test_variable.py 42.4 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Y
Yu Yang 已提交
15
import unittest
W
WeiXin 已提交
16 17
from functools import reduce

18 19
import numpy as np

20
import paddle
21 22 23
from paddle import base
from paddle.base import core
from paddle.base.framework import (
24 25 26 27
    Program,
    convert_np_dtype_to_dtype_,
    default_main_program,
)
Y
Yu Yang 已提交
28

29 30
paddle.enable_static()

Y
Yu Yang 已提交
31 32

class TestVariable(unittest.TestCase):
33 34 35
    def setUp(self):
        np.random.seed(2022)

Y
Yu Yang 已提交
36
    def test_np_dtype_convert(self):
37
        DT = core.VarDesc.VarType
38
        convert = convert_np_dtype_to_dtype_
Y
Yu Yang 已提交
39 40 41 42 43 44 45
        self.assertEqual(DT.FP32, convert(np.float32))
        self.assertEqual(DT.FP16, convert("float16"))
        self.assertEqual(DT.FP64, convert("float64"))
        self.assertEqual(DT.INT32, convert("int32"))
        self.assertEqual(DT.INT16, convert("int16"))
        self.assertEqual(DT.INT64, convert("int64"))
        self.assertEqual(DT.BOOL, convert("bool"))
Q
qingqing01 已提交
46 47
        self.assertEqual(DT.INT8, convert("int8"))
        self.assertEqual(DT.UINT8, convert("uint8"))
Y
Yu Yang 已提交
48

Y
Yu Yang 已提交
49
    def test_var(self):
Y
Yu Yang 已提交
50
        b = default_main_program().current_block()
51 52 53
        w = b.create_var(
            dtype="float64", shape=[784, 100], lod_level=0, name="fc.w"
        )
54
        self.assertNotEqual(str(w), "")
55
        self.assertEqual(core.VarDesc.VarType.FP64, w.dtype)
Y
Yu Yang 已提交
56 57
        self.assertEqual((784, 100), w.shape)
        self.assertEqual("fc.w", w.name)
58
        self.assertEqual("fc.w@GRAD", w.grad_name)
Y
Yu Yang 已提交
59 60 61
        self.assertEqual(0, w.lod_level)

        w = b.create_var(name='fc.w')
62
        self.assertEqual(core.VarDesc.VarType.FP64, w.dtype)
Y
Yu Yang 已提交
63 64
        self.assertEqual((784, 100), w.shape)
        self.assertEqual("fc.w", w.name)
65
        self.assertEqual("fc.w@GRAD", w.grad_name)
Y
Yu Yang 已提交
66 67
        self.assertEqual(0, w.lod_level)

68 69 70
        self.assertRaises(
            ValueError, lambda: b.create_var(name="fc.w", shape=(24, 100))
        )
Y
Yu Yang 已提交
71

72
        w = b.create_var(
73
            dtype=paddle.base.core.VarDesc.VarType.STRINGS,
74 75 76
            shape=[1],
            name="str_var",
        )
77 78
        self.assertEqual(None, w.lod_level)

79
    def test_element_size(self):
80
        with base.program_guard(Program(), Program()):
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
            x = paddle.static.data(name='x1', shape=[2], dtype='bool')
            self.assertEqual(x.element_size(), 1)

            x = paddle.static.data(name='x2', shape=[2], dtype='float16')
            self.assertEqual(x.element_size(), 2)

            x = paddle.static.data(name='x3', shape=[2], dtype='float32')
            self.assertEqual(x.element_size(), 4)

            x = paddle.static.data(name='x4', shape=[2], dtype='float64')
            self.assertEqual(x.element_size(), 8)

            x = paddle.static.data(name='x5', shape=[2], dtype='int8')
            self.assertEqual(x.element_size(), 1)

            x = paddle.static.data(name='x6', shape=[2], dtype='int16')
            self.assertEqual(x.element_size(), 2)

            x = paddle.static.data(name='x7', shape=[2], dtype='int32')
            self.assertEqual(x.element_size(), 4)

            x = paddle.static.data(name='x8', shape=[2], dtype='int64')
            self.assertEqual(x.element_size(), 8)

            x = paddle.static.data(name='x9', shape=[2], dtype='uint8')
            self.assertEqual(x.element_size(), 1)

Y
Yu Yang 已提交
108 109 110
    def test_step_scopes(self):
        prog = Program()
        b = prog.current_block()
111 112 113
        var = b.create_var(
            name='step_scopes', type=core.VarDesc.VarType.STEP_SCOPES
        )
Y
Yu Yang 已提交
114 115
        self.assertEqual(core.VarDesc.VarType.STEP_SCOPES, var.type)

W
wopeizl 已提交
116
    def _test_slice(self, place):
W
wopeizl 已提交
117 118 119 120 121
        b = default_main_program().current_block()
        w = b.create_var(dtype="float64", shape=[784, 100, 100], lod_level=0)

        for i in range(3):
            nw = w[i]
H
Hongyu Liu 已提交
122
            self.assertEqual((100, 100), nw.shape)
W
wopeizl 已提交
123 124 125 126

        nw = w[:]
        self.assertEqual((784, 100, 100), nw.shape)

H
Hongyu Liu 已提交
127
        nw = w[:, :]
W
wopeizl 已提交
128 129
        self.assertEqual((784, 100, 100), nw.shape)

H
Hongyu Liu 已提交
130 131
        nw = w[:, :, -1]
        self.assertEqual((784, 100), nw.shape)
W
wopeizl 已提交
132

H
Hongyu Liu 已提交
133 134
        nw = w[1, 1, 1]

135
        self.assertEqual(len(nw.shape), 0)
H
Hongyu Liu 已提交
136 137 138

        nw = w[:, :, :-1]
        self.assertEqual((784, 100, 99), nw.shape)
W
wopeizl 已提交
139 140 141

        self.assertEqual(0, nw.lod_level)

142 143 144
        main = base.Program()
        with base.program_guard(main):
            exe = base.Executor(place)
145 146 147 148 149 150 151
            tensor_array = np.array(
                [
                    [[1, 2, 3], [4, 5, 6], [7, 8, 9]],
                    [[10, 11, 12], [13, 14, 15], [16, 17, 18]],
                    [[19, 20, 21], [22, 23, 24], [25, 26, 27]],
                ]
            ).astype('float32')
152
            var = paddle.assign(tensor_array)
W
wopeizl 已提交
153 154 155
            var1 = var[0, 1, 1]
            var2 = var[1:]
            var3 = var[0:1]
H
Hongyu Liu 已提交
156 157
            var4 = var[::-1]
            var5 = var[1, 1:, 1:]
158
            var_reshape = paddle.reshape(var, [3, -1, 3])
H
Hongyu Liu 已提交
159 160 161 162 163 164 165 166 167 168
            var6 = var_reshape[:, :, -1]
            var7 = var[:, :, :-1]
            var8 = var[:1, :1, :1]
            var9 = var[:-1, :-1, :-1]
            var10 = var[::-1, :1, :-1]
            var11 = var[:-1, ::-1, -1:]
            var12 = var[1:2, 2:, ::-1]
            var13 = var[2:10, 2:, -2:-1]
            var14 = var[1:-1, 0:2, ::-1]
            var15 = var[::-1, ::-1, ::-1]
W
wopeizl 已提交
169

G
GGBond8488 已提交
170
            x = paddle.static.data(name='x', shape=[-1, 13], dtype='float32')
C
Charles-hit 已提交
171
            y = paddle.static.nn.fc(x, size=1, activation=None)
H
Hongyu Liu 已提交
172
            y_1 = y[:, 0]
173
            feeder = base.DataFeeder(place=place, feed_list=[x])
W
wopeizl 已提交
174
            data = []
175
            data.append(np.random.randint(10, size=[13]).astype('float32'))
176
            exe.run(base.default_startup_program())
W
wopeizl 已提交
177

178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
            local_out = exe.run(
                main,
                feed=feeder.feed([data]),
                fetch_list=[
                    var,
                    var1,
                    var2,
                    var3,
                    var4,
                    var5,
                    var6,
                    var7,
                    var8,
                    var9,
                    var10,
                    var11,
                    var12,
                    var13,
                    var14,
                    var15,
                ],
            )
W
wopeizl 已提交
200

201 202 203 204 205 206
            np.testing.assert_array_equal(local_out[1], tensor_array[0, 1, 1:2])
            np.testing.assert_array_equal(local_out[2], tensor_array[1:])
            np.testing.assert_array_equal(local_out[3], tensor_array[0:1])
            np.testing.assert_array_equal(local_out[4], tensor_array[::-1])
            np.testing.assert_array_equal(local_out[5], tensor_array[1, 1:, 1:])
            np.testing.assert_array_equal(
207 208
                local_out[6], tensor_array.reshape((3, -1, 3))[:, :, -1]
            )
209
            np.testing.assert_array_equal(local_out[7], tensor_array[:, :, :-1])
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
            np.testing.assert_array_equal(
                local_out[8], tensor_array[:1, :1, :1]
            )
            np.testing.assert_array_equal(
                local_out[9], tensor_array[:-1, :-1, :-1]
            )
            np.testing.assert_array_equal(
                local_out[10], tensor_array[::-1, :1, :-1]
            )
            np.testing.assert_array_equal(
                local_out[11], tensor_array[:-1, ::-1, -1:]
            )
            np.testing.assert_array_equal(
                local_out[12], tensor_array[1:2, 2:, ::-1]
            )
            np.testing.assert_array_equal(
                local_out[13], tensor_array[2:10, 2:, -2:-1]
            )
            np.testing.assert_array_equal(
                local_out[14], tensor_array[1:-1, 0:2, ::-1]
            )
            np.testing.assert_array_equal(
                local_out[15], tensor_array[::-1, ::-1, ::-1]
            )
W
wopeizl 已提交
234

235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
    def _test_slice_index_tensor(self, place):
        data = np.random.rand(2, 3).astype("float32")
        prog = paddle.static.Program()
        with paddle.static.program_guard(prog):
            x = paddle.assign(data)
            idx0 = [1, 0]
            idx1 = [0, 1]
            idx2 = [0, 0]
            idx3 = [1, 1]

            out0 = x[paddle.assign(np.array(idx0))]
            out1 = x[paddle.assign(np.array(idx1))]
            out2 = x[paddle.assign(np.array(idx2))]
            out3 = x[paddle.assign(np.array(idx3))]

        exe = paddle.static.Executor(place)
        result = exe.run(prog, fetch_list=[out0, out1, out2, out3])

        expected = [data[idx0], data[idx1], data[idx2], data[idx3]]

        self.assertTrue((result[0] == expected[0]).all())
        self.assertTrue((result[1] == expected[1]).all())
        self.assertTrue((result[2] == expected[2]).all())
        self.assertTrue((result[3] == expected[3]).all())

    def _test_slice_index_list(self, place):
        data = np.random.rand(2, 3).astype("float32")
        prog = paddle.static.Program()
        with paddle.static.program_guard(prog):
            x = paddle.assign(data)
            idx0 = [1, 0]
            idx1 = [0, 1]
            idx2 = [0, 0]
            idx3 = [1, 1]

            out0 = x[idx0]
            out1 = x[idx1]
            out2 = x[idx2]
            out3 = x[idx3]

        exe = paddle.static.Executor(place)
        result = exe.run(prog, fetch_list=[out0, out1, out2, out3])

        expected = [data[idx0], data[idx1], data[idx2], data[idx3]]

        self.assertTrue((result[0] == expected[0]).all())
        self.assertTrue((result[1] == expected[1]).all())
        self.assertTrue((result[2] == expected[2]).all())
        self.assertTrue((result[3] == expected[3]).all())

285 286 287 288 289
    def _test_slice_index_ellipsis(self, place):
        data = np.random.rand(2, 3, 4).astype("float32")
        prog = paddle.static.Program()
        with paddle.static.program_guard(prog):
            x = paddle.assign(data)
290
            y = paddle.assign([1, 2, 3, 4])
291 292 293 294
            out1 = x[0:, ..., 1:]
            out2 = x[0:, ...]
            out3 = x[..., 1:]
            out4 = x[...]
W
WeiXin 已提交
295 296
            out5 = x[[1, 0], [0, 0]]
            out6 = x[([1, 0], [0, 0])]
297
            out7 = y[..., 0]
298 299

        exe = paddle.static.Executor(place)
300 301 302
        result = exe.run(
            prog, fetch_list=[out1, out2, out3, out4, out5, out6, out7]
        )
303

W
WeiXin 已提交
304
        expected = [
305 306 307 308 309 310 311
            data[0:, ..., 1:],
            data[0:, ...],
            data[..., 1:],
            data[...],
            data[[1, 0], [0, 0]],
            data[([1, 0], [0, 0])],
            np.array([1]),
W
WeiXin 已提交
312
        ]
313 314 315 316 317

        self.assertTrue((result[0] == expected[0]).all())
        self.assertTrue((result[1] == expected[1]).all())
        self.assertTrue((result[2] == expected[2]).all())
        self.assertTrue((result[3] == expected[3]).all())
W
WeiXin 已提交
318 319
        self.assertTrue((result[4] == expected[4]).all())
        self.assertTrue((result[5] == expected[5]).all())
320
        self.assertTrue((result[6] == expected[6]).all())
321

322
    def _test_slice_index_list_bool(self, place):
Z
zyfncg 已提交
323 324
        data = np.random.rand(2, 3, 4).astype("float32")
        np_idx = np.array([[True, False, False], [True, False, True]])
325 326 327 328 329
        prog = paddle.static.Program()
        with paddle.static.program_guard(prog):
            x = paddle.assign(data)
            idx0 = [True, False]
            idx1 = [False, True]
Z
zyfncg 已提交
330 331 332 333
            idx2 = [True, True]
            idx3 = [False, False, 1]
            idx4 = [True, False, 0]
            idx5 = paddle.assign(np_idx)
334 335 336 337 338

            out0 = x[idx0]
            out1 = x[idx1]
            out2 = x[idx2]
            out3 = x[idx3]
Z
zyfncg 已提交
339 340 341 342
            out4 = x[idx4]
            out5 = x[idx5]
            out6 = x[x < 0.36]
            out7 = x[x > 0.6]
343 344

        exe = paddle.static.Executor(place)
Z
zyfncg 已提交
345
        result = exe.run(
346 347
            prog, fetch_list=[out0, out1, out2, out3, out4, out5, out6, out7]
        )
348

Z
zyfncg 已提交
349
        expected = [
350 351 352 353 354 355 356 357
            data[idx0],
            data[idx1],
            data[idx2],
            data[idx3],
            data[idx4],
            data[np_idx],
            data[data < 0.36],
            data[data > 0.6],
Z
zyfncg 已提交
358
        ]
359 360 361 362 363

        self.assertTrue((result[0] == expected[0]).all())
        self.assertTrue((result[1] == expected[1]).all())
        self.assertTrue((result[2] == expected[2]).all())
        self.assertTrue((result[3] == expected[3]).all())
Z
zyfncg 已提交
364 365 366 367
        self.assertTrue((result[4] == expected[4]).all())
        self.assertTrue((result[5] == expected[5]).all())
        self.assertTrue((result[6] == expected[6]).all())
        self.assertTrue((result[7] == expected[7]).all())
368

Z
zyfncg 已提交
369 370
        with self.assertRaises(IndexError):
            res = x[[True, False, False]]
371

372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
    def _test_slice_index_scalar_bool(self, place):
        data = np.random.rand(1, 3, 4).astype("float32")
        np_idx = np.array([True])
        prog = paddle.static.Program()
        with paddle.static.program_guard(prog):
            x = paddle.assign(data)
            idx = paddle.assign(np_idx)

            out = x[idx]

        exe = paddle.static.Executor(place)
        result = exe.run(prog, fetch_list=[out])

        expected = [data[np_idx]]

        self.assertTrue((result[0] == expected[0]).all())

389
    def test_slice(self):
390
        places = [base.CPUPlace()]
W
wopeizl 已提交
391
        if core.is_compiled_with_cuda():
392 393 394 395 396 397
            places.append(core.CUDAPlace(0))

        for place in places:
            self._test_slice(place)
            self._test_slice_index_tensor(place)
            self._test_slice_index_list(place)
398
            self._test_slice_index_ellipsis(place)
399
            self._test_slice_index_list_bool(place)
400
            self._test_slice_index_scalar_bool(place)
W
wopeizl 已提交
401

402 403 404 405 406 407 408 409 410 411
    def _tostring(self):
        b = default_main_program().current_block()
        w = b.create_var(dtype="float64", lod_level=0)
        self.assertTrue(isinstance(str(w), str))

        if core.is_compiled_with_cuda():
            wc = b.create_var(dtype="int", lod_level=0)
            self.assertTrue(isinstance(str(wc), str))

    def test_tostring(self):
412
        with base.dygraph.guard():
413 414
            self._tostring()

415
        with base.program_guard(default_main_program()):
416 417
            self._tostring()

418
    def test_fake_interface_only_api(self):
419 420
        b = default_main_program().current_block()
        var = b.create_var(dtype="float64", lod_level=0)
421
        with base.dygraph.guard():
422 423 424 425 426 427 428 429
            self.assertRaises(AssertionError, var.numpy)
            self.assertRaises(AssertionError, var.backward)
            self.assertRaises(AssertionError, var.gradient)
            self.assertRaises(AssertionError, var.clear_gradient)

    def test_variable_in_dygraph_mode(self):
        b = default_main_program().current_block()
        var = b.create_var(dtype="float64", shape=[1, 1])
430
        with base.dygraph.guard():
431 432 433 434 435 436 437
            self.assertTrue(var.to_string(True).startswith('name:'))

            self.assertFalse(var.persistable)
            var.persistable = True
            self.assertTrue(var.persistable)

            self.assertFalse(var.stop_gradient)
438
            var.stop_gradient = True
439 440 441 442
            self.assertTrue(var.stop_gradient)

            self.assertTrue(var.name.startswith('_generated_var_'))
            self.assertEqual(var.shape, (1, 1))
443 444
            self.assertEqual(var.dtype, base.core.VarDesc.VarType.FP64)
            self.assertEqual(var.type, base.core.VarDesc.VarType.LOD_TENSOR)
445

446 447 448
    def test_create_selected_rows(self):
        b = default_main_program().current_block()

449 450 451 452
        var = b.create_var(
            name="var",
            shape=[1, 1],
            dtype="float32",
453
            type=base.core.VarDesc.VarType.SELECTED_ROWS,
454 455
            persistable=True,
        )
456 457 458 459 460 461

        def _test():
            var.lod_level()

        self.assertRaises(Exception, _test)

462 463 464 465
    def test_size(self):
        prog = paddle.static.Program()
        with paddle.static.program_guard(prog):
            x = paddle.assign(np.random.rand(2, 3, 4).astype("float32"))
466
            exe = paddle.static.Executor(base.CPUPlace())
467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
            exe.run(paddle.static.default_startup_program())

            output = exe.run(prog, fetch_list=[x.size()])
            self.assertEqual(output[0], [24])

    def test_detach(self):
        b = default_main_program().current_block()
        x = b.create_var(shape=[2, 3, 5], dtype="float64", lod_level=0)
        detach_x = x.detach()
        self.assertEqual(x.persistable, detach_x.persistable)
        self.assertEqual(x.shape, detach_x.shape)
        self.assertEqual(x.dtype, detach_x.dtype)
        self.assertEqual(x.type, detach_x.type)
        self.assertTrue(detach_x.stop_gradient)

        xx = b.create_var(name='xx', type=core.VarDesc.VarType.STEP_SCOPES)
        self.assertRaises(AssertionError, xx.detach)

        startup = paddle.static.Program()
        main = paddle.static.Program()
487
        scope = base.core.Scope()
488 489
        with paddle.static.scope_guard(scope):
            with paddle.static.program_guard(main, startup):
490 491 492
                x = paddle.static.data(
                    name='x', shape=[3, 2, 1], dtype='float32'
                )
493 494 495 496 497
                x.persistable = True
                feed_data = np.ones(shape=[3, 2, 1], dtype=np.float32)
                detach_x = x.detach()
                exe = paddle.static.Executor(paddle.CPUPlace())
                exe.run(startup)
498 499 500
                result = exe.run(
                    main, feed={'x': feed_data}, fetch_list=[x, detach_x]
                )
501 502 503 504 505 506 507 508 509
                self.assertTrue((result[1] == feed_data).all())
                self.assertTrue((result[0] == result[1]).all())

                modified_value = np.zeros(shape=[3, 2, 1], dtype=np.float32)
                detach_x.set_value(modified_value, scope)
                result = exe.run(main, fetch_list=[x, detach_x])
                self.assertTrue((result[1] == modified_value).all())
                self.assertTrue((result[0] == result[1]).all())

510 511 512
                modified_value = np.random.uniform(
                    -1, 1, size=[3, 2, 1]
                ).astype('float32')
513 514 515 516 517
                x.set_value(modified_value, scope)
                result = exe.run(main, fetch_list=[x, detach_x])
                self.assertTrue((result[1] == modified_value).all())
                self.assertTrue((result[0] == result[1]).all())

Y
Yu Yang 已提交
518

519
class TestVariableSlice(unittest.TestCase):
520 521 522
    def setUp(self):
        np.random.seed(2022)

523 524 525 526 527 528 529 530 531
    def _test_item_none(self, place):
        data = np.random.rand(2, 3, 4).astype("float32")
        prog = paddle.static.Program()
        with paddle.static.program_guard(prog):
            x = paddle.assign(data)
            out0 = x[0:, None, 1:]
            out1 = x[0:, None]
            out2 = x[None, 1:]
            out3 = x[None]
532
            out4 = x[..., None, :, None]
533

534
        outs = [out0, out1, out2, out3, out4]
535 536 537 538
        exe = paddle.static.Executor(place)
        result = exe.run(prog, fetch_list=outs)

        expected = [
539 540 541 542 543
            data[0:, None, 1:],
            data[0:, None],
            data[None, 1:],
            data[None],
            data[..., None, :, None],
544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
        ]
        for i in range(len(outs)):
            self.assertEqual(outs[i].shape, expected[i].shape)
            self.assertTrue((result[i] == expected[i]).all())

    def _test_item_none_and_decrease(self, place):
        data = np.random.rand(2, 3, 4).astype("float32")
        prog = paddle.static.Program()
        with paddle.static.program_guard(prog):
            x = paddle.assign(data)
            out0 = x[0, 1:, None]
            out1 = x[0, None]
            out2 = x[None, 1]
            out3 = x[None]
            out4 = x[0, 0, 0, None]
            out5 = x[None, 0, 0, 0, None]

        outs = [out0, out1, out2, out3, out4, out5]
        exe = paddle.static.Executor(place)
        result = exe.run(prog, fetch_list=outs)
        expected = [
565 566 567 568 569 570
            data[0, 1:, None],
            data[0, None],
            data[None, 1],
            data[None],
            data[0, 0, 0, None],
            data[None, 0, 0, 0, None],
571 572 573 574 575 576 577
        ]

        for i in range(len(outs)):
            self.assertEqual(outs[i].shape, expected[i].shape)
            self.assertTrue((result[i] == expected[i]).all())

    def test_slice(self):
578
        places = [base.CPUPlace()]
579 580 581 582 583 584 585 586
        if core.is_compiled_with_cuda():
            places.append(core.CUDAPlace(0))

        for place in places:
            self._test_item_none(place)
            self._test_item_none_and_decrease(place)


W
WeiXin 已提交
587
class TestListIndex(unittest.TestCase):
J
JYChen 已提交
588 589 590 591 592 593 594 595 596 597 598 599 600
    # note(chenjianye):
    # Non-tuple sequence for multidimensional indexing is supported in numpy < 1.23.
    # For List case, the outermost `[]` will be treated as tuple `()` in version less than 1.23,
    # which is used to wrap index elements for multiple axes.
    # And from 1.23, this will be treat as a whole and only works on one axis.
    #
    # e.g. x[[[0],[1]]] == x[([0],[1])] == x[[0],[1]] (in version < 1.23)
    #      x[[[0],[1]]] == x[array([[0],[1]])] (in version >= 1.23)
    #
    # Here, we just modify the code to remove the impact of numpy version changes,
    # changing x[[[0],[1]]] to x[tuple([[0],[1]])] == x[([0],[1])] == x[[0],[1]].
    # Whether the paddle behavior in this case will change is still up for debate.

601 602 603
    def setUp(self):
        np.random.seed(2022)

W
WeiXin 已提交
604
    def numel(self, shape):
605
        return reduce(lambda x, y: x * y, shape, 1)
W
WeiXin 已提交
606 607 608 609 610

    def test_static_graph_list_index(self):
        paddle.enable_static()

        inps_shape = [3, 4, 5, 2]
611 612 613
        array = np.arange(self.numel(inps_shape), dtype='float32').reshape(
            inps_shape
        )
W
WeiXin 已提交
614 615 616 617 618 619 620 621 622 623

        index_shape = [3, 3, 2, 1]
        index = np.arange(self.numel(index_shape)).reshape(index_shape)

        for _ in range(3):
            program = paddle.static.Program()

            index_mod = (index % (array.shape[0])).tolist()

            with paddle.static.program_guard(program):
624 625 626
                x = paddle.static.data(
                    name='x', shape=array.shape, dtype='float32'
                )
W
WeiXin 已提交
627 628 629

                y = x[index_mod]

630
                place = (
631 632 633
                    paddle.base.CPUPlace()
                    if not paddle.base.core.is_compiled_with_cuda()
                    else paddle.base.CUDAPlace(0)
634
                )
W
WeiXin 已提交
635 636 637 638 639 640 641

                prog = paddle.static.default_main_program()
                exe = paddle.static.Executor(place)

                exe.run(paddle.static.default_startup_program())
                fetch_list = [y.name]

J
JYChen 已提交
642
                getitem_np = array[tuple(index_mod)]
643 644 645
                getitem_pp = exe.run(
                    prog, feed={x.name: array}, fetch_list=fetch_list
                )
646
                np.testing.assert_array_equal(getitem_np, getitem_pp[0])
W
WeiXin 已提交
647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662

            array = array[0]
            index = index[0]

    def test_dygraph_list_index(self):
        paddle.disable_static()

        inps_shape = [3, 4, 5, 3]
        array = np.arange(self.numel(inps_shape)).reshape(inps_shape)

        index_shape = [2, 3, 4, 5, 6]
        index = np.arange(self.numel(index_shape)).reshape(index_shape)
        for _ in range(len(inps_shape) - 1):
            pt = paddle.to_tensor(array)
            index_mod = (index % (array.shape[-1])).tolist()
            try:
J
JYChen 已提交
663
                getitem_np = array[tuple(index_mod)]
W
WeiXin 已提交
664 665 666 667 668 669 670 671

            except:
                with self.assertRaises(ValueError):
                    getitem_pp = pt[index_mod]
                array = array[0]
                index = index[0]
                continue
            getitem_pp = pt[index_mod]
672
            np.testing.assert_array_equal(getitem_np, getitem_pp.numpy())
W
WeiXin 已提交
673 674 675 676 677 678 679

            array = array[0]
            index = index[0]

    def test_static_graph_list_index_muti_dim(self):
        paddle.enable_static()
        inps_shape = [3, 4, 5]
680 681 682
        array = np.arange(self.numel(inps_shape), dtype='float32').reshape(
            inps_shape
        )
W
WeiXin 已提交
683 684 685 686 687 688

        index_shape = [2, 2]
        index1 = np.arange(self.numel(index_shape)).reshape(index_shape)
        index2 = np.arange(self.numel(index_shape)).reshape(index_shape) + 2

        value_shape = [3, 2, 2, 3]
689 690 691 692 693 694
        value_np = (
            np.arange(self.numel(value_shape), dtype='float32').reshape(
                value_shape
            )
            + 100
        )
W
WeiXin 已提交
695 696 697 698 699 700 701 702

        index_mod1 = (index1 % (min(array.shape))).tolist()
        index_mod2 = (index2 % (min(array.shape))).tolist()

        program = paddle.static.Program()
        with paddle.static.program_guard(program):
            x = paddle.static.data(name='x', shape=array.shape, dtype='float32')

703 704 705 706 707 708 709 710 711
            value = paddle.static.data(
                name='value', shape=value_np.shape, dtype='float32'
            )
            index1 = paddle.static.data(
                name='index1', shape=index1.shape, dtype='int32'
            )
            index2 = paddle.static.data(
                name='index2', shape=index2.shape, dtype='int32'
            )
W
WeiXin 已提交
712 713 714

            y = x[index1, index2]

715
            place = (
716 717 718
                paddle.base.CPUPlace()
                if not paddle.base.core.is_compiled_with_cuda()
                else paddle.base.CUDAPlace(0)
719
            )
W
WeiXin 已提交
720 721 722 723 724 725 726 727 728 729

            prog = paddle.static.default_main_program()
            exe = paddle.static.Executor(place)

            exe.run(paddle.static.default_startup_program())
            fetch_list = [y.name]
            array2 = array.copy()

            y2 = array2[index_mod1, index_mod2]

730 731 732 733 734 735 736 737 738
            getitem_pp = exe.run(
                prog,
                feed={
                    x.name: array,
                    index1.name: index_mod1,
                    index2.name: index_mod2,
                },
                fetch_list=fetch_list,
            )
W
WeiXin 已提交
739

740 741 742
            np.testing.assert_array_equal(
                y2,
                getitem_pp[0],
743
                err_msg=f'\n numpy:{y2},\n paddle:{getitem_pp[0]}',
744
            )
W
WeiXin 已提交
745 746 747 748

    def test_dygraph_list_index_muti_dim(self):
        paddle.disable_static()
        inps_shape = [3, 4, 5]
749 750 751
        array = np.arange(self.numel(inps_shape), dtype='float32').reshape(
            inps_shape
        )
W
WeiXin 已提交
752 753 754 755 756 757

        index_shape = [2, 2]
        index1 = np.arange(self.numel(index_shape)).reshape(index_shape)
        index2 = np.arange(self.numel(index_shape)).reshape(index_shape) + 2

        value_shape = [3, 2, 2, 3]
758 759 760 761 762 763
        value_np = (
            np.arange(self.numel(value_shape), dtype='float32').reshape(
                value_shape
            )
            + 100
        )
W
WeiXin 已提交
764 765 766 767 768 769 770 771 772 773

        index_mod1 = (index1 % (min(array.shape))).tolist()
        index_mod2 = (index2 % (min(array.shape))).tolist()

        x = paddle.to_tensor(array)
        index_t1 = paddle.to_tensor(index_mod1)
        index_t2 = paddle.to_tensor(index_mod2)

        y_np = array[index_t1, index_t2]
        y = x[index_t1, index_t2]
774
        np.testing.assert_array_equal(y.numpy(), y_np)
W
WeiXin 已提交
775

776 777 778 779
    def run_getitem_list_index(self, array, index):
        x = paddle.static.data(name='x', shape=array.shape, dtype='float32')

        y = x[index]
780
        place = paddle.base.CPUPlace()
781 782 783 784 785 786 787 788 789 790 791 792

        prog = paddle.static.default_main_program()
        exe = paddle.static.Executor(place)

        exe.run(paddle.static.default_startup_program())
        fetch_list = [y.name]
        array2 = array.copy()

        try:
            value_np = array2[index]
        except:
            with self.assertRaises(ValueError):
793 794 795
                getitem_pp = exe.run(
                    prog, feed={x.name: array}, fetch_list=fetch_list
                )
796 797 798
            return
        getitem_pp = exe.run(prog, feed={x.name: array}, fetch_list=fetch_list)

799 800 801
        np.testing.assert_allclose(
            value_np, getitem_pp[0], rtol=1e-5, atol=1e-8
        )
802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829

    def test_static_graph_getitem_bool_index(self):
        paddle.enable_static()

        # case 1:
        array = np.ones((4, 2, 3), dtype='float32')
        value_np = np.random.random((2, 3)).astype('float32')
        index = np.array([True, False, False, False])
        program = paddle.static.Program()
        with paddle.static.program_guard(program):
            self.run_getitem_list_index(array, index)

        # case 2:
        array = np.ones((4, 2, 3), dtype='float32')
        value_np = np.random.random((2, 3)).astype('float32')
        index = np.array([False, True, False, False])
        program = paddle.static.Program()
        with paddle.static.program_guard(program):
            self.run_getitem_list_index(array, index)

        # case 3:
        array = np.ones((4, 2, 3), dtype='float32')
        value_np = np.random.random((2, 3)).astype('float32')
        index = np.array([True, True, True, True])
        program = paddle.static.Program()
        with paddle.static.program_guard(program):
            self.run_getitem_list_index(array, index)

W
WeiXin 已提交
830 831 832
    def run_setitem_list_index(self, array, index, value_np):
        x = paddle.static.data(name='x', shape=array.shape, dtype='float32')

833 834 835
        value = paddle.static.data(
            name='value', shape=value_np.shape, dtype='float32'
        )
W
WeiXin 已提交
836

837
        y = paddle.static.setitem(x, index, value)
838
        place = paddle.base.CPUPlace()
W
WeiXin 已提交
839 840 841 842 843 844 845 846

        prog = paddle.static.default_main_program()
        exe = paddle.static.Executor(place)

        exe.run(paddle.static.default_startup_program())
        fetch_list = [y.name]
        array2 = array.copy()
        try:
J
JYChen 已提交
847 848 849 850 851
            index = (
                tuple(index)
                if isinstance(index, list) and isinstance(index[0], list)
                else index
            )
W
WeiXin 已提交
852 853 854
            array2[index] = value_np
        except:
            with self.assertRaises(ValueError):
855 856 857 858 859
                setitem_pp = exe.run(
                    prog,
                    feed={x.name: array, value.name: value_np},
                    fetch_list=fetch_list,
                )
W
WeiXin 已提交
860
            return
861 862 863 864 865
        setitem_pp = exe.run(
            prog,
            feed={x.name: array, value.name: value_np},
            fetch_list=fetch_list,
        )
W
WeiXin 已提交
866

867
        np.testing.assert_allclose(array2, setitem_pp[0], rtol=1e-5, atol=1e-8)
W
WeiXin 已提交
868 869 870 871 872

    def test_static_graph_setitem_list_index(self):
        paddle.enable_static()
        # case 1:
        inps_shape = [3, 4, 5, 2, 3]
873 874 875
        array = np.arange(self.numel(inps_shape), dtype='float32').reshape(
            inps_shape
        )
W
WeiXin 已提交
876 877 878 879 880

        index_shape = [3, 3, 1, 2]
        index = np.arange(self.numel(index_shape)).reshape(index_shape)

        value_shape = inps_shape[3:]
881 882 883 884 885 886
        value_np = (
            np.arange(self.numel(value_shape), dtype='float32').reshape(
                value_shape
            )
            + 100
        )
W
WeiXin 已提交
887 888 889 890 891 892 893 894 895 896 897 898 899 900

        for _ in range(3):
            program = paddle.static.Program()

            index_mod = (index % (min(array.shape))).tolist()

            with paddle.static.program_guard(program):
                self.run_setitem_list_index(array, index_mod, value_np)

            array = array[0]
            index = index[0]

        # case 2:
        inps_shape = [3, 4, 5, 4, 3]
901 902 903
        array = np.arange(self.numel(inps_shape), dtype='float32').reshape(
            inps_shape
        )
W
WeiXin 已提交
904 905 906 907 908

        index_shape = [4, 3, 2, 2]
        index = np.arange(self.numel(index_shape)).reshape(index_shape)

        value_shape = [3]
909 910 911 912 913 914
        value_np = (
            np.arange(self.numel(value_shape), dtype='float32').reshape(
                value_shape
            )
            + 100
        )
W
WeiXin 已提交
915 916 917 918 919 920 921 922 923 924 925 926 927

        for _ in range(4):
            program = paddle.static.Program()
            index_mod = (index % (min(array.shape))).tolist()

            with paddle.static.program_guard(program):
                self.run_setitem_list_index(array, index_mod, value_np)

            array = array[0]
            index = index[0]

        # case 3:
        inps_shape = [3, 4, 5, 3, 3]
928 929 930
        array = np.arange(self.numel(inps_shape), dtype='float32').reshape(
            inps_shape
        )
W
WeiXin 已提交
931 932 933 934 935

        index_shape = [4, 3, 2, 2]
        index = np.arange(self.numel(index_shape)).reshape(index_shape)

        value_shape = [3, 2, 2, 3]
936 937 938 939 940 941
        value_np = (
            np.arange(self.numel(value_shape), dtype='float32').reshape(
                value_shape
            )
            + 100
        )
W
WeiXin 已提交
942 943 944
        index_mod = (index % (min(array.shape))).tolist()
        self.run_setitem_list_index(array, index_mod, value_np)

945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980
    def test_static_graph_setitem_bool_index(self):
        paddle.enable_static()

        # case 1:
        array = np.ones((4, 2, 3), dtype='float32')
        value_np = np.random.random((2, 3)).astype('float32')
        index = np.array([True, False, False, False])
        program = paddle.static.Program()
        with paddle.static.program_guard(program):
            self.run_setitem_list_index(array, index, value_np)

        # case 2:
        array = np.ones((4, 2, 3), dtype='float32')
        value_np = np.random.random((2, 3)).astype('float32')
        index = np.array([False, True, False, False])
        program = paddle.static.Program()
        with paddle.static.program_guard(program):
            self.run_setitem_list_index(array, index, value_np)

        # case 3:
        array = np.ones((4, 2, 3), dtype='float32')
        value_np = np.random.random((2, 3)).astype('float32')
        index = np.array([True, True, True, True])
        program = paddle.static.Program()
        with paddle.static.program_guard(program):
            self.run_setitem_list_index(array, index, value_np)

    def test_static_graph_setitem_bool_scalar_index(self):
        paddle.enable_static()
        array = np.ones((1, 2, 3), dtype='float32')
        value_np = np.random.random((2, 3)).astype('float32')
        index = np.array([True])
        program = paddle.static.Program()
        with paddle.static.program_guard(program):
            self.run_setitem_list_index(array, index, value_np)

W
WeiXin 已提交
981 982 983
    def test_static_graph_tensor_index_setitem_muti_dim(self):
        paddle.enable_static()
        inps_shape = [3, 4, 5, 4]
984 985 986
        array = np.arange(self.numel(inps_shape), dtype='float32').reshape(
            inps_shape
        )
W
WeiXin 已提交
987 988

        index_shape = [2, 3, 4]
989 990 991 992 993 994 995 996 997
        index1 = np.arange(self.numel(index_shape), dtype='int32').reshape(
            index_shape
        )
        index2 = (
            np.arange(self.numel(index_shape), dtype='int32').reshape(
                index_shape
            )
            + 2
        )
W
WeiXin 已提交
998 999

        value_shape = [4]
1000 1001 1002 1003 1004 1005
        value_np = (
            np.arange(self.numel(value_shape), dtype='float32').reshape(
                value_shape
            )
            + 100
        )
W
WeiXin 已提交
1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
        for _ in range(3):
            index_mod1 = index1 % (min(array.shape))
            index_mod2 = index2 % (min(array.shape))

            array2 = array.copy()
            array2[index_mod1, index_mod2] = value_np
            array3 = array.copy()
            array3[index_mod1] = value_np

            program = paddle.static.Program()
            with paddle.static.program_guard(program):
1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
                x1 = paddle.static.data(
                    name='x1', shape=array.shape, dtype='float32'
                )
                x2 = paddle.static.data(
                    name='x2', shape=array.shape, dtype='float32'
                )

                value = paddle.static.data(
                    name='value', shape=value_np.shape, dtype='float32'
                )
                index_1 = paddle.static.data(
                    name='index_1', shape=index1.shape, dtype='int32'
                )
                index_2 = paddle.static.data(
                    name='index_2', shape=index2.shape, dtype='int32'
                )
W
WeiXin 已提交
1033

1034 1035
                x1_out = paddle.static.setitem(x1, (index_1, index_2), value)
                x2_out = paddle.static.setitem(x2, index_1, value)
1036
                place = (
1037 1038 1039
                    paddle.base.CPUPlace()
                    if not paddle.base.core.is_compiled_with_cuda()
                    else paddle.base.CUDAPlace(0)
1040
                )
W
WeiXin 已提交
1041 1042 1043 1044 1045

                prog = paddle.static.default_main_program()
                exe = paddle.static.Executor(place)

                exe.run(paddle.static.default_startup_program())
1046
                fetch_list = [x1_out.name, x2_out.name]
W
WeiXin 已提交
1047

1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
                setitem_pp = exe.run(
                    prog,
                    feed={
                        x1.name: array,
                        x2.name: array,
                        value.name: value_np,
                        index_1.name: index_mod1,
                        index_2.name: index_mod2,
                    },
                    fetch_list=fetch_list,
                )
1059 1060 1061 1062
                np.testing.assert_array_equal(
                    array2,
                    setitem_pp[0],
                    err_msg='\n numpy:{},\n paddle:{}'.format(
1063 1064 1065
                        array2, setitem_pp[0]
                    ),
                )
1066 1067 1068 1069
                np.testing.assert_array_equal(
                    array3,
                    setitem_pp[1],
                    err_msg='\n numpy:{},\n paddle:{}'.format(
1070 1071 1072
                        array3, setitem_pp[1]
                    ),
                )
W
WeiXin 已提交
1073 1074 1075 1076 1077 1078 1079
            array = array[0]
            index1 = index1[0]
            index2 = index2[0]

    def test_static_graph_array_index_muti_dim(self):
        paddle.enable_static()
        inps_shape = [3, 4, 5, 4]
1080 1081 1082
        array = np.arange(self.numel(inps_shape), dtype='float32').reshape(
            inps_shape
        )
W
WeiXin 已提交
1083 1084

        index_shape = [2, 3, 4]
1085 1086 1087 1088 1089 1090 1091 1092 1093
        index1 = np.arange(self.numel(index_shape), dtype='int32').reshape(
            index_shape
        )
        index2 = (
            np.arange(self.numel(index_shape), dtype='int32').reshape(
                index_shape
            )
            + 2
        )
W
WeiXin 已提交
1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107

        for _ in range(3):
            index_mod1 = index1 % (min(array.shape))
            index_mod2 = index2 % (min(array.shape))

            array2 = array.copy()
            array2[index_mod1, index_mod2] = 1
            y_np1 = array2[index_mod2, index_mod1]
            array3 = array.copy()
            array3[index_mod1] = 2.5
            y_np2 = array3[index_mod2]

            program = paddle.static.Program()
            with paddle.static.program_guard(program):
1108 1109 1110 1111 1112 1113
                x1 = paddle.static.data(
                    name='x1', shape=array.shape, dtype='float32'
                )
                x2 = paddle.static.data(
                    name='x2', shape=array.shape, dtype='float32'
                )
W
WeiXin 已提交
1114

1115 1116 1117 1118
                x1_out = paddle.static.setitem(x1, (index_mod1, index_mod2), 1)
                x2_out = paddle.static.setitem(x2, index_mod1, 2.5)
                y1 = x1_out[index_mod2, index_mod1]
                y2 = x2_out[index_mod2]
1119
                place = (
1120 1121 1122
                    paddle.base.CPUPlace()
                    if not paddle.base.core.is_compiled_with_cuda()
                    else paddle.base.CUDAPlace(0)
1123
                )
W
WeiXin 已提交
1124 1125 1126 1127

                prog = paddle.static.default_main_program()
                exe = paddle.static.Executor(place)
                exe.run(paddle.static.default_startup_program())
1128
                fetch_list = [x1_out.name, x2_out.name, y1.name, y2.name]
W
WeiXin 已提交
1129

1130 1131 1132 1133 1134
                setitem_pp = exe.run(
                    prog,
                    feed={x1.name: array, x2.name: array},
                    fetch_list=fetch_list,
                )
1135 1136 1137 1138
                np.testing.assert_array_equal(
                    array2,
                    setitem_pp[0],
                    err_msg='\n numpy:{},\n paddle:{}'.format(
1139 1140 1141
                        array2, setitem_pp[0]
                    ),
                )
1142 1143 1144 1145
                np.testing.assert_array_equal(
                    array3,
                    setitem_pp[1],
                    err_msg='\n numpy:{},\n paddle:{}'.format(
1146 1147 1148
                        array3, setitem_pp[1]
                    ),
                )
1149 1150 1151 1152 1153

                np.testing.assert_array_equal(
                    y_np1,
                    setitem_pp[2],
                    err_msg='\n numpy:{},\n paddle:{}'.format(
1154 1155 1156
                        y_np1, setitem_pp[2]
                    ),
                )
1157 1158 1159 1160
                np.testing.assert_array_equal(
                    y_np2,
                    setitem_pp[3],
                    err_msg='\n numpy:{},\n paddle:{}'.format(
1161 1162 1163
                        y_np2, setitem_pp[3]
                    ),
                )
W
WeiXin 已提交
1164 1165 1166 1167 1168 1169 1170
            array = array[0]
            index1 = index1[0]
            index2 = index2[0]

    def test_dygraph_array_index_muti_dim(self):
        paddle.disable_static()
        inps_shape = [3, 4, 5, 4]
1171 1172 1173
        array = np.arange(self.numel(inps_shape), dtype='float32').reshape(
            inps_shape
        )
W
WeiXin 已提交
1174
        index_shape = [2, 3, 4]
1175 1176 1177 1178 1179 1180 1181 1182 1183
        index1 = np.arange(self.numel(index_shape), dtype='int32').reshape(
            index_shape
        )
        index2 = (
            np.arange(self.numel(index_shape), dtype='int32').reshape(
                index_shape
            )
            + 2
        )
W
WeiXin 已提交
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196

        for _ in range(3):
            index_mod1 = index1 % (min(array.shape))
            index_mod2 = index2 % (min(array.shape))
            index_mod_t1 = paddle.to_tensor(index_mod1)
            index_mod_t2 = paddle.to_tensor(index_mod2)
            # 2 dim getitem
            array1 = array.copy()
            y_np1 = array1[index_mod2, index_mod1]
            tensor1 = paddle.to_tensor(array)

            y_t1 = tensor1[index_mod_t2, index_mod_t1]

1197 1198 1199
            np.testing.assert_array_equal(
                y_t1.numpy(),
                y_np1,
1200
                err_msg=f'\n numpy:{y_np1},\n paddle:{y_t1.numpy()}',
1201
            )
W
WeiXin 已提交
1202 1203 1204 1205 1206 1207
            # 1 dim getitem
            array2 = array.copy()
            y_np2 = array2[index_mod2]
            tensor2 = paddle.to_tensor(array)

            y_t2 = tensor2[index_mod_t2]
1208 1209 1210
            np.testing.assert_array_equal(
                y_t2.numpy(),
                y_np2,
1211
                err_msg=f'\n numpy:{y_np2},\n paddle:{y_t2.numpy()}',
1212
            )
W
WeiXin 已提交
1213 1214 1215 1216 1217

            # 2 dim setitem
            array1 = array.copy()
            array1[index_mod1, index_mod2] = 1
            tensor1[index_mod_t1, index_mod_t2] = 1
1218 1219 1220 1221
            np.testing.assert_array_equal(
                tensor1.numpy(),
                array1,
                err_msg='\n numpy:{},\n paddle:{}'.format(
1222 1223 1224
                    array1, tensor1.numpy()
                ),
            )
W
WeiXin 已提交
1225 1226 1227 1228 1229 1230 1231
            # 1 dim setitem
            array2 = array.copy()

            array2[index_mod1] = 2.5

            tensor2[index_mod_t1] = 2.5

1232 1233 1234 1235
            np.testing.assert_array_equal(
                tensor2.numpy(),
                array2,
                err_msg='\n numpy:{},\n paddle:{}'.format(
1236 1237 1238
                    array2, tensor2.numpy()
                ),
            )
W
WeiXin 已提交
1239 1240 1241 1242 1243 1244

            array = array[0]
            index1 = index1[0]
            index2 = index2[0]


Y
Yu Yang 已提交
1245 1246
if __name__ == '__main__':
    unittest.main()