEqual("fc.w@GRAD", w.grad_name)
Y
Yu Yang 已提交
59 60 61
        self.assertEqual(0, w.lod_level)

        w = b.create_var(name='fc.w')
62
        self.assertEqual(core.VarDesc.VarType.FP64, w.dtype)
Y
Yu Yang 已提交
63 64
        self.assertEqual((784, 100), w.shape)
        self.assertEqual("fc.w", w.name)
65
        self.assertEqual("fc.w@GRAD", w.grad_name)
Y
Yu Yang 已提交
66 67
        self.assertEqual(0, w.lod_level)

68 69 70
        self.assertRaises(
            ValueError, lambda: b.create_var(name="fc.w", shape=(24, 100))
        )
Y
Yu Yang 已提交
71

72 73 74 75 76
        w = b.create_var(
            dtype=paddle.fluid.core.VarDesc.VarType.STRINGS,
            shape=[1],
            name="str_var",
        )
77 78
        self.assertEqual(None, w.lod_level)

79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
    def test_element_size(self):
        with fluid.program_guard(Program(), Program()):
            x = paddle.static.data(name='x1', shape=[2], dtype='bool')
            self.assertEqual(x.element_size(), 1)

            x = paddle.static.data(name='x2', shape=[2], dtype='float16')
            self.assertEqual(x.element_size(), 2)

            x = paddle.static.data(name='x3', shape=[2], dtype='float32')
            self.assertEqual(x.element_size(), 4)

            x = paddle.static.data(name='x4', shape=[2], dtype='float64')
            self.assertEqual(x.element_size(), 8)

            x = paddle.static.data(name='x5', shape=[2], dtype='int8')
            self.assertEqual(x.element_size(), 1)

            x = paddle.static.data(name='x6', shape=[2], dtype='int16')
            self.assertEqual(x.element_size(), 2)

            x = paddle.static.data(name='x7', shape=[2], dtype='int32')
            self.assertEqual(x.element_size(), 4)

            x = paddle.static.data(name='x8', shape=[2], dtype='int64')
            self.assertEqual(x.element_size(), 8)

            x = paddle.static.data(name='x9', shape=[2], dtype='uint8')
            self.assertEqual(x.element_size(), 1)

Y
Yu Yang 已提交
108 109 110
    def test_step_scopes(self):
        prog = Program()
        b = prog.current_block()
111 112 113
        var = b.create_var(
            name='step_scopes', type=core.VarDesc.VarType.STEP_SCOPES
        )
Y
Yu Yang 已提交
114 115
        self.assertEqual(core.VarDesc.VarType.STEP_SCOPES, var.type)

W
wopeizl 已提交
116
    def _test_slice(self, place):
W
wopeizl 已提交
117 118 119 120 121
        b = default_main_program().current_block()
        w = b.create_var(dtype="float64", shape=[784, 100, 100], lod_level=0)

        for i in range(3):
            nw = w[i]
H
Hongyu Liu 已提交
122
            self.assertEqual((100, 100), nw.shape)
W
wopeizl 已提交
123 124 125 126

        nw = w[:]
        self.assertEqual((784, 100, 100), nw.shape)

H
Hongyu Liu 已提交
127
        nw = w[:, :]
W
wopeizl 已提交
128 129
        self.assertEqual((784, 100, 100), nw.shape)

H
Hongyu Liu 已提交
130 131
        nw = w[:, :, -1]
        self.assertEqual((784, 100), nw.shape)
W
wopeizl 已提交
132

H
Hongyu Liu 已提交
133 134
        nw = w[1, 1, 1]

135
        self.assertEqual(len(nw.shape), 0)
H
Hongyu Liu 已提交
136 137 138

        nw = w[:, :, :-1]
        self.assertEqual((784, 100, 99), nw.shape)
W
wopeizl 已提交
139 140 141 142 143 144

        self.assertEqual(0, nw.lod_level)

        main = fluid.Program()
        with fluid.program_guard(main):
            exe = fluid.Executor(place)
145 146 147 148 149 150 151
            tensor_array = np.array(
                [
                    [[1, 2, 3], [4, 5, 6], [7, 8, 9]],
                    [[10, 11, 12], [13, 14, 15], [16, 17, 18]],
                    [[19, 20, 21], [22, 23, 24], [25, 26, 27]],
                ]
            ).astype('float32')
152
            var = paddle.assign(tensor_array)
W
wopeizl 已提交
153 154 155
            var1 = var[0, 1, 1]
            var2 = var[1:]
            var3 = var[0:1]
H
Hongyu Liu 已提交
156 157
            var4 = var[::-1]
            var5 = var[1, 1:, 1:]
158
            var_reshape = paddle.reshape(var, [3, -1, 3])
H
Hongyu Liu 已提交
159 160 161 162 163 164 165 166 167 168
            var6 = var_reshape[:, :, -1]
            var7 = var[:, :, :-1]
            var8 = var[:1, :1, :1]
            var9 = var[:-1, :-1, :-1]
            var10 = var[::-1, :1, :-1]
            var11 = var[:-1, ::-1, -1:]
            var12 = var[1:2, 2:, ::-1]
            var13 = var[2:10, 2:, -2:-1]
            var14 = var[1:-1, 0:2, ::-1]
            var15 = var[::-1, ::-1, ::-1]
W
wopeizl 已提交
169

G
GGBond8488 已提交
170
            x = paddle.static.data(name='x', shape=[-1, 13], dtype='float32')
C
Charles-hit 已提交
171
            y = paddle.static.nn.fc(x, size=1, activation=None)
H
Hongyu Liu 已提交
172
            y_1 = y[:, 0]
W
wopeizl 已提交
173 174
            feeder = fluid.DataFeeder(place=place, feed_list=[x])
            data = []
175
            data.append(np.random.randint(10, size=[13]).astype('float32'))
W
wopeizl 已提交
176 177
            exe.run(fluid.default_startup_program())

178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
            local_out = exe.run(
                main,
                feed=feeder.feed([data]),
                fetch_list=[
                    var,
                    var1,
                    var2,
                    var3,
                    var4,
                    var5,
                    var6,
                    var7,
                    var8,
                    var9,
                    var10,
                    var11,
                    var12,
                    var13,
                    var14,
                    var15,
                ],
            )
W
wopeizl 已提交
200

201 202 203 204 205 206
            np.testing.assert_array_equal(local_out[1], tensor_array[0, 1, 1:2])
            np.testing.assert_array_equal(local_out[2], tensor_array[1:])
            np.testing.assert_array_equal(local_out[3], tensor_array[0:1])
            np.testing.assert_array_equal(local_out[4], tensor_array[::-1])
            np.testing.assert_array_equal(local_out[5], tensor_array[1, 1:, 1:])
            np.testing.assert_array_equal(
207 208
                local_out[6], tensor_array.reshape((3, -1, 3))[:, :, -1]
            )
209
            np.testing.assert_array_equal(local_out[7], tensor_array[:, :, :-1])
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
            np.testing.assert_array_equal(
                local_out[8], tensor_array[:1, :1, :1]
            )
            np.testing.assert_array_equal(
                local_out[9], tensor_array[:-1, :-1, :-1]
            )
            np.testing.assert_array_equal(
                local_out[10], tensor_array[::-1, :1, :-1]
            )
            np.testing.assert_array_equal(
                local_out[11], tensor_array[:-1, ::-1, -1:]
            )
            np.testing.assert_array_equal(
                local_out[12], tensor_array[1:2, 2:, ::-1]
            )
            np.testing.assert_array_equal(
                local_out[13], tensor_array[2:10, 2:, -2:-1]
            )
            np.testing.assert_array_equal(
                local_out[14], tensor_array[1:-1, 0:2, ::-1]
            )
            np.testing.assert_array_equal(
                local_out[15], tensor_array[::-1, ::-1, ::-1]
            )
W
wopeizl 已提交
234

235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
    def _test_slice_index_tensor(self, place):
        data = np.random.rand(2, 3).astype("float32")
        prog = paddle.static.Program()
        with paddle.static.program_guard(prog):
            x = paddle.assign(data)
            idx0 = [1, 0]
            idx1 = [0, 1]
            idx2 = [0, 0]
            idx3 = [1, 1]

            out0 = x[paddle.assign(np.array(idx0))]
            out1 = x[paddle.assign(np.array(idx1))]
            out2 = x[paddle.assign(np.array(idx2))]
            out3 = x[paddle.assign(np.array(idx3))]

        exe = paddle.static.Executor(place)
        result = exe.run(prog, fetch_list=[out0, out1, out2, out3])

        expected = [data[idx0], data[idx1], data[idx2], data[idx3]]

        self.assertTrue((result[0] == expected[0]).all())
        self.assertTrue((result[1] == expected[1]).all())
        self.assertTrue((result[2] == expected[2]).all())
        self.assertTrue((result[3] == expected[3]).all())

        with self.assertRaises(IndexError):
            one = paddle.ones(shape=[1])
            res = x[one, [0, 0]]

    def _test_slice_index_list(self, place):
        data = np.random.rand(2, 3).astype("float32")
        prog = paddle.static.Program()
        with paddle.static.program_guard(prog):
            x = paddle.assign(data)
            idx0 = [1, 0]
            idx1 = [0, 1]
            idx2 = [0, 0]
            idx3 = [1, 1]

            out0 = x[idx0]
            out1 = x[idx1]
            out2 = x[idx2]
            out3 = x[idx3]

        exe = paddle.static.Executor(place)
        result = exe.run(prog, fetch_list=[out0, out1, out2, out3])

        expected = [data[idx0], data[idx1], data[idx2], data[idx3]]

        self.assertTrue((result[0] == expected[0]).all())
        self.assertTrue((result[1] == expected[1]).all())
        self.assertTrue((result[2] == expected[2]).all())
        self.assertTrue((result[3] == expected[3]).all())

289 290 291 292 293
    def _test_slice_index_ellipsis(self, place):
        data = np.random.rand(2, 3, 4).astype("float32")
        prog = paddle.static.Program()
        with paddle.static.program_guard(prog):
            x = paddle.assign(data)
294
            y = paddle.assign([1, 2, 3, 4])
295 296 297 298
            out1 = x[0:, ..., 1:]
            out2 = x[0:, ...]
            out3 = x[..., 1:]
            out4 = x[...]
W
WeiXin 已提交
299 300
            out5 = x[[1, 0], [0, 0]]
            out6 = x[([1, 0], [0, 0])]
301
            out7 = y[..., 0]
302 303

        exe = paddle.static.Executor(place)
304 305 306
        result = exe.run(
            prog, fetch_list=[out1, out2, out3, out4, out5, out6, out7]
        )
307

W
WeiXin 已提交
308
        expected = [
309 310 311 312 313 314 315
            data[0:, ..., 1:],
            data[0:, ...],
            data[..., 1:],
            data[...],
            data[[1, 0], [0, 0]],
            data[([1, 0], [0, 0])],
            np.array([1]),
W
WeiXin 已提交
316
        ]
317 318 319 320 321

        self.assertTrue((result[0] == expected[0]).all())
        self.assertTrue((result[1] == expected[1]).all())
        self.assertTrue((result[2] == expected[2]).all())
        self.assertTrue((result[3] == expected[3]).all())
W
WeiXin 已提交
322 323
        self.assertTrue((result[4] == expected[4]).all())
        self.assertTrue((result[5] == expected[5]).all())
324
        self.assertTrue((result[6] == expected[6]).all())
325

326 327
        with self.assertRaises(IndexError):
            res = x[[1.2, 0]]
W
wopeizl 已提交
328

329
    def _test_slice_index_list_bool(self, place):
Z
zyfncg 已提交
330 331
        data = np.random.rand(2, 3, 4).astype("float32")
        np_idx = np.array([[True, False, False], [True, False, True]])
332 333 334 335 336
        prog = paddle.static.Program()
        with paddle.static.program_guard(prog):
            x = paddle.assign(data)
            idx0 = [True, False]
            idx1 = [False, True]
Z
zyfncg 已提交
337 338 339 340
            idx2 = [True, True]
            idx3 = [False, False, 1]
            idx4 = [True, False, 0]
            idx5 = paddle.assign(np_idx)
341 342 343 344 345

            out0 = x[idx0]
            out1 = x[idx1]
            out2 = x[idx2]
            out3 = x[idx3]
Z
zyfncg 已提交
346 347 348 349
            out4 = x[idx4]
            out5 = x[idx5]
            out6 = x[x < 0.36]
            out7 = x[x > 0.6]
350 351

        exe = paddle.static.Executor(place)
Z
zyfncg 已提交
352
        result = exe.run(
353 354
            prog, fetch_list=[out0, out1, out2, out3, out4, out5, out6, out7]
        )
355

Z
zyfncg 已提交
356
        expected = [
357 358 359 360 361 362 363 364
            data[idx0],
            data[idx1],
            data[idx2],
            data[idx3],
            data[idx4],
            data[np_idx],
            data[data < 0.36],
            data[data > 0.6],
Z
zyfncg 已提交
365
        ]
366 367 368 369 370

        self.assertTrue((result[0] == expected[0]).all())
        self.assertTrue((result[1] == expected[1]).all())
        self.assertTrue((result[2] == expected[2]).all())
        self.assertTrue((result[3] == expected[3]).all())
Z
zyfncg 已提交
371 372 373 374
        self.assertTrue((result[4] == expected[4]).all())
        self.assertTrue((result[5] == expected[5]).all())
        self.assertTrue((result[6] == expected[6]).all())
        self.assertTrue((result[7] == expected[7]).all())
375

Z
zyfncg 已提交
376 377 378
        with self.assertRaises(IndexError):
            res = x[[True, False, False]]
        with self.assertRaises(ValueError):
379 380
            with paddle.static.program_guard(prog):
                res = x[[False, False]]
381

382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
    def _test_slice_index_scalar_bool(self, place):
        data = np.random.rand(1, 3, 4).astype("float32")
        np_idx = np.array([True])
        prog = paddle.static.Program()
        with paddle.static.program_guard(prog):
            x = paddle.assign(data)
            idx = paddle.assign(np_idx)

            out = x[idx]

        exe = paddle.static.Executor(place)
        result = exe.run(prog, fetch_list=[out])

        expected = [data[np_idx]]

        self.assertTrue((result[0] == expected[0]).all())

399 400
    def test_slice(self):
        places = [fluid.CPUPlace()]
W
wopeizl 已提交
401
        if core.is_compiled_with_cuda():
402 403 404 405 406 407
            places.append(core.CUDAPlace(0))

        for place in places:
            self._test_slice(place)
            self._test_slice_index_tensor(place)
            self._test_slice_index_list(place)
408
            self._test_slice_index_ellipsis(place)
409
            self._test_slice_index_list_bool(place)
410
            self._test_slice_index_scalar_bool(place)
W
wopeizl 已提交
411

412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427
    def _tostring(self):
        b = default_main_program().current_block()
        w = b.create_var(dtype="float64", lod_level=0)
        self.assertTrue(isinstance(str(w), str))

        if core.is_compiled_with_cuda():
            wc = b.create_var(dtype="int", lod_level=0)
            self.assertTrue(isinstance(str(wc), str))

    def test_tostring(self):
        with fluid.dygraph.guard():
            self._tostring()

        with fluid.program_guard(default_main_program()):
            self._tostring()

428
    def test_fake_interface_only_api(self):
429 430 431
        b = default_main_program().current_block()
        var = b.create_var(dtype="float64", lod_level=0)
        with fluid.dygraph.guard():
432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
            self.assertRaises(AssertionError, var.numpy)
            self.assertRaises(AssertionError, var.backward)
            self.assertRaises(AssertionError, var.gradient)
            self.assertRaises(AssertionError, var.clear_gradient)

    def test_variable_in_dygraph_mode(self):
        b = default_main_program().current_block()
        var = b.create_var(dtype="float64", shape=[1, 1])
        with fluid.dygraph.guard():
            self.assertTrue(var.to_string(True).startswith('name:'))

            self.assertFalse(var.persistable)
            var.persistable = True
            self.assertTrue(var.persistable)

            self.assertFalse(var.stop_gradient)
448
            var.stop_gradient = True
449 450 451 452 453 454
            self.assertTrue(var.stop_gradient)

            self.assertTrue(var.name.startswith('_generated_var_'))
            self.assertEqual(var.shape, (1, 1))
            self.assertEqual(var.dtype, fluid.core.VarDesc.VarType.FP64)
            self.assertEqual(var.type, fluid.core.VarDesc.VarType.LOD_TENSOR)
455

456 457 458
    def test_create_selected_rows(self):
        b = default_main_program().current_block()

459 460 461 462 463 464 465
        var = b.create_var(
            name="var",
            shape=[1, 1],
            dtype="float32",
            type=fluid.core.VarDesc.VarType.SELECTED_ROWS,
            persistable=True,
        )
466 467 468 469 470 471

        def _test():
            var.lod_level()

        self.assertRaises(Exception, _test)

472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
    def test_size(self):
        prog = paddle.static.Program()
        with paddle.static.program_guard(prog):
            x = paddle.assign(np.random.rand(2, 3, 4).astype("float32"))
            exe = paddle.static.Executor(fluid.CPUPlace())
            exe.run(paddle.static.default_startup_program())

            output = exe.run(prog, fetch_list=[x.size()])
            self.assertEqual(output[0], [24])

    def test_detach(self):
        b = default_main_program().current_block()
        x = b.create_var(shape=[2, 3, 5], dtype="float64", lod_level=0)
        detach_x = x.detach()
        self.assertEqual(x.persistable, detach_x.persistable)
        self.assertEqual(x.shape, detach_x.shape)
        self.assertEqual(x.dtype, detach_x.dtype)
        self.assertEqual(x.type, detach_x.type)
        self.assertTrue(detach_x.stop_gradient)

        xx = b.create_var(name='xx', type=core.VarDesc.VarType.STEP_SCOPES)
        self.assertRaises(AssertionError, xx.detach)

        startup = paddle.static.Program()
        main = paddle.static.Program()
        scope = fluid.core.Scope()
        with paddle.static.scope_guard(scope):
            with paddle.static.program_guard(main, startup):
500 501 502
                x = paddle.static.data(
                    name='x', shape=[3, 2, 1], dtype='float32'
                )
503 504 505 506 507
                x.persistable = True
                feed_data = np.ones(shape=[3, 2, 1], dtype=np.float32)
                detach_x = x.detach()
                exe = paddle.static.Executor(paddle.CPUPlace())
                exe.run(startup)
508 509 510
                result = exe.run(
                    main, feed={'x': feed_data}, fetch_list=[x, detach_x]
                )
511 512 513 514 515 516 517 518 519
                self.assertTrue((result[1] == feed_data).all())
                self.assertTrue((result[0] == result[1]).all())

                modified_value = np.zeros(shape=[3, 2, 1], dtype=np.float32)
                detach_x.set_value(modified_value, scope)
                result = exe.run(main, fetch_list=[x, detach_x])
                self.assertTrue((result[1] == modified_value).all())
                self.assertTrue((result[0] == result[1]).all())

520 521 522
                modified_value = np.random.uniform(
                    -1, 1, size=[3, 2, 1]
                ).astype('float32')
523 524 525 526 527
                x.set_value(modified_value, scope)
                result = exe.run(main, fetch_list=[x, detach_x])
                self.assertTrue((result[1] == modified_value).all())
                self.assertTrue((result[0] == result[1]).all())

Y
Yu Yang 已提交
528

529
class TestVariableSlice(unittest.TestCase):
530 531 532
    def setUp(self):
        np.random.seed(2022)

533 534 535 536 537 538 539 540 541
    def _test_item_none(self, place):
        data = np.random.rand(2, 3, 4).astype("float32")
        prog = paddle.static.Program()
        with paddle.static.program_guard(prog):
            x = paddle.assign(data)
            out0 = x[0:, None, 1:]
            out1 = x[0:, None]
            out2 = x[None, 1:]
            out3 = x[None]
542
            out4 = x[..., None, :, None]
543

544
        outs = [out0, out1, out2, out3, out4]
545 546 547 548
        exe = paddle.static.Executor(place)
        result = exe.run(prog, fetch_list=outs)

        expected = [
549 550 551 552 553
            data[0:, None, 1:],
            data[0:, None],
            data[None, 1:],
            data[None],
            data[..., None, :, None],
554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
        ]
        for i in range(len(outs)):
            self.assertEqual(outs[i].shape, expected[i].shape)
            self.assertTrue((result[i] == expected[i]).all())

    def _test_item_none_and_decrease(self, place):
        data = np.random.rand(2, 3, 4).astype("float32")
        prog = paddle.static.Program()
        with paddle.static.program_guard(prog):
            x = paddle.assign(data)
            out0 = x[0, 1:, None]
            out1 = x[0, None]
            out2 = x[None, 1]
            out3 = x[None]
            out4 = x[0, 0, 0, None]
            out5 = x[None, 0, 0, 0, None]

        outs = [out0, out1, out2, out3, out4, out5]
        exe = paddle.static.Executor(place)
        result = exe.run(prog, fetch_list=outs)
        expected = [
575 576 577 578 579 580
            data[0, 1:, None],
            data[0, None],
            data[None, 1],
            data[None],
            data[0, 0, 0, None],
            data[None, 0, 0, 0, None],
581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
        ]

        for i in range(len(outs)):
            self.assertEqual(outs[i].shape, expected[i].shape)
            self.assertTrue((result[i] == expected[i]).all())

    def test_slice(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(core.CUDAPlace(0))

        for place in places:
            self._test_item_none(place)
            self._test_item_none_and_decrease(place)


W
WeiXin 已提交
597
class TestListIndex(unittest.TestCase):
J
JYChen 已提交
598 599 600 601 602 603 604 605 606 607 608 609 610
    # note(chenjianye):
    # Non-tuple sequence for multidimensional indexing is supported in numpy < 1.23.
    # For List case, the outermost `[]` will be treated as tuple `()` in version less than 1.23,
    # which is used to wrap index elements for multiple axes.
    # And from 1.23, this will be treat as a whole and only works on one axis.
    #
    # e.g. x[[[0],[1]]] == x[([0],[1])] == x[[0],[1]] (in version < 1.23)
    #      x[[[0],[1]]] == x[array([[0],[1]])] (in version >= 1.23)
    #
    # Here, we just modify the code to remove the impact of numpy version changes,
    # changing x[[[0],[1]]] to x[tuple([[0],[1]])] == x[([0],[1])] == x[[0],[1]].
    # Whether the paddle behavior in this case will change is still up for debate.

611 612 613
    def setUp(self):
        np.random.seed(2022)

W
WeiXin 已提交
614
    def numel(self, shape):
615
        return reduce(lambda x, y: x * y, shape, 1)
W
WeiXin 已提交
616 617 618 619 620

    def test_static_graph_list_index(self):
        paddle.enable_static()

        inps_shape = [3, 4, 5, 2]
621 622 623
        array = np.arange(self.numel(inps_shape), dtype='float32').reshape(
            inps_shape
        )
W
WeiXin 已提交
624 625 626 627 628 629 630 631 632 633

        index_shape = [3, 3, 2, 1]
        index = np.arange(self.numel(index_shape)).reshape(index_shape)

        for _ in range(3):
            program = paddle.static.Program()

            index_mod = (index % (array.shape[0])).tolist()

            with paddle.static.program_guard(program):
634 635 636
                x = paddle.static.data(
                    name='x', shape=array.shape, dtype='float32'
                )
W
WeiXin 已提交
637 638 639

                y = x[index_mod]

640 641 642 643 644
                place = (
                    paddle.fluid.CPUPlace()
                    if not paddle.fluid.core.is_compiled_with_cuda()
                    else paddle.fluid.CUDAPlace(0)
                )
W
WeiXin 已提交
645 646 647 648 649 650 651

                prog = paddle.static.default_main_program()
                exe = paddle.static.Executor(place)

                exe.run(paddle.static.default_startup_program())
                fetch_list = [y.name]

J
JYChen 已提交
652
                getitem_np = array[tuple(index_mod)]
653 654 655
                getitem_pp = exe.run(
                    prog, feed={x.name: array}, fetch_list=fetch_list
                )
656
                np.testing.assert_array_equal(getitem_np, getitem_pp[0])
W
WeiXin 已提交
657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672

            array = array[0]
            index = index[0]

    def test_dygraph_list_index(self):
        paddle.disable_static()

        inps_shape = [3, 4, 5, 3]
        array = np.arange(self.numel(inps_shape)).reshape(inps_shape)

        index_shape = [2, 3, 4, 5, 6]
        index = np.arange(self.numel(index_shape)).reshape(index_shape)
        for _ in range(len(inps_shape) - 1):
            pt = paddle.to_tensor(array)
            index_mod = (index % (array.shape[-1])).tolist()
            try:
J
JYChen 已提交
673
                getitem_np = array[tuple(index_mod)]
W
WeiXin 已提交
674 675 676 677 678 679 680 681

            except:
                with self.assertRaises(ValueError):
                    getitem_pp = pt[index_mod]
                array = array[0]
                index = index[0]
                continue
            getitem_pp = pt[index_mod]
682
            np.testing.assert_array_equal(getitem_np, getitem_pp.numpy())
W
WeiXin 已提交
683 684 685 686 687 688 689

            array = array[0]
            index = index[0]

    def test_static_graph_list_index_muti_dim(self):
        paddle.enable_static()
        inps_shape = [3, 4, 5]
690 691 692
        array = np.arange(self.numel(inps_shape), dtype='float32').reshape(
            inps_shape
        )
W
WeiXin 已提交
693 694 695 696 697 698

        index_shape = [2, 2]
        index1 = np.arange(self.numel(index_shape)).reshape(index_shape)
        index2 = np.arange(self.numel(index_shape)).reshape(index_shape) + 2

        value_shape = [3, 2, 2, 3]
699 700 701 702 703 704
        value_np = (
            np.arange(self.numel(value_shape), dtype='float32').reshape(
                value_shape
            )
            + 100
        )
W
WeiXin 已提交
705 706 707 708 709 710 711 712

        index_mod1 = (index1 % (min(array.shape))).tolist()
        index_mod2 = (index2 % (min(array.shape))).tolist()

        program = paddle.static.Program()
        with paddle.static.program_guard(program):
            x = paddle.static.data(name='x', shape=array.shape, dtype='float32')

713 714 715 716 717 718 719 720 721
            value = paddle.static.data(
                name='value', shape=value_np.shape, dtype='float32'
            )
            index1 = paddle.static.data(
                name='index1', shape=index1.shape, dtype='int32'
            )
            index2 = paddle.static.data(
                name='index2', shape=index2.shape, dtype='int32'
            )
W
WeiXin 已提交
722 723 724

            y = x[index1, index2]

725 726 727 728 729
            place = (
                paddle.fluid.CPUPlace()
                if not paddle.fluid.core.is_compiled_with_cuda()
                else paddle.fluid.CUDAPlace(0)
            )
W
WeiXin 已提交
730 731 732 733 734 735 736 737 738 739

            prog = paddle.static.default_main_program()
            exe = paddle.static.Executor(place)

            exe.run(paddle.static.default_startup_program())
            fetch_list = [y.name]
            array2 = array.copy()

            y2 = array2[index_mod1, index_mod2]

740 741 742 743 744 745 746 747 748
            getitem_pp = exe.run(
                prog,
                feed={
                    x.name: array,
                    index1.name: index_mod1,
                    index2.name: index_mod2,
                },
                fetch_list=fetch_list,
            )
W
WeiXin 已提交
749

750 751 752
            np.testing.assert_array_equal(
                y2,
                getitem_pp[0],
753
                err_msg=f'\n numpy:{y2},\n paddle:{getitem_pp[0]}',
754
            )
W
WeiXin 已提交
755 756 757 758

    def test_dygraph_list_index_muti_dim(self):
        paddle.disable_static()
        inps_shape = [3, 4, 5]
759 760 761
        array = np.arange(self.numel(inps_shape), dtype='float32').reshape(
            inps_shape
        )
W
WeiXin 已提交
762 763 764 765 766 767

        index_shape = [2, 2]
        index1 = np.arange(self.numel(index_shape)).reshape(index_shape)
        index2 = np.arange(self.numel(index_shape)).reshape(index_shape) + 2

        value_shape = [3, 2, 2, 3]
768 769 770 771 772 773
        value_np = (
            np.arange(self.numel(value_shape), dtype='float32').reshape(
                value_shape
            )
            + 100
        )
W
WeiXin 已提交
774 775 776 777 778 779 780 781 782 783

        index_mod1 = (index1 % (min(array.shape))).tolist()
        index_mod2 = (index2 % (min(array.shape))).tolist()

        x = paddle.to_tensor(array)
        index_t1 = paddle.to_tensor(index_mod1)
        index_t2 = paddle.to_tensor(index_mod2)

        y_np = array[index_t1, index_t2]
        y = x[index_t1, index_t2]
784
        np.testing.assert_array_equal(y.numpy(), y_np)
W
WeiXin 已提交
785

786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802
    def run_getitem_list_index(self, array, index):
        x = paddle.static.data(name='x', shape=array.shape, dtype='float32')

        y = x[index]
        place = paddle.fluid.CPUPlace()

        prog = paddle.static.default_main_program()
        exe = paddle.static.Executor(place)

        exe.run(paddle.static.default_startup_program())
        fetch_list = [y.name]
        array2 = array.copy()

        try:
            value_np = array2[index]
        except:
            with self.assertRaises(ValueError):
803 804 805
                getitem_pp = exe.run(
                    prog, feed={x.name: array}, fetch_list=fetch_list
                )
806 807 808
            return
        getitem_pp = exe.run(prog, feed={x.name: array}, fetch_list=fetch_list)

809 810 811
        np.testing.assert_allclose(
            value_np, getitem_pp[0], rtol=1e-5, atol=1e-8
        )
812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839

    def test_static_graph_getitem_bool_index(self):
        paddle.enable_static()

        # case 1:
        array = np.ones((4, 2, 3), dtype='float32')
        value_np = np.random.random((2, 3)).astype('float32')
        index = np.array([True, False, False, False])
        program = paddle.static.Program()
        with paddle.static.program_guard(program):
            self.run_getitem_list_index(array, index)

        # case 2:
        array = np.ones((4, 2, 3), dtype='float32')
        value_np = np.random.random((2, 3)).astype('float32')
        index = np.array([False, True, False, False])
        program = paddle.static.Program()
        with paddle.static.program_guard(program):
            self.run_getitem_list_index(array, index)

        # case 3:
        array = np.ones((4, 2, 3), dtype='float32')
        value_np = np.random.random((2, 3)).astype('float32')
        index = np.array([True, True, True, True])
        program = paddle.static.Program()
        with paddle.static.program_guard(program):
            self.run_getitem_list_index(array, index)

W
WeiXin 已提交
840 841 842
    def run_setitem_list_index(self, array, index, value_np):
        x = paddle.static.data(name='x', shape=array.shape, dtype='float32')

843 844 845
        value = paddle.static.data(
            name='value', shape=value_np.shape, dtype='float32'
        )
W
WeiXin 已提交
846 847 848 849 850 851 852 853 854 855 856 857

        x[index] = value
        y = x
        place = paddle.fluid.CPUPlace()

        prog = paddle.static.default_main_program()
        exe = paddle.static.Executor(place)

        exe.run(paddle.static.default_startup_program())
        fetch_list = [y.name]
        array2 = array.copy()
        try:
J
JYChen 已提交
858 859 860 861 862
            index = (
                tuple(index)
                if isinstance(index, list) and isinstance(index[0], list)
                else index
            )
W
WeiXin 已提交
863 864 865
            array2[index] = value_np
        except:
            with self.assertRaises(ValueError):
866 867 868 869 870
                setitem_pp = exe.run(
                    prog,
                    feed={x.name: array, value.name: value_np},
                    fetch_list=fetch_list,
                )
W
WeiXin 已提交
871
            return
872 873 874 875 876
        setitem_pp = exe.run(
            prog,
            feed={x.name: array, value.name: value_np},
            fetch_list=fetch_list,
        )
W
WeiXin 已提交
877

878
        np.testing.assert_allclose(array2, setitem_pp[0], rtol=1e-5, atol=1e-8)
W
WeiXin 已提交
879 880 881 882 883

    def test_static_graph_setitem_list_index(self):
        paddle.enable_static()
        # case 1:
        inps_shape = [3, 4, 5, 2, 3]
884 885 886
        array = np.arange(self.numel(inps_shape), dtype='float32').reshape(
            inps_shape
        )
W
WeiXin 已提交
887 888 889 890 891

        index_shape = [3, 3, 1, 2]
        index = np.arange(self.numel(index_shape)).reshape(index_shape)

        value_shape = inps_shape[3:]
892 893 894 895 896 897
        value_np = (
            np.arange(self.numel(value_shape), dtype='float32').reshape(
                value_shape
            )
            + 100
        )
W
WeiXin 已提交
898 899 900 901 902 903 904 905 906 907 908 909 910 911

        for _ in range(3):
            program = paddle.static.Program()

            index_mod = (index % (min(array.shape))).tolist()

            with paddle.static.program_guard(program):
                self.run_setitem_list_index(array, index_mod, value_np)

            array = array[0]
            index = index[0]

        # case 2:
        inps_shape = [3, 4, 5, 4, 3]
912 913 914
        array = np.arange(self.numel(inps_shape), dtype='float32').reshape(
            inps_shape
        )
W
WeiXin 已提交
915 916 917 918 919

        index_shape = [4, 3, 2, 2]
        index = np.arange(self.numel(index_shape)).reshape(index_shape)

        value_shape = [3]
920 921 922 923 924 925
        value_np = (
            np.arange(self.numel(value_shape), dtype='float32').reshape(
                value_shape
            )
            + 100
        )
W
WeiXin 已提交
926 927 928 929 930 931 932 933 934 935 936 937 938

        for _ in range(4):
            program = paddle.static.Program()
            index_mod = (index % (min(array.shape))).tolist()

            with paddle.static.program_guard(program):
                self.run_setitem_list_index(array, index_mod, value_np)

            array = array[0]
            index = index[0]

        # case 3:
        inps_shape = [3, 4, 5, 3, 3]
939 940 941
        array = np.arange(self.numel(inps_shape), dtype='float32').reshape(
            inps_shape
        )
W
WeiXin 已提交
942 943 944 945 946

        index_shape = [4, 3, 2, 2]
        index = np.arange(self.numel(index_shape)).reshape(index_shape)

        value_shape = [3, 2, 2, 3]
947 948 949 950 951 952
        value_np = (
            np.arange(self.numel(value_shape), dtype='float32').reshape(
                value_shape
            )
            + 100
        )
W
WeiXin 已提交
953 954 955
        index_mod = (index % (min(array.shape))).tolist()
        self.run_setitem_list_index(array, index_mod, value_np)

956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991
    def test_static_graph_setitem_bool_index(self):
        paddle.enable_static()

        # case 1:
        array = np.ones((4, 2, 3), dtype='float32')
        value_np = np.random.random((2, 3)).astype('float32')
        index = np.array([True, False, False, False])
        program = paddle.static.Program()
        with paddle.static.program_guard(program):
            self.run_setitem_list_index(array, index, value_np)

        # case 2:
        array = np.ones((4, 2, 3), dtype='float32')
        value_np = np.random.random((2, 3)).astype('float32')
        index = np.array([False, True, False, False])
        program = paddle.static.Program()
        with paddle.static.program_guard(program):
            self.run_setitem_list_index(array, index, value_np)

        # case 3:
        array = np.ones((4, 2, 3), dtype='float32')
        value_np = np.random.random((2, 3)).astype('float32')
        index = np.array([True, True, True, True])
        program = paddle.static.Program()
        with paddle.static.program_guard(program):
            self.run_setitem_list_index(array, index, value_np)

    def test_static_graph_setitem_bool_scalar_index(self):
        paddle.enable_static()
        array = np.ones((1, 2, 3), dtype='float32')
        value_np = np.random.random((2, 3)).astype('float32')
        index = np.array([True])
        program = paddle.static.Program()
        with paddle.static.program_guard(program):
            self.run_setitem_list_index(array, index, value_np)

W
WeiXin 已提交
992 993 994
    def test_static_graph_tensor_index_setitem_muti_dim(self):
        paddle.enable_static()
        inps_shape = [3, 4, 5, 4]
995 996 997
        array = np.arange(self.numel(inps_shape), dtype='float32').reshape(
            inps_shape
        )
W
WeiXin 已提交
998 999

        index_shape = [2, 3, 4]
1000 1001 1002 1003 1004 1005 1006 1007 1008
        index1 = np.arange(self.numel(index_shape), dtype='int32').reshape(
            index_shape
        )
        index2 = (
            np.arange(self.numel(index_shape), dtype='int32').reshape(
                index_shape
            )
            + 2
        )
W
WeiXin 已提交
1009 1010

        value_shape = [4]
1011 1012 1013 1014 1015 1016
        value_np = (
            np.arange(self.numel(value_shape), dtype='float32').reshape(
                value_shape
            )
            + 100
        )
W
WeiXin 已提交
1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
        for _ in range(3):
            index_mod1 = index1 % (min(array.shape))
            index_mod2 = index2 % (min(array.shape))

            array2 = array.copy()
            array2[index_mod1, index_mod2] = value_np
            array3 = array.copy()
            array3[index_mod1] = value_np

            program = paddle.static.Program()
            with paddle.static.program_guard(program):
1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
                x1 = paddle.static.data(
                    name='x1', shape=array.shape, dtype='float32'
                )
                x2 = paddle.static.data(
                    name='x2', shape=array.shape, dtype='float32'
                )

                value = paddle.static.data(
                    name='value', shape=value_np.shape, dtype='float32'
                )
                index_1 = paddle.static.data(
                    name='index_1', shape=index1.shape, dtype='int32'
                )
                index_2 = paddle.static.data(
                    name='index_2', shape=index2.shape, dtype='int32'
                )
W
WeiXin 已提交
1044 1045 1046 1047

                x1[index_1, index_2] = value
                x2[index_1] = value

1048 1049 1050 1051 1052
                place = (
                    paddle.fluid.CPUPlace()
                    if not paddle.fluid.core.is_compiled_with_cuda()
                    else paddle.fluid.CUDAPlace(0)
                )
W
WeiXin 已提交
1053 1054 1055 1056 1057 1058 1059

                prog = paddle.static.default_main_program()
                exe = paddle.static.Executor(place)

                exe.run(paddle.static.default_startup_program())
                fetch_list = [x1.name, x2.name]

1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070
                setitem_pp = exe.run(
                    prog,
                    feed={
                        x1.name: array,
                        x2.name: array,
                        value.name: value_np,
                        index_1.name: index_mod1,
                        index_2.name: index_mod2,
                    },
                    fetch_list=fetch_list,
                )
1071 1072 1073 1074
                np.testing.assert_array_equal(
                    array2,
                    setitem_pp[0],
                    err_msg='\n numpy:{},\n paddle:{}'.format(
1075 1076 1077
                        array2, setitem_pp[0]
                    ),
                )
1078 1079 1080 1081
                np.testing.assert_array_equal(
                    array3,
                    setitem_pp[1],
                    err_msg='\n numpy:{},\n paddle:{}'.format(
1082 1083 1084
                        array3, setitem_pp[1]
                    ),
                )
W
WeiXin 已提交
1085 1086 1087 1088 1089 1090 1091
            array = array[0]
            index1 = index1[0]
            index2 = index2[0]

    def test_static_graph_array_index_muti_dim(self):
        paddle.enable_static()
        inps_shape = [3, 4, 5, 4]
1092 1093 1094
        array = np.arange(self.numel(inps_shape), dtype='float32').reshape(
            inps_shape
        )
W
WeiXin 已提交
1095 1096

        index_shape = [2, 3, 4]
1097 1098 1099 1100 1101 1102 1103 1104 1105
        index1 = np.arange(self.numel(index_shape), dtype='int32').reshape(
            index_shape
        )
        index2 = (
            np.arange(self.numel(index_shape), dtype='int32').reshape(
                index_shape
            )
            + 2
        )
W
WeiXin 已提交
1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119

        for _ in range(3):
            index_mod1 = index1 % (min(array.shape))
            index_mod2 = index2 % (min(array.shape))

            array2 = array.copy()
            array2[index_mod1, index_mod2] = 1
            y_np1 = array2[index_mod2, index_mod1]
            array3 = array.copy()
            array3[index_mod1] = 2.5
            y_np2 = array3[index_mod2]

            program = paddle.static.Program()
            with paddle.static.program_guard(program):
1120 1121 1122 1123 1124 1125
                x1 = paddle.static.data(
                    name='x1', shape=array.shape, dtype='float32'
                )
                x2 = paddle.static.data(
                    name='x2', shape=array.shape, dtype='float32'
                )
W
WeiXin 已提交
1126 1127 1128 1129 1130

                x1[index_mod1, index_mod2] = 1
                x2[index_mod1] = 2.5
                y1 = x1[index_mod2, index_mod1]
                y2 = x2[index_mod2]
1131 1132 1133 1134 1135
                place = (
                    paddle.fluid.CPUPlace()
                    if not paddle.fluid.core.is_compiled_with_cuda()
                    else paddle.fluid.CUDAPlace(0)
                )
W
WeiXin 已提交
1136 1137 1138 1139 1140 1141

                prog = paddle.static.default_main_program()
                exe = paddle.static.Executor(place)
                exe.run(paddle.static.default_startup_program())
                fetch_list = [x1.name, x2.name, y1.name, y2.name]

1142 1143 1144 1145 1146
                setitem_pp = exe.run(
                    prog,
                    feed={x1.name: array, x2.name: array},
                    fetch_list=fetch_list,
                )
1147 1148 1149 1150
                np.testing.assert_array_equal(
                    array2,
                    setitem_pp[0],
                    err_msg='\n numpy:{},\n paddle:{}'.format(
1151 1152 1153
                        array2, setitem_pp[0]
                    ),
                )
1154 1155 1156 1157
                np.testing.assert_array_equal(
                    array3,
                    setitem_pp[1],
                    err_msg='\n numpy:{},\n paddle:{}'.format(
1158 1159 1160
                        array3, setitem_pp[1]
                    ),
                )
1161 1162 1163 1164 1165

                np.testing.assert_array_equal(
                    y_np1,
                    setitem_pp[2],
                    err_msg='\n numpy:{},\n paddle:{}'.format(
1166 1167 1168
                        y_np1, setitem_pp[2]
                    ),
                )
1169 1170 1171 1172
                np.testing.assert_array_equal(
                    y_np2,
                    setitem_pp[3],
                    err_msg='\n numpy:{},\n paddle:{}'.format(
1173 1174 1175
                        y_np2, setitem_pp[3]
                    ),
                )
W
WeiXin 已提交
1176 1177 1178 1179 1180 1181 1182
            array = array[0]
            index1 = index1[0]
            index2 = index2[0]

    def test_dygraph_array_index_muti_dim(self):
        paddle.disable_static()
        inps_shape = [3, 4, 5, 4]
1183 1184 1185
        array = np.arange(self.numel(inps_shape), dtype='float32').reshape(
            inps_shape
        )
W
WeiXin 已提交
1186
        index_shape = [2, 3, 4]
1187 1188 1189 1190 1191 1192 1193 1194 1195
        index1 = np.arange(self.numel(index_shape), dtype='int32').reshape(
            index_shape
        )
        index2 = (
            np.arange(self.numel(index_shape), dtype='int32').reshape(
                index_shape
            )
            + 2
        )
W
WeiXin 已提交
1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208

        for _ in range(3):
            index_mod1 = index1 % (min(array.shape))
            index_mod2 = index2 % (min(array.shape))
            index_mod_t1 = paddle.to_tensor(index_mod1)
            index_mod_t2 = paddle.to_tensor(index_mod2)
            # 2 dim getitem
            array1 = array.copy()
            y_np1 = array1[index_mod2, index_mod1]
            tensor1 = paddle.to_tensor(array)

            y_t1 = tensor1[index_mod_t2, index_mod_t1]

1209 1210 1211
            np.testing.assert_array_equal(
                y_t1.numpy(),
                y_np1,
1212
                err_msg=f'\n numpy:{y_np1},\n paddle:{y_t1.numpy()}',
1213
            )
W
WeiXin 已提交
1214 1215 1216 1217 1218 1219
            # 1 dim getitem
            array2 = array.copy()
            y_np2 = array2[index_mod2]
            tensor2 = paddle.to_tensor(array)

            y_t2 = tensor2[index_mod_t2]
1220 1221 1222
            np.testing.assert_array_equal(
                y_t2.numpy(),
                y_np2,
1223
                err_msg=f'\n numpy:{y_np2},\n paddle:{y_t2.numpy()}',
1224
            )
W
WeiXin 已提交
1225 1226 1227 1228 1229

            # 2 dim setitem
            array1 = array.copy()
            array1[index_mod1, index_mod2] = 1
            tensor1[index_mod_t1, index_mod_t2] = 1
1230 1231 1232 1233
            np.testing.assert_array_equal(
                tensor1.numpy(),
                array1,
                err_msg='\n numpy:{},\n paddle:{}'.format(
1234 1235 1236
                    array1, tensor1.numpy()
                ),
            )
W
WeiXin 已提交
1237 1238 1239 1240 1241 1242 1243
            # 1 dim setitem
            array2 = array.copy()

            array2[index_mod1] = 2.5

            tensor2[index_mod_t1] = 2.5

1244 1245 1246 1247
            np.testing.assert_array_equal(
                tensor2.numpy(),
                array2,
                err_msg='\n numpy:{},\n paddle:{}'.format(
1248 1249 1250
                    array2, tensor2.numpy()
                ),
            )
W
WeiXin 已提交
1251 1252 1253 1254 1255 1256

            array = array[0]
            index1 = index1[0]
            index2 = index2[0]


Y
Yu Yang 已提交
1257 1258
if __name__ == '__main__':
    unittest.main()