math.py 122.4 KB
Newer Older
W
WuHaobo 已提交
1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15 16
"""
math functions
"""
17
from __future__ import print_function
Y
Yang Zhang 已提交
18
import numpy as np
19

20 21 22 23 24 25
from paddle.common_ops_import import VarDesc
from paddle.common_ops_import import dygraph_only
from paddle.common_ops_import import OpProtoHolder
from paddle.common_ops_import import templatedoc
from paddle.common_ops_import import dygraph_utils

26
from paddle.tensor import cast
F
Feiyu Chan 已提交
27
from paddle.tensor.attribute import _complex_to_real_dtype
28
import paddle
29
from ..fluid import layers
30
from ..fluid.framework import core, _varbase_creator, in_dygraph_mode, Variable, convert_np_dtype_to_dtype_
L
Li Fuchen 已提交
31 32
from ..fluid.layer_helper import LayerHelper
from ..fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype, convert_dtype
33
from ..fluid.layers.layer_function_generator import _generate_doc_string_, generate_activation_fn, generate_layer_fn
34
from ..fluid.dygraph.inplace_utils import inplace_apis_in_dygraph_only
35 36 37

# TODO: define math functions
# yapf: disable
38 39 40 41
from ..fluid.layers import abs    # noqa: F401
from ..fluid.layers import acos    # noqa: F401
from ..fluid.layers import asin    # noqa: F401
from ..fluid.layers import ceil    # noqa: F401
42
from ..fluid.layers import ceil_    # noqa: F401
43 44 45 46 47
from ..fluid.layers import cos    # noqa: F401
from ..fluid.layers import tan    # noqa: F401
from ..fluid.layers import sinh    # noqa: F401
from ..fluid.layers import cosh    # noqa: F401
from ..fluid.layers import exp    # noqa: F401
48
from ..fluid.layers import exp_    # noqa: F401
R
ronnywang 已提交
49
from ..fluid.layers import expm1    # noqa: F401
50
from ..fluid.layers import floor    # noqa: F401
51
from ..fluid.layers import floor_    # noqa: F401
52 53
from ..fluid.layers import log    # noqa: F401
from ..fluid.layers import reciprocal    # noqa: F401
54
from ..fluid.layers import reciprocal_    # noqa: F401
55
from ..fluid.layers import round    # noqa: F401
56
from ..fluid.layers import round_    # noqa: F401
57
from ..fluid.layers import rsqrt    # noqa: F401
58
from ..fluid.layers import rsqrt_    # noqa: F401
59 60 61 62 63 64
from ..fluid.layers import scale    # noqa: F401
from ..fluid.layers import square    # noqa: F401
from ..fluid.layers import stanh    # noqa: F401
from ..fluid.layers import atan    # noqa: F401
from ..fluid.layers import erf    # noqa: F401
from ..fluid.layers import sqrt    # noqa: F401
65
from ..fluid.layers import sqrt_    # noqa: F401
66
from ..fluid.layers import sin    # noqa: F401
67
from ..fluid.layers import lgamma    # noqa: F401
X
xiaoting 已提交
68 69 70
from ..fluid.layers import asinh    # noqa: F401
from ..fluid.layers import acosh    # noqa: F401
from ..fluid.layers import atanh    # noqa: F401
71 72

from ..fluid.layers import multiplex    # noqa: F401
G
guofei 已提交
73
from ..fluid import layers
W
wanghuancoder 已提交
74
from paddle import _C_ops
75

76 77
__all__ = []

78 79 80 81 82 83 84 85 86 87 88 89 90
_supported_int_dtype_ = [
    VarDesc.VarType.UINT8,
    VarDesc.VarType.INT8,
    VarDesc.VarType.INT16,
    VarDesc.VarType.INT32,
    VarDesc.VarType.INT64,
]

_supported_float_dtype_ = [
    VarDesc.VarType.FP32,
    VarDesc.VarType.FP64,
]

91 92 93 94 95 96 97 98

@inplace_apis_in_dygraph_only
def scale_(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
    """
    Inplace version of ``scale`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_scale`.
    """
    _scale = scale.numpy().item(0) if isinstance(scale, Variable) else scale
W
wanghuancoder 已提交
99
    return _C_ops.scale_(x, 'scale',
100 101 102 103
                            float(_scale), 'bias',
                            float(bias), 'bias_after_scale', bias_after_scale)


104
def pow(x, y, name=None):
105
    """
106
    Compute the power of tensor elements. The equation is:
S
swtkiwi 已提交
107

108 109
    .. math::
        out = x^{y} 
110

111 112
    **Note**:
    ``paddle.pow`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
113 114


115 116
    Args:
        x (Tensor): An N-D Tensor, the data type is float32, float64, int32 or int64.
117
        y (float|int|Tensor): If it is an N-D Tensor, its data type should be the same as `x`.
118 119
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
    
120
    Returns:
121
        N-D Tensor. A location into which the result is stored. Its dimension and data type are the same as `x`.
122 123 124

    Examples:

125
        ..  code-block:: python
126 127 128

            import paddle

129 130 131 132 133 134 135 136 137 138 139 140
            x = paddle.to_tensor([1, 2, 3], dtype='float32')

            # example 1: y is a float or int
            res = paddle.pow(x, 2)
            print(res)
            # Tensor(shape=[3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [1., 4., 9.])
            res = paddle.pow(x, 2.5)
            print(res)
            # Tensor(shape=[3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [1.         , 5.65685415 , 15.58845711])

141
            # example 2: y is a Tensor
142
            y = paddle.to_tensor([2], dtype='float32')
143
            res = paddle.pow(x, y)
144 145 146
            print(res)
            # Tensor(shape=[3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [1., 4., 9.])
147 148

    """
149
    # in dynamic graph mode
W
WuHaobo 已提交
150
    if in_dygraph_mode():
151
        if isinstance(y, (int, float)):
W
wanghuancoder 已提交
152
            return _C_ops.pow(x, 'factor', y)
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
        elif isinstance(y, (paddle.Tensor, Variable)):
            return _elementwise_op_in_dygraph(
                x, y, axis=-1, act=None, op_name='elementwise_pow')
        else:
            raise TypeError('y must be scalar or tensor type, but received: %s '% (y.dtype))
    # in static graph mode
    else:
        if isinstance(y, (int, float)):
            helper = LayerHelper('pow', **locals())
            inputs = {'X': x}
            attrs = {'factor': y}
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
            helper.append_op(
                type='pow', inputs=inputs, outputs={'Out': out}, attrs=attrs)
            return out
        elif isinstance(y, (paddle.Tensor, Variable)):
            # TODO A potential speed improvement is supporting different types in C++ and removing the cast ops here
            helper = LayerHelper('elementwise_pow', **locals())
J
joejiong 已提交
171
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
172 173 174
            return _elementwise_op(LayerHelper('elementwise_pow', **locals()))
        else:
            raise TypeError('y must be scalar or tensor type, but received: %s '% (type(y)))
175 176 177



178 179 180 181 182 183 184
@dygraph_only
def _elementwise_op_in_dygraph(x,
                               y,
                               axis=-1,
                               act=None,
                               use_mkldnn=False,
                               op_name=None):
W
wanghuancoder 已提交
185
    op = getattr(_C_ops, op_name)
186 187 188 189 190 191 192 193 194 195 196 197
    out = op(x, y, 'axis', axis, 'use_mkldnn', use_mkldnn)

    return dygraph_utils._append_activation_in_dygraph(
        out, act, use_mkldnn=use_mkldnn)


def _elementwise_op(helper):
    op_type = helper.layer_type
    original_op_type = helper.kwargs.get('original_op_type', op_type)
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)

198 199
    out = helper.kwargs.get('out', None)

200 201 202
    assert x is not None, 'x cannot be None in {}'.format(original_op_type)
    assert y is not None, 'y cannot be None in {}'.format(original_op_type)
    check_variable_and_dtype(
W
will-jl944 已提交
203
        x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64', 'bool'],
204 205
        original_op_type)
    check_variable_and_dtype(
W
will-jl944 已提交
206
        y, 'y', ['float16', 'float32', 'float64', 'int32', 'int64', 'bool'],
207 208 209 210 211
        original_op_type)

    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
    name = helper.kwargs.get('name', None)
212 213 214 215 216 217

    if out is None:
        if name is None:
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
        else:
            out = helper.create_variable(name=name, dtype=x.dtype, persistable=False)
218 219 220 221 222 223 224 225 226 227 228

    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


Y
Yang Zhang 已提交
229
def add(x, y, name=None):
230
    """
231
    Examples:
232 233 234 235

    ..  code-block:: python

        import paddle
236 237
        x = paddle.to_tensor([2, 3, 4], 'float64')
        y = paddle.to_tensor([1, 5, 2], 'float64')
W
WuHaobo 已提交
238
        z = paddle.add(x, y)
239
        print(z)  # [3., 8., 6. ]
240 241

    """
242

243
    if in_dygraph_mode():
W
wanghuancoder 已提交
244
        return _C_ops.elementwise_add(x, y)
245

246
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))
247 248


249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
@inplace_apis_in_dygraph_only
def add_(x, y, name=None):
    """
    Inplace version of ``add`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_add`.
    """
    op_type = 'elementwise_add_'
    axis = -1

    out_shape = broadcast_shape(x.shape, y.shape)
    if out_shape != x.shape:
        raise ValueError("The shape of broadcast output {} is different from that of inplace tensor {} in the Inplace operation.".format(out_shape, x.shape))

    out = _elementwise_op_in_dygraph(
        x, y, axis=axis, op_name=op_type)
    return out


267 268
def subtract(x, y, name=None):
    """
W
Wei Shengyu 已提交
269
    Substract two tensors element-wise. The equation is:
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287

    .. math::
        out = x - y

    **Note**:
    ``paddle.subtract`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .

    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.

    Examples:

        .. code-block:: python
W
Wei Shengyu 已提交
288

289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
            import numpy as np
            import paddle

            x = paddle.to_tensor([[1, 2], [7, 8]])
            y = paddle.to_tensor([[5, 6], [3, 4]])
            res = paddle.subtract(x, y)
            print(res)
            #       [[-4, -4],
            #        [4, 4]]

            x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
            y = paddle.to_tensor([1, 0, 4])
            res = paddle.subtract(x, y)
            print(res)
            #       [[[ 0,  2, -1],
            #         [ 0,  2, -1]]]

            x = paddle.to_tensor([2, np.nan, 5], dtype='float32')
            y = paddle.to_tensor([1, 4, np.nan], dtype='float32')
            res = paddle.subtract(x, y)
            print(res)
            #       [ 1., nan, nan]

            x = paddle.to_tensor([5, np.inf, -np.inf], dtype='float64')
            y = paddle.to_tensor([1, 4, 5], dtype='float64')
            res = paddle.subtract(x, y)
            print(res)
            #       [   4.,  inf., -inf.]

    """
    op_type = 'elementwise_sub'
    axis = -1
    act = None
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name=op_type)
    return _elementwise_op(LayerHelper(op_type, **locals()))


328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
@inplace_apis_in_dygraph_only
def subtract_(x, y, name=None):
    """
    Inplace version of ``subtract`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_subtract`.
    """
    axis = -1
    act = None

    out_shape = broadcast_shape(x.shape, y.shape)
    if out_shape != x.shape:
        raise ValueError("The shape of broadcast output {} is different from that of inplace tensor {} in the Inplace operation.".format(out_shape, x.shape))

    out = _elementwise_op_in_dygraph(
        x, y, axis=axis, act=act, op_name='elementwise_sub_')
    return out


346
def divide(x, y, name=None):
347
    """
348
    Divide two tensors element-wise. The equation is:
349

350 351
    .. math::
        out = x / y
352

353 354
    **Note**:
    ``paddle.divide`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
355

356 357 358 359
    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
360

361
    Returns:
362
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.
363

364
    Examples:
365

366
        ..  code-block:: python
367

368
            import paddle
369

370 371
            x = paddle.to_tensor([2, 3, 4], dtype='float64')
            y = paddle.to_tensor([1, 5, 2], dtype='float64')
372
            z = paddle.divide(x, y)
373
            print(z)  # [2., 0.6, 2.]
374

375 376 377 378 379 380 381
    """
    op_type = 'elementwise_div'
    axis = -1
    act = None
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name=op_type)
382

383
    return _elementwise_op(LayerHelper(op_type, **locals()))
384 385


386 387 388
def floor_divide(x, y, name=None):
    """
    Floor divide two tensors element-wise. The equation is:
389

390 391
    .. math::
        out = x // y
392

393 394
    **Note**:
    ``paddle.floor_divide`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
395

396 397 398 399
    Args:
        x (Tensor): the input tensor, it's data type should be int32, int64.
        y (Tensor): the input tensor, it's data type should be int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
400

401 402
    Returns:
        N-D Tensor. A location into which the result is stored. It's dimension equals with $x$.
403

404
    Examples:
405

406
        ..  code-block:: python
407

408
            import paddle
409

410 411
            x = paddle.to_tensor([2, 3, 8, 7])
            y = paddle.to_tensor([1, 5, 3, 3])
412
            z = paddle.floor_divide(x, y)
413
            print(z)  # [2, 0, 2, 2]
414

415 416 417 418 419 420
    """
    op_type = 'elementwise_floordiv'
    axis = -1
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, op_name=op_type)
421

422
    return _elementwise_op(LayerHelper(op_type, **locals()))
423 424


425
def remainder(x, y, name=None):
426
    r"""
427 428 429
    Mod two tensors element-wise. The equation is:

    .. math::
430

431 432 433
        out = x \% y

    **Note**:
434
    ``paddle.remainder`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
435 436

    Args:
W
WangXi 已提交
437 438
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
439 440 441
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
442
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.
443 444 445 446 447 448 449

    Examples:

        ..  code-block:: python

            import paddle

450 451
            x = paddle.to_tensor([2, 3, 8, 7])
            y = paddle.to_tensor([1, 5, 3, 3])
452
            z = paddle.remainder(x, y)
W
WangXi 已提交
453
            print(z)  # [0, 3, 2, 1]
454 455 456

    """
    op_type = 'elementwise_mod'
457 458 459
    axis = -1
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
460
            x, y, axis=axis, op_name=op_type)
461 462 463 464

    return _elementwise_op(LayerHelper(op_type, **locals()))


465 466
mod = remainder  # noqa: F841
floor_mod = remainder  # noqa: F841
467 468


469
def multiply(x, y, name=None):
470
    """
471
    multiply two tensors element-wise. The equation is:
472

473 474
    .. math::
        out = x * y
475

476 477
    **Note**:
    ``paddle.multiply`` supports broadcasting. If you would like to know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
478

479
    Args:
W
will-jl944 已提交
480 481
        x (Tensor): the input tensor, its data type should be one of float32, float64, int32, int64, bool.
        y (Tensor): the input tensor, its data type should be one of float32, float64, int32, int64, bool.
482
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
483

484
    Returns:
485
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.
486

487 488 489 490 491 492
    Examples:

        ..  code-block:: python

            import paddle

493 494
            x = paddle.to_tensor([[1, 2], [3, 4]])
            y = paddle.to_tensor([[5, 6], [7, 8]])
495
            res = paddle.multiply(x, y)
496
            print(res) # [[5, 12], [21, 32]]
497

498
            x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
499 500 501
            y = paddle.to_tensor([2])
            res = paddle.multiply(x, y)
            print(res) # [[[2, 4, 6], [2, 4, 6]]]
502 503 504 505

    """
    op_type = 'elementwise_mul'
    act = None
506
    axis = -1
507

508 509 510 511
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name=op_type)

512 513 514 515 516
    if x.dtype != y.dtype:
        raise TypeError(
            'Input tensors must be same type, but received type of x: %s, type of y: %s '
            % (x.dtype, y.dtype))

517 518
    return _elementwise_op(LayerHelper(op_type, **locals()))

519
def maximum(x, y, name=None):
520
    """
W
Wei Shengyu 已提交
521
    Compare two tensors and returns a new tensor containing the element-wise maxima. The equation is:
522

523 524
    .. math::
        out = max(x, y)
525

526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
    **Note**:
    ``paddle.maximum`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .

    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.

    Examples:

        .. code-block:: python

            import numpy as np
            import paddle

            x = paddle.to_tensor([[1, 2], [7, 8]])
            y = paddle.to_tensor([[3, 4], [5, 6]])
            res = paddle.maximum(x, y)
            print(res)
            #    [[3, 4],
            #     [7, 8]]

            x = paddle.to_tensor([[1, 2, 3], [1, 2, 3]])
            y = paddle.to_tensor([3, 0, 4])
            res = paddle.maximum(x, y)
            print(res)
            #    [[3, 2, 4],
            #     [3, 2, 4]]

            x = paddle.to_tensor([2, 3, 5], dtype='float32')
            y = paddle.to_tensor([1, np.nan, np.nan], dtype='float32')
            res = paddle.maximum(x, y)
            print(res)
            #    [ 2., nan, nan]

            x = paddle.to_tensor([5, 3, np.inf], dtype='float32')
            y = paddle.to_tensor([1, -np.inf, 5], dtype='float32')
            res = paddle.maximum(x, y)
            print(res)
            #    [  5.,   3., inf.]
569 570
    """
    op_type = 'elementwise_max'
571
    axis = -1
572 573 574 575 576 577
    act = None
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name=op_type)
    return _elementwise_op(LayerHelper(op_type, **locals()))

578
def minimum(x, y, name=None):
579
    """
W
Wei Shengyu 已提交
580
    Compare two tensors and returns a new tensor containing the element-wise minima. The equation is:
581

582 583
    .. math::
        out = min(x, y)
584

585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627
    **Note**:
    ``paddle.minimum`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .

    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.

    Examples:

        .. code-block:: python

            import numpy as np
            import paddle

            x = paddle.to_tensor([[1, 2], [7, 8]])
            y = paddle.to_tensor([[3, 4], [5, 6]])
            res = paddle.minimum(x, y)
            print(res)
            #       [[1, 2],
            #        [5, 6]]

            x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
            y = paddle.to_tensor([3, 0, 4])
            res = paddle.minimum(x, y)
            print(res)
            #       [[[1, 0, 3],
            #         [1, 0, 3]]]

            x = paddle.to_tensor([2, 3, 5], dtype='float32')
            y = paddle.to_tensor([1, np.nan, np.nan], dtype='float32')
            res = paddle.minimum(x, y)
            print(res)
            #       [ 1., nan, nan]

            x = paddle.to_tensor([5, 3, np.inf], dtype='float64')
            y = paddle.to_tensor([1, -np.inf, 5], dtype='float64')
            res = paddle.minimum(x, y)
            print(res)
            #       [   1., -inf.,    5.]
628 629
    """
    op_type = 'elementwise_min'
630
    axis = -1
631 632 633 634 635
    act = None
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name=op_type)
    return _elementwise_op(LayerHelper(op_type, **locals()))
636

L
LJQ❤️ 已提交
637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758
def fmax(x, y, name=None):
    """
    Compares the elements at the corresponding positions of the two tensors and returns a new tensor containing the maximum value of the element.
    If one of them is a nan value, the other value is directly returned, if both are nan values, then the first nan value is returned.
    The equation is:

    .. math::
        out = fmax(x, y)

    **Note**:
    ``paddle.fmax`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .

    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.

    Examples:

        .. code-block:: python

            import numpy as np
            import paddle

            x = paddle.to_tensor([[1, 2], [7, 8]])
            y = paddle.to_tensor([[3, 4], [5, 6]])
            res = paddle.fmax(x, y)
            print(res)
            #    [[3, 4],
            #     [7, 8]]

            x = paddle.to_tensor([[1, 2, 3], [1, 2, 3]])
            y = paddle.to_tensor([3, 0, 4])
            res = paddle.fmax(x, y)
            print(res)
            #    [[3, 2, 4],
            #     [3, 2, 4]]

            x = paddle.to_tensor([2, 3, 5], dtype='float32')
            y = paddle.to_tensor([1, np.nan, np.nan], dtype='float32')
            res = paddle.fmax(x, y)
            print(res)
            #    [ 2., 3., 5.]

            x = paddle.to_tensor([5, 3, np.inf], dtype='float32')
            y = paddle.to_tensor([1, -np.inf, 5], dtype='float32')
            res = paddle.fmax(x, y)
            print(res)
            #    [  5.,   3., inf.]
    """
    op_type = 'elementwise_fmax'
    axis = -1
    act = None
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name=op_type)
    return _elementwise_op(LayerHelper(op_type, **locals()))

def fmin(x, y, name=None):
    """
    Compares the elements at the corresponding positions of the two tensors and returns a new tensor containing the minimum value of the element.
    If one of them is a nan value, the other value is directly returned, if both are nan values, then the first nan value is returned.
    The equation is:

    .. math::
        out = fmin(x, y)

    **Note**:
    ``paddle.fmin`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .

    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.

    Examples:

        .. code-block:: python

            import numpy as np
            import paddle

            x = paddle.to_tensor([[1, 2], [7, 8]])
            y = paddle.to_tensor([[3, 4], [5, 6]])
            res = paddle.fmin(x, y)
            print(res)
            #       [[1, 2],
            #        [5, 6]]

            x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
            y = paddle.to_tensor([3, 0, 4])
            res = paddle.fmin(x, y)
            print(res)
            #       [[[1, 0, 3],
            #         [1, 0, 3]]]

            x = paddle.to_tensor([2, 3, 5], dtype='float32')
            y = paddle.to_tensor([1, np.nan, np.nan], dtype='float32')
            res = paddle.fmin(x, y)
            print(res)
            #       [ 1., 3., 5.]

            x = paddle.to_tensor([5, 3, np.inf], dtype='float64')
            y = paddle.to_tensor([1, -np.inf, 5], dtype='float64')
            res = paddle.fmin(x, y)
            print(res)
            #       [   1., -inf.,    5.]
    """
    op_type = 'elementwise_fmin'
    axis = -1
    act = None
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name=op_type)
    return _elementwise_op(LayerHelper(op_type, **locals()))

759 760
for func in [
        add,
761
        multiply
762
]:
763
    proto_dict = {'add': 'elementwise_add', 'multiply': 'elementwise_mul'}
764 765
    op_proto = OpProtoHolder.instance().get_op_proto(proto_dict[func.__name__])

Y
Yang Zhang 已提交
766 767 768 769 770 771 772
    additional_args_lines = [
        "name (string, optional): Name of the output. \
        Default is None. It's used to print debug info for developers. Details: \
        :ref:`api_guide_Name` "
    ]

    func.__doc__ = _generate_doc_string_(
773 774
        op_proto,
        additional_args_lines=additional_args_lines,
775
        skip_attrs_set={"x_data_format", "y_data_format", "axis",
776
            "use_quantizer", "mkldnn_data_type", "Scale_x", "Scale_y", "Scale_out"
777
        }) + """\n""" + str(func.__doc__)
778

Y
Yang Zhang 已提交
779

780
def sum(x, axis=None, dtype=None, keepdim=False, name=None):
781 782 783 784
    """
    Computes the sum of tensor elements over the given dimension.

    Args:
785
        x (Tensor): An N-D Tensor, the data type is bool, float16, float32, float64, int32 or int64.
786 787
        axis (int|list|tuple, optional): The dimensions along which the sum is performed. If
            :attr:`None`, sum all elements of :attr:`x` and return a
N
Noel 已提交
788
            Tensor with a single element, otherwise must be in the
789 790 791 792 793 794 795
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        dtype (str, optional): The dtype of output Tensor. The default value is None, the dtype
            of output is the same as input Tensor `x`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
796
            value is False.
797
        name (str, optional): The default value is None. Normally there is no need for
798 799 800
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`

    Returns:
801
        Tensor: Results of summation operation on the specified axis of input Tensor `x`,
802 803
        if `x.dtype='bool'`, `x.dtype='int32'`, it's data type is `'int64'`, 
        otherwise it's data type is the same as `x`.
804 805

    Raises:
806
        TypeError: The type of :attr:`axis` must be int, list or tuple.
807

808 809 810 811
    Examples:
        .. code-block:: python

            import paddle
812

813
            # x is a Tensor with following elements:
814 815 816
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the corresponding output tensor.
817 818
            x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
                                  [0.1, 0.2, 0.6, 0.7]])
819
            out1 = paddle.sum(x)  # [3.5]
820 821 822
            out2 = paddle.sum(x, axis=0)  # [0.3, 0.5, 1.1, 1.6]
            out3 = paddle.sum(x, axis=-1)  # [1.9, 1.6]
            out4 = paddle.sum(x, axis=1, keepdim=True)  # [[1.9], [1.6]]
823

824
            # y is a Tensor with shape [2, 2, 2] and elements as below:
825 826 827
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
            # Each example is followed by the corresponding output tensor.
828 829
            y = paddle.to_tensor([[[1, 2], [3, 4]], 
                                  [[5, 6], [7, 8]]])
830 831
            out5 = paddle.sum(y, axis=[1, 2]) # [10, 26]
            out6 = paddle.sum(y, axis=[0, 1]) # [16, 20]
832 833 834 835 836 837 838 839 840 841
            
            # x is a Tensor with following elements:
            #    [[True, True, True, True]
            #     [False, False, False, False]]
            # Each example is followed by the corresponding output tensor.
            x = paddle.to_tensor([[True, True, True, True],
                                  [False, False, False, False]])
            out7 = paddle.sum(x)  # [4]
            out8 = paddle.sum(x, axis=0)  # [1, 1, 1, 1]
            out9 = paddle.sum(x, axis=1)  # [4, 0]
842
    """
843 844 845 846 847 848 849 850 851 852 853
    if axis is not None and not isinstance(axis, (list, tuple)):
        axis = [axis]

    if not axis:
        reduce_all_flag = True
    else:
        if len(axis) == len(x.shape):
            reduce_all_flag = True
        else:
            reduce_all_flag = False

854 855 856 857 858 859 860 861 862
    def get_dtype(x, dtype):
        if dtype is not None:
            return (True, dtype)
        src_type = convert_dtype(x.dtype)
        if src_type in ['bool','int32', 'int64']:
            return (True, 'int64')
        return (False, src_type)

    dtype_flag, dtype = get_dtype(x, dtype)
863
    if in_dygraph_mode():
864
        axis = axis if axis != None and axis != [] else [0]
865
        if dtype_flag:
W
wanghuancoder 已提交
866
            return _C_ops.reduce_sum(x, 'dim', axis, 'keep_dim', keepdim,
867 868
                                       'reduce_all', reduce_all_flag, 'in_dtype',
                                       x.dtype, 'out_dtype',
869 870
                                       convert_np_dtype_to_dtype_(dtype))
        else:
W
wanghuancoder 已提交
871
            return _C_ops.reduce_sum(x, 'dim', axis, 'keep_dim', keepdim,
872
                                       'reduce_all', reduce_all_flag)
W
wanghuancoder 已提交
873 874 875 876 877 878 879

    attrs = {
        'dim': axis if axis != None and axis != [] and axis != () else [0],
        'keep_dim': keepdim,
        'reduce_all': reduce_all_flag
    }

880 881 882 883 884
    if dtype_flag:
        attrs.update({
            'in_dtype': x.dtype,
            'out_dtype': convert_np_dtype_to_dtype_(dtype)
        })
W
wanghuancoder 已提交
885

886
    check_variable_and_dtype(
887 888 889 890
        x, 'x', ['bool', 'float16', 'float32', 'float64',
                'int32', 'int64', 'complex64', 'complex128',
                u'bool', u'float16', u'float32', u'float64',
                u'int32', u'int64', u'complex64', u'complex128'], 'sum')
891

892 893
    check_type(axis, 'axis', (int, list, tuple, type(None)), 'sum')

894 895 896 897 898
    helper = LayerHelper('sum', **locals())
    if dtype_flag:
        out = helper.create_variable_for_type_inference(
            dtype=convert_np_dtype_to_dtype_(dtype))
    else:
899
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
900 901
    helper.append_op(
        type='reduce_sum',
902
        inputs={'X': x},
903 904 905
        outputs={'Out': out},
        attrs=attrs)
    return out
906

907

908
@templatedoc(op_type="sum")
S
Steffy-zxf 已提交
909
def add_n(inputs, name=None):
910
    """
S
Steffy-zxf 已提交
911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945
    This OP is used to sum one or more Tensor of the input.
    
    For example:

    .. code-block:: text
    
        Case 1:

            Input:
                input.shape = [2, 3]
                input = [[1, 2, 3],
                         [4, 5, 6]]

            Output:
                output.shape = [2, 3]
                output = [[1, 2, 3],
                          [4, 5, 6]]

        Case 2:
       
            Input:
                First input:
                    input1.shape = [2, 3]
                    Input1 = [[1, 2, 3],
                              [4, 5, 6]]

                The second input:
                    input2.shape = [2, 3]
                    input2 = [[7, 8, 9],
                              [10, 11, 12]]

                Output:
                    output.shape = [2, 3]
                    output = [[8, 10, 12],
                              [14, 16, 18]]
946 947

    Args:
948
        inputs (Tensor|list[Tensor]|tuple[Tensor]):  A Tensor or a list/tuple of Tensors. The shape and data type of the list/tuple elements should be consistent.
S
Steffy-zxf 已提交
949
            Input can be multi-dimensional Tensor, and data types can be: float32, float64, int32, int64.
950 951 952 953
        name(str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`

    Returns:
S
Steffy-zxf 已提交
954
        Tensor, the sum of input :math:`inputs` , its shape and data types are consistent with :math:`inputs`.
955 956 957 958 959 960

    Examples:
        .. code-block:: python

            import paddle

S
Steffy-zxf 已提交
961 962 963 964 965
            input0 = paddle.to_tensor([[1, 2, 3], [4, 5, 6]], dtype='float32')
            input1 = paddle.to_tensor([[7, 8, 9], [10, 11, 12]], dtype='float32')
            output = paddle.add_n([input0, input1])
            # [[8., 10., 12.], 
            #  [14., 16., 18.]]
966
    """
S
Steffy-zxf 已提交
967 968 969
    if in_dygraph_mode():
        if isinstance(inputs, Variable):
            inputs = [inputs]
W
wanghuancoder 已提交
970
        return _C_ops.sum(inputs, 'use_mkldnn', False)
971

S
Steffy-zxf 已提交
972 973
    helper = LayerHelper('add_n', **locals())
    check_type(inputs, 'inputs', (Variable, tuple, list), 'add_n')
974 975 976 977
    if isinstance(inputs, list) or isinstance(inputs, tuple):
        if len(inputs) > 0:
            for input in inputs:
                check_variable_and_dtype(input, "inputs", \
S
Steffy-zxf 已提交
978
                   ['float32', 'float64', 'int32', 'int64'], 'add_n')
979 980
    else:
        check_variable_and_dtype(inputs, "inputs", \
S
Steffy-zxf 已提交
981
                ['float32', 'float64', 'int32', 'int64'], 'add_n')
982 983


984 985 986 987 988 989 990 991 992 993 994
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('inputs'))
    helper.append_op(
        type='sum',
        inputs={'X': inputs},
        outputs={'Out': out},
        attrs={'use_mkldnn': False})

    return out


995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
def trunc(input, name=None):
    '''
    This API is used to returns a new tensor with the truncated integer values of input.
    
    Args:
        input (Tensor): The input tensor, it's data type should be int32, int64, float32, float64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
    
    Returns:
        Tensor: The output Tensor of trunc.
    
    Examples:
        .. code-block:: python

            import paddle

            input = paddle.rand([2,2],'float32')
            print(input)
            # Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         [[0.02331470, 0.42374918],
            #         [0.79647720, 0.74970269]])

            output = paddle.trunc(input)
            print(output)
            # Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         [[0., 0.],
            #         [0., 0.]]))
    '''
    if in_dygraph_mode():
W
wanghuancoder 已提交
1024
        return _C_ops.trunc(input)
1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
    else:
        inputs = {"X": input}
        attrs = {}

        helper = LayerHelper("trunc", **locals())
        check_variable_and_dtype(input, 'X', ['int32', 'int64', 'float32', 'float64'], 'trunc')
        out = helper.create_variable_for_type_inference(dtype=input.dtype)

        helper.append_op(
            type="trunc", inputs=inputs, attrs=attrs, outputs={"Out": out})
        return out



W
WuHaobo 已提交
1039
def mm(input, mat2, name=None):
1040
    """
S
swtkiwi 已提交
1041

1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.


    Also note that if the raw tensor :math:`x` or :math:`mat2` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
    removed after matrix multiplication.

    Args:
1053
        input (Tensor): The input tensor which is a Tensor.
N
Noel 已提交
1054
        mat2 (Tensor): The input tensor which is a Tensor.
1055 1056 1057 1058
        name(str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`

    Returns:
N
Noel 已提交
1059
        Tensor: The product Tensor.
1060 1061 1062 1063 1064

    Examples:
        .. code-block:: python

            import paddle
1065 1066 1067 1068 1069 1070 1071 1072
            input = paddle.arange(1, 7).reshape((3, 2)).astype('float32')
            mat2 = paddle.arange(1, 9).reshape((2, 4)).astype('float32')
            out = paddle.mm(input, mat2)
            print(out)
            #        [[11., 14., 17., 20.],
            #         [23., 30., 37., 44.],
            #         [35., 46., 57., 68.]])

N
Noel 已提交
1073

1074 1075
    """
    if in_dygraph_mode():
1076
        return _C_ops.matmul_v2(input, mat2)
1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113

    def __check_input(x, y):
        var_names = {'x': x, 'y': y}
        for name, val in var_names.items():
            check_variable_and_dtype(val, name,
                                     ['float16', 'float32', 'float64'], 'mm')
        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
            y_shape = y_shape + [1]

        # check the inner 2 dimensions
        if x_shape[-1] != y_shape[-2]:
            if not ((x_shape[-1] == -1) or (y_shape[-2] == -1)):
                raise ValueError(
                    "After performing an optional transpose, Input X's width should be "
                    "equal to Y's width for multiplication "
                    "prerequisites. But received X's shape: %s, Y's shape: %s\n"
                    % (x_shape, y_shape))

        if len(y_shape) > 2 and len(x_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                # don't check neg shape
                if dim_x < 0 or y_shape[i] < 0:
                    continue
                if dim_x != y_shape[i]:
                    raise ValueError(
                        "When the matrix is larger than 2 dimensions, the higher "
                        "dimensional values of the two matrices need to be equal. "
                        "But received x_shape[%d] != y_shape[%d]. X's shape: %s, "
                        "Y's shape: %s.\n" % (i, i, x_shape, y_shape))

    __check_input(input, mat2)

    helper = LayerHelper('mm', **locals())
W
WuHaobo 已提交
1114
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
1115
    helper.append_op(
1116
        type='matmul_v2', inputs={'X': input,
1117 1118
                               'Y': mat2}, outputs={'Out': out})
    return out
1119

1120

Y
yaoxuefeng 已提交
1121
def addmm(input, x, y, beta=1.0, alpha=1.0, name=None):
1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
    """
    **addmm**

    This operator is used to perform matrix multiplication for input $x$ and $y$.
    $input$ is added to the final result.
    The equation is:

    ..  math::
        Out = alpha * x * y + beta * input

    $Input$, $x$ and $y$ can carry the LoD (Level of Details) information, or not. But the output only shares the LoD information with input $input$.

    Args:
Y
yaoxuefeng 已提交
1135 1136 1137
        input (Tensor): The input Tensor to be added to the final result.
        x (Tensor): The first input Tensor for matrix multiplication.
        y (Tensor): The second input Tensor for matrix multiplication.
1138
        beta (float): Coefficient of $input$.
Y
yaoxuefeng 已提交
1139
        alpha (float): Coefficient of $x*y$.
1140 1141 1142
        name (str, optional): Name of the output. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Default is None.

    Returns:
Y
yaoxuefeng 已提交
1143
        Tensor: The output Tensor of addmm op.
1144 1145 1146

    Examples:
        ..  code-block:: python
Y
yaoxuefeng 已提交
1147
            
1148 1149
            import paddle

Y
yaoxuefeng 已提交
1150 1151 1152
            x = paddle.ones([2,2])
            y = paddle.ones([2,2])
            input = paddle.ones([2,2])
Y
yaoxuefeng 已提交
1153

Y
yaoxuefeng 已提交
1154
            out = paddle.addmm( input=input, x=x, y=y, beta=0.5, alpha=5.0 )
Y
yaoxuefeng 已提交
1155

N
Noel 已提交
1156
            print(out)
1157 1158 1159
            # [[10.5 10.5]
            # [10.5 10.5]]
    """
Y
yaoxuefeng 已提交
1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
    input_shape = input.shape
    x_shape = x.shape
    y_shape = y.shape
    if not len(input_shape) == len(x_shape) == len(y_shape) == 2:
        raise ValueError("The dimention of input, x, y should be 2 but receive input's shape: {}, x's shape: {}, y's shape: {}".format(input_shape, x_shape, y_shape))
    if input_shape[0] != x_shape[0]:
        if input_shape[0] != 1:
            raise ValueError( "When x's dimension[0] is not equal with input's dimension[0], input's dimension[0] must be 1 but got {}".format(input_shape[0]))
        if input_shape[1] != y_shape[1] and input_shape[1] != 1:
            raise ValueError( "When y's dimension[1] is not equal with input's dimension[1], input's dimension[1] must be 1 but got {}".format(input_shape[1]))
    if input_shape[1] != y_shape[1]:
        if input_shape[1] != 1:
            raise ValueError( "When y's dimension[1] is not equal with input's dimension[1], input's dimension[1] must be 1 but got {}".format(input_shape[1]))
        if input_shape[0] != x_shape[0] and input_shape[0] != 1:
            raise ValueError( "When x's dimension[0] is not equal with input's dimension[0], input's dimension[0] must be 1 but got {}".format(input_shape[0]))
    if x_shape[1] != y_shape[0]:
        raise ValueError("The input Variable x's width must be equal with Variable y' height. But received x's shape = {}, y's shape = {}.".format(x_shape, y_shape))



1180
    if in_dygraph_mode():
W
wanghuancoder 已提交
1181
        out = _C_ops.addmm(input, x, y, "Alpha", alpha, "Beta", beta)
1182 1183
        return out

1184 1185 1186 1187
    inputs = {'Input': input, "X": x, "Y": y}
    attrs = {'Alpha': alpha, 'Beta': beta}

    helper = LayerHelper("addmm", **locals())
Y
yaoxuefeng 已提交
1188
    check_variable_and_dtype(input, 'Input', ['float32', 'float64'], 'addmm')
1189 1190 1191 1192 1193 1194 1195
    check_variable_and_dtype(x, 'X', ['float32', 'float64'], 'addmm')
    check_variable_and_dtype(y, 'Y', ['float32', 'float64'], 'addmm')
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(
        type="addmm", inputs=inputs, attrs=attrs, outputs={"Out": out})
    return out
1196 1197


1198
def logsumexp(x, axis=None, keepdim=False, name=None):
1199
    r"""
1200
    This OP calculates the log of the sum of exponentials of ``x`` along ``axis`` .
1201

1202
    .. math::
1203
       logsumexp(x) = \\log\\sum exp(x)
1204

1205
    Args:
S
Shang Zhizhou 已提交
1206 1207
        x (Tensor): The input Tensor with data type float32 or float64, which 
            have no more than 4 dimensions.
1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
        axis (int|list|tuple, optional): The axis along which to perform
            logsumexp calculations. ``axis`` should be int, list(int) or
            tuple(int). If ``axis`` is a list/tuple of dimension(s), logsumexp
            is calculated along all element(s) of ``axis`` . ``axis`` or
            element(s) of ``axis`` should be in range [-D, D), where D is the
            dimensions of ``x`` . If ``axis`` or element(s) of ``axis`` is
            less than 0, it works the same way as :math:`axis + D` . If
            ``axis`` is None, logsumexp is calculated along all elements of
            ``x``. Default is None.
        keepdim (bool, optional): Whether to reserve the reduced dimension(s)
            in the output Tensor. If ``keep_dim`` is True, the dimensions of
            the output Tensor is the same as ``x`` except in the reduced
            dimensions(it is of size 1 in this case). Otherwise, the shape of
            the output Tensor is squeezed in ``axis`` . Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
1224

1225
    Returns:
1226 1227
        Tensor, results of logsumexp along ``axis`` of ``x``, with the same data
        type as ``x``.
1228

1229
    Examples:
1230

1231
    .. code-block:: python
1232

1233 1234
        import paddle

1235
        x = paddle.to_tensor([[-1.5, 0., 2.], [3., 1.2, -2.4]])
1236 1237
        out1 = paddle.logsumexp(x) # [3.4691226]
        out2 = paddle.logsumexp(x, 1) # [2.15317821, 3.15684602]
1238 1239

    """
1240 1241 1242 1243 1244 1245 1246
    if isinstance(axis, int):
        axis = [axis]
    reduce_all = True if axis is None \
        or len(axis)==0 \
        or len(axis) == len(x.shape) else False
    if axis is None or len(axis) == 0:
        axis = [0]
1247

1248
    if in_dygraph_mode():
W
wanghuancoder 已提交
1249
        return _C_ops.logsumexp(x, 'axis', axis, 'keepdim', keepdim, 'reduce_all', reduce_all)
1250

1251 1252 1253
    check_variable_and_dtype(x, 'x',
                             ['float32', 'float64'],
                             'logsumexp')
1254

1255
    helper = LayerHelper('logsumexp', **locals())
1256
    attrs = {'axis': axis, 'keepdim': keepdim, 'reduce_all':reduce_all}
1257 1258 1259 1260
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type='logsumexp', inputs={'X': x}, outputs={'Out': out}, attrs=attrs)
    return out
1261

S
swtkiwi 已提交
1262

1263 1264
def inverse(x, name=None):
    """
1265 1266 1267 1268 1269
    Takes the inverse of the square matrix. A square matrix is a matrix with
    the same number of rows and columns. The input can be a square matrix
    (2-D Tensor) or batches of square matrices.

    Args:
1270
        x (Tensor): The input tensor. The last two
1271 1272 1273 1274 1275 1276 1277 1278
            dimensions should be equal. When the number of dimensions is
            greater than 2, it is treated as batches of square matrix. The data
            type can be float32 and float64.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information,
            please refer to :ref:`api_guide_Name`

    Returns:
1279
        Tensor: A Tensor holds the inverse of x. The shape and data type
1280
                        is the same as x.
1281 1282 1283 1284 1285

    Examples:
        .. code-block:: python

            import paddle
1286 1287

            mat = paddle.to_tensor([[2, 0], [0, 2]], dtype='float32')
1288 1289
            inv = paddle.inverse(mat)
            print(inv) # [[0.5, 0], [0, 0.5]]
1290 1291 1292

    """
    if in_dygraph_mode():
W
wanghuancoder 已提交
1293
        return _C_ops.inverse(x)
1294

1295 1296
    def _check_input(x):
        check_variable_and_dtype(x, 'x',
1297
                                 ['float32', 'float64'], 'inverse')
1298
        if len(x.shape) < 2:
1299 1300 1301
            raise ValueError(
                "The input of inverse is expected to be a Tensor whose number "
                "of dimensions is no less than 2. But reviced: %d, "
1302 1303
                "x's shape: %s." % (len(x.shape), x.shape))
    _check_input(x)
1304
    helper = LayerHelper('inverse', **locals())
1305
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1306
    helper.append_op(
1307
        type='inverse', inputs={'Input': [x] }, outputs={'Output': [out]})
1308 1309 1310
    return out


1311
def max(x, axis=None, keepdim=False, name=None):
1312
    """
S
swtkiwi 已提交
1313

1314
    Computes the maximum of tensor elements over the given axis.
1315 1316

    Args:
1317
        x(Tensor): A tensor, the data type is float32,
1318
            float64, int32, int64.
1319
        axis(int|list|tuple, optional): The axis along which the maximum is computed.
1320
            If :attr:`None`, compute the maximum over all elements of
N
Noel 已提交
1321
            `x` and return a Tensor with a single element,
1322 1323 1324
            otherwise must be in the range :math:`[-x.ndim(x), x.ndim(x))`.
            If :math:`axis[i] < 0`, the axis to reduce is :math:`x.ndim + axis[i]`.
        keepdim(bool, optional): Whether to reserve the reduced dimension in the
1325
            output Tensor. The result tensor will have one fewer dimension
1326
            than the `x` unless :attr:`keepdim` is true, default
1327
            value is False.
1328
        name(str, optional): The default value is None.  Normally there is no need for
1329 1330 1331
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`

    Returns:
1332
        Tensor, results of maximum on the specified axis of input tensor,
1333
        it's data type is the same as `x`.
1334 1335 1336

    Examples:
        .. code-block:: python
1337

1338
            import paddle
1339

N
Noel 已提交
1340
            # data_x is a Tensor with shape [2, 4]
1341
            # the axis is a int element
1342 1343 1344

            x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
                                  [0.1, 0.2, 0.6, 0.7]])
1345
            result1 = paddle.max(x)
N
Noel 已提交
1346
            print(result1)
1347 1348
            #[0.9]
            result2 = paddle.max(x, axis=0)
W
Wei Shengyu 已提交
1349
            print(result2)
1350 1351
            #[0.2 0.3 0.6 0.9]
            result3 = paddle.max(x, axis=-1)
N
Noel 已提交
1352
            print(result3)
1353 1354
            #[0.9 0.7]
            result4 = paddle.max(x, axis=1, keepdim=True)
N
Noel 已提交
1355
            print(result4)
1356 1357 1358
            #[[0.9]
            # [0.7]]

N
Noel 已提交
1359
            # data_y is a Tensor with shape [2, 2, 2]
1360
            # the axis is list 
1361 1362 1363

            y = paddle.to_tensor([[[1.0, 2.0], [3.0, 4.0]],
                                  [[5.0, 6.0], [7.0, 8.0]]])
1364
            result5 = paddle.max(y, axis=[1, 2])
N
Noel 已提交
1365
            print(result5)
1366 1367
            #[4. 8.]
            result6 = paddle.max(y, axis=[0, 1])
N
Noel 已提交
1368
            print(result6)
1369
            #[7. 8.]
1370 1371
    """

1372
    if axis is not None and not isinstance(axis, list):
1373 1374 1375 1376 1377 1378 1379 1380
        if isinstance(axis, tuple):
            axis = list(axis)
        elif isinstance(axis, int):
            axis= [axis]
        else:
            raise TypeError(
                "The type of axis must be int, list or tuple, but received {}".format(type(axis)))

1381 1382 1383
    reduce_all = True if axis == None or axis == [] else False
    axis = axis if axis != None and axis != [] else [0]
    if in_dygraph_mode():
W
wanghuancoder 已提交
1384
        return _C_ops.reduce_max(x, 'dim', axis, 'keep_dim', keepdim,
1385
                                   'reduce_all', reduce_all)
1386

1387
    helper = LayerHelper('max', **locals())
1388
    check_variable_and_dtype(
1389
        x, 'x', ['float32', 'float64', 'int32', 'int64'], 'max')
1390

1391
    out = helper.create_variable_for_type_inference(
1392
            dtype=x.dtype)
1393 1394
    helper.append_op(
        type='reduce_max',
1395
        inputs={'X': x},
1396 1397
        outputs={'Out': out},
        attrs={
1398 1399
            'dim': axis,
            'keep_dim': keepdim,
1400 1401 1402 1403
            'reduce_all': reduce_all
        })
    return out

1404
def min(x, axis=None, keepdim=False, name=None):
1405
    """
S
swtkiwi 已提交
1406

1407
    Computes the minimum of tensor elements over the given axis
1408

1409
    Args:
1410
        x(Tensor): A tensor, the data type is float32, float64, int32, int64.
1411
        axis(int|list|tuple, optional): The axis along which the minimum is computed.
1412
            If :attr:`None`, compute the minimum over all elements of
N
Noel 已提交
1413
            `x` and return a Tensor with a single element,
1414 1415 1416
            otherwise must be in the range :math:`[-x.ndim, x.ndim)`.
            If :math:`axis[i] < 0`, the axis to reduce is :math:`x.ndim + axis[i]`.
        keepdim(bool, optional): Whether to reserve the reduced dimension in the
1417
            output Tensor. The result tensor will have one fewer dimension
1418
            than the `x` unless :attr:`keepdim` is true, default
1419
            value is False.
W
WuHaobo 已提交
1420
        name(str, optional): The default value is None.  Normally there is no need for 
1421
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
1422

1423
    Returns:
1424
        Tensor, results of minimum on the specified axis of input tensor,
1425
        it's data type is the same as input's Tensor.
1426

1427 1428 1429
    Examples:
        .. code-block:: python

1430
            import paddle
1431

1432
            # x is a tensor with shape [2, 4]
1433
            # the axis is a int element
1434 1435
            x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
                                  [0.1, 0.2, 0.6, 0.7]])
1436
            result1 = paddle.min(x)
N
Noel 已提交
1437
            print(result1)
1438 1439
            #[0.1]
            result2 = paddle.min(x, axis=0)
N
Noel 已提交
1440
            print(result2)
1441 1442
            #[0.1 0.2 0.5 0.7]
            result3 = paddle.min(x, axis=-1)
W
Wei Shengyu 已提交
1443
            print(result3)
1444 1445
            #[0.2 0.1]
            result4 = paddle.min(x, axis=1, keepdim=True)
N
Noel 已提交
1446
            print(result4)
1447 1448 1449
            #[[0.2]
            # [0.1]]

N
Noel 已提交
1450
            # y is a Tensor with shape [2, 2, 2]
1451
            # the axis is list 
1452 1453
            y = paddle.to_tensor([[[1.0, 2.0], [3.0, 4.0]],
                                  [[5.0, 6.0], [7.0, 8.0]]])
1454
            result5 = paddle.min(y, axis=[1, 2])
W
Wei Shengyu 已提交
1455
            print(result5)
1456 1457
            #[1. 5.]
            result6 = paddle.min(y, axis=[0, 1])
N
Noel 已提交
1458
            print(result6)
1459 1460
            #[1. 2.]
    """
1461

1462
    if axis is not None and not isinstance(axis, list):
1463 1464 1465 1466 1467 1468 1469
        if isinstance(axis, tuple):
            axis = list(axis)
        elif isinstance(axis, int):
            axis= [axis]
        else:
            raise TypeError(
                "The type of axis must be int, list or tuple, but received {}".format(type(axis)))
1470 1471
    reduce_all = True if axis == None or axis == [] else False
    axis = axis if axis != None and axis != [] else [0]
1472
    if in_dygraph_mode():
W
wanghuancoder 已提交
1473
        return _C_ops.reduce_min(x, 'dim', axis, 'keep_dim', keepdim,
1474
                                   'reduce_all', reduce_all)
1475 1476 1477 1478 1479 1480

    helper = LayerHelper('min', **locals())
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int32', 'int64'], 'min')

    out = helper.create_variable_for_type_inference(
1481
            dtype=x.dtype)
1482 1483
    helper.append_op(
        type='reduce_min',
1484
        inputs={'X': x},
1485 1486
        outputs={'Out': out},
        attrs={
1487 1488
            'dim': axis,
            'keep_dim': keepdim,
1489 1490 1491 1492 1493
            'reduce_all': reduce_all
        })
    return out


W
WuHaobo 已提交
1494
def log1p(x, name=None):
1495
    r"""
1496
    Calculates the natural log of the given input tensor, element-wise.
N
Noel 已提交
1497

1498 1499
    .. math::
        Out = \\ln(x+1)
S
Steffy-zxf 已提交
1500

1501
    Args:
S
Steffy-zxf 已提交
1502
        x (Tensor): Input Tensor. Must be one of the following types: float32, float64.
1503 1504 1505
        name(str, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
    Returns:
S
Steffy-zxf 已提交
1506
        Tensor, the natural log of the input Tensor computed element-wise.
1507

1508 1509
    Examples:
        .. code-block:: python
S
Steffy-zxf 已提交
1510

1511
            import paddle
S
Steffy-zxf 已提交
1512 1513 1514 1515

            data = paddle.to_tensor([[0], [1]], dtype='float32')
            res = paddle.log1p(data)
            # [[0.], [0.6931472]]
1516 1517 1518
    """

    if in_dygraph_mode():
W
wanghuancoder 已提交
1519
        return _C_ops.log1p(x)
1520 1521 1522 1523 1524

    check_variable_and_dtype(x, 'x', ['float32', 'float64'], "log1p")
    inputs = {'X': [x]}
    helper = LayerHelper('log1p', **locals())
    dtype = helper.input_dtype(input_param_name='x')
W
WuHaobo 已提交
1525
    out = helper.create_variable_for_type_inference(dtype)
1526 1527
    helper.append_op(type="log1p", inputs={"X": x}, outputs={"Out": out})
    return out
B
Bai Yifan 已提交
1528

J
joejiong 已提交
1529
def log2(x, name=None):
1530
    r"""
J
joejiong 已提交
1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
    Calculates the log to the base 2 of the given input tensor, element-wise.

    .. math::

        Out = \\log_2x

    Args:
        x (Tensor): Input tensor must be one of the following types: float32, float64.
        name (str|None): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`


    Returns:
        Tensor: The log to the base 2 of the input Tensor computed element-wise.

    Examples:

        .. code-block:: python
        
            import paddle

            # example 1: x is a float
            x_i = paddle.to_tensor([[1.0], [2.0]])
            res = paddle.log2(x_i) # [[0.], [1.0]]

            # example 2: x is float32
            x_i = paddle.full(shape=[1], fill_value=2, dtype='float32')
            paddle.to_tensor(x_i)
            res = paddle.log2(x_i)
            print(res) # [1.0]

            # example 3: x is float64
            x_i = paddle.full(shape=[1], fill_value=2, dtype='float64')
            paddle.to_tensor(x_i)
            res = paddle.log2(x_i)
            print(res) # [1.0]
    """
    if in_dygraph_mode():
W
wanghuancoder 已提交
1568
        return _C_ops.log2(x)
J
joejiong 已提交
1569 1570 1571 1572 1573 1574 1575 1576

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], "log2")
    inputs = {'X': [x]}
    helper = LayerHelper('log2', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(type="log2", inputs={"X": x}, outputs={"Out": out})
    return out
W
WuHaobo 已提交
1577

J
joejiong 已提交
1578 1579

def log10(x, name=None):
1580
    r"""
J
joejiong 已提交
1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617
    Calculates the log to the base 10 of the given input tensor, element-wise.

    .. math::

        Out = \\log_10_x

    Args:
        x (Tensor): Input tensor must be one of the following types: float32, float64.
        name (str|None): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`


    Returns:
        Tensor: The log to the base 10 of the input Tensor computed element-wise.

    Examples:

        .. code-block:: python
        
            import paddle

            # example 1: x is a float
            x_i = paddle.to_tensor([[1.0], [10.0]])
            res = paddle.log10(x_i) # [[0.], [1.0]]

            # example 2: x is float32
            x_i = paddle.full(shape=[1], fill_value=10, dtype='float32')
            paddle.to_tensor(x_i)
            res = paddle.log10(x_i)
            print(res) # [1.0]

            # example 3: x is float64
            x_i = paddle.full(shape=[1], fill_value=10, dtype='float64')
            paddle.to_tensor(x_i)
            res = paddle.log10(x_i)
            print(res) # [1.0]
    """
    if in_dygraph_mode():
W
wanghuancoder 已提交
1618
        return _C_ops.log10(x)
J
joejiong 已提交
1619 1620 1621 1622 1623 1624 1625 1626 1627 1628

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], "log10")
    inputs = {'X': [x]}
    helper = LayerHelper('log10', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(type="log10", inputs={"X": x}, outputs={"Out": out})
    return out


Y
Yang Zhang 已提交
1629
def clip(x, min=None, max=None, name=None):
1630
    """
Y
Yang Zhang 已提交
1631
    This operator clip all elements in input into the range [ min, max ] and return
1632 1633 1634 1635
    a resulting tensor as the following equation:

    .. math::

1636
        Out = MIN(MAX(x, min), max)
1637 1638

    Args:
1639 1640
        x (Tensor): An N-D Tensor with data type float32, float64, int32 or int64.
        min (float|int|Tensor): The lower bound with type ``float`` , ``int`` or a ``Tensor``
1641
            with shape [1] and type ``int32``, ``float32``, ``float64``.
1642
        max (float|int|Tensor): The upper bound with type ``float``, ``int`` or a ``Tensor``
1643 1644 1645 1646 1647 1648
            with shape [1] and type ``int32``, ``float32``, ``float64``.
        name (str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns:
Y
Yang Zhang 已提交
1649
        Tensor: A Tensor with the same data type and data shape as input.
1650 1651 1652 1653 1654

    Examples:
        .. code-block:: python

            import paddle
N
Noel 已提交
1655

1656
            x1 = paddle.to_tensor([[1.2, 3.5], [4.5, 6.4]], 'float32')
Y
Yang Zhang 已提交
1657 1658
            out1 = paddle.clip(x1, min=3.5, max=5.0)
            out2 = paddle.clip(x1, min=2.5)
1659
            print(out1)
Y
Yang Zhang 已提交
1660 1661
            # [[3.5, 3.5]
            # [4.5, 5.0]]
1662
            print(out2)
Y
Yang Zhang 已提交
1663 1664
            # [[2.5, 3.5]
            # [[4.5, 6.4]
1665 1666
    """

1667 1668 1669 1670 1671 1672 1673 1674 1675 1676
    x_dtype = str(x.dtype)
    if x_dtype == 'paddle.int32':
        min_ = np.iinfo(np.int32).min
        max_ = np.iinfo(np.int32).max - 2**7
    elif x_dtype == 'paddle.int64':
        min_ = np.iinfo(np.int64).min
        max_ = np.iinfo(np.int64).max - 2**39
    else:
        min_ = float(np.finfo(np.float32).min)
        max_ = float(np.finfo(np.float32).max)
1677

W
WuHaobo 已提交
1678
    if in_dygraph_mode():
1679 1680 1681 1682
        if isinstance(min, Variable):
            min = min.numpy().item(0)
        if isinstance(max, Variable):
            max = max.numpy().item(0)
1683 1684
        min = min_ if min is None else min
        max = max_ if max is None else max
W
wanghuancoder 已提交
1685
        return _C_ops.clip(x, "min", min, "max", max)
W
WuHaobo 已提交
1686

1687
    if min is not None:
Y
Yang Zhang 已提交
1688
        check_type(min, 'min', (float, int, Variable), 'clip')
1689 1690
        if isinstance(min, Variable):
            check_dtype(min.dtype, 'min', ['float32', 'float64', 'int32'],
Y
Yang Zhang 已提交
1691
                        'clip', '(When the type of min in clip is Variable.)')
1692
    if max is not None:
Y
Yang Zhang 已提交
1693
        check_type(max, 'max', (float, int, Variable), 'clip')
1694 1695
        if isinstance(max, Variable):
            check_dtype(max.dtype, 'max', ['float32', 'float64', 'int32'],
Y
Yang Zhang 已提交
1696
                        'clip', '(When the type of max in clip is Variable.)')
1697

1698
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'], 'clip')
Y
Yang Zhang 已提交
1699 1700

    inputs = {'X': x}
1701
    attrs = {'min': min_, 'max': max_}
1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714

    if isinstance(min, Variable):
        min.stop_gradient = True
        inputs['Min'] = min
    elif min is not None:
        attrs['min'] = min

    if isinstance(max, Variable):
        max.stop_gradient = True
        inputs['Max'] = max
    elif max is not None:
        attrs['max'] = max

Y
Yang Zhang 已提交
1715
    helper = LayerHelper('clip', **locals())
W
WuHaobo 已提交
1716
    output = helper.create_variable_for_type_inference(
Y
Yang Zhang 已提交
1717
        dtype=helper.input_dtype('x'))
1718 1719 1720 1721
    helper.append_op(
        type='clip', inputs=inputs, outputs={'Out': [output]}, attrs=attrs)

    return output
F
Feiyu Chan 已提交
1722

W
WuHaobo 已提交
1723

1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737
@inplace_apis_in_dygraph_only
def clip_(x, min=None, max=None, name=None):
    """
    Inplace version of ``clip`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_clip`.
    """
    fmin = float(np.finfo(np.float32).min)
    fmax = float(np.finfo(np.float32).max)
    if isinstance(min, Variable):
        min = min.numpy().item(0)
    if isinstance(max, Variable):
        max = max.numpy().item(0)
    min = fmin if min is None else min
    max = fmax if max is None else max
W
wanghuancoder 已提交
1738
    return _C_ops.clip_(x, "min", min, "max", max)
1739 1740 1741



1742
def trace(x, offset=0, axis1=0, axis2=1, name=None):
L
Li Fuchen 已提交
1743
    """
1744
    **trace**
S
swtkiwi 已提交
1745

1746
    This OP computes the sum along diagonals of the input tensor x.
1747 1748

    If ``x`` is 2D, returns the sum of diagonal.
L
Li Fuchen 已提交
1749

1750
    If ``x`` has larger dimensions, then returns an tensor of diagonals sum, diagonals be taken from
1751
    the 2D planes specified by axis1 and axis2. By default, the 2D planes formed by the first and second axes
1752
    of the input tensor x.
L
Li Fuchen 已提交
1753

1754
    The argument ``offset`` determines where diagonals are taken from input tensor x:
L
Li Fuchen 已提交
1755 1756 1757 1758

    - If offset = 0, it is the main diagonal.
    - If offset > 0, it is above the main diagonal.
    - If offset < 0, it is below the main diagonal.
1759
    - Note that if offset is out of input's shape indicated by axis1 and axis2, 0 will be returned.
1760

L
Li Fuchen 已提交
1761
    Args:
1762
        x(Tensor): The input tensor x. Must be at least 2-dimensional. The input data type should be float32, float64, int32, int64.
1763 1764 1765
        offset(int, optional): Which diagonals in input tensor x will be taken. Default: 0 (main diagonals).
        axis1(int, optional): The first axis with respect to take diagonal. Default: 0.
        axis2(int, optional): The second axis with respect to take diagonal. Default: 1.
L
Li Fuchen 已提交
1766 1767 1768
        name (str, optional): Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Default: None.

    Returns:
1769
        Tensor: the output data type is the same as input data type.
L
Li Fuchen 已提交
1770 1771 1772 1773 1774

    Examples:
        .. code-block:: python

            import paddle
1775

1776 1777 1778
            case1 = paddle.randn([2, 3])
            case2 = paddle.randn([3, 10, 10])
            case3 = paddle.randn([3, 10, 5, 10])
1779 1780 1781
            data1 = paddle.trace(case1) # data1.shape = [1]
            data2 = paddle.trace(case2, offset=1, axis1=1, axis2=2) # data2.shape = [3]
            data3 = paddle.trace(case3, offset=-3, axis1=1, axis2=-1) # data2.shape = [3, 5]
L
Li Fuchen 已提交
1782 1783
    """
    def __check_input(input, offset, dim1, dim2):
1784
        check_dtype(x.dtype, 'Input',
L
Li Fuchen 已提交
1785 1786 1787
                    ['int32', 'int64', 'float16', 'float32', 'float64'],
                    'trace')

1788
        input_shape = list(x.shape)
L
Li Fuchen 已提交
1789
        assert len(input_shape) >= 2,                     \
1790 1791
                "The x must be at least 2-dimensional, "   \
                "But received Input x's dimensional: %s.\n" %  \
L
Li Fuchen 已提交
1792 1793
                len(input_shape)

1794 1795
        axis1_ = axis1 if axis1 >= 0 else len(input_shape) + axis1
        axis2_ = axis2 if axis2 >= 0 else len(input_shape) + axis2
L
Li Fuchen 已提交
1796

X
XiangGao 已提交
1797
        assert ((0 <= axis1_) and (axis1_ < len(input_shape))),     \
1798 1799
            "The argument axis1 is out of range (expected to be in range of [%d, %d], but got %d).\n"  \
            % (-(len(input_shape)), len(input_shape) - 1, axis1)
L
Li Fuchen 已提交
1800

X
XiangGao 已提交
1801
        assert ((0 <= axis2_) and (axis2_ < len(input_shape))),   \
1802 1803
            "The argument axis2 is out of range (expected to be in range of [%d, %d], but got %d).\n"   \
            % (-(len(input_shape)), len(input_shape) - 1, axis2)
L
Li Fuchen 已提交
1804 1805


1806 1807 1808
        assert  axis1_ != axis2_,   \
               "axis1 and axis2 cannot be the same axis." \
                "But received axis1 = %d, axis2 = %d\n"%(axis1, axis2)
L
Li Fuchen 已提交
1809

W
wanghuancoder 已提交
1810
    __check_input(input, offset, axis1, axis2)
X
XiangGao 已提交
1811 1812 1813 1814 1815
    if in_dygraph_mode():
        return _C_ops.trace(x, 'offset', offset, 'axis1', axis1, 'axis2', axis2)

    inputs = {'Input': [x]}
    attrs = {'offset': offset, 'axis1': axis1, 'axis2': axis2}
L
Li Fuchen 已提交
1816 1817
    helper = LayerHelper('trace', **locals())

1818
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
L
Li Fuchen 已提交
1819 1820 1821

    helper.append_op(
        type='trace',
1822
        inputs={'Input': [x]},
L
Li Fuchen 已提交
1823
        attrs={'offset': offset,
1824 1825
               'axis1': axis1,
               'axis2': axis2},
L
Li Fuchen 已提交
1826 1827 1828
        outputs={'Out': [out]})
    return out

1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893
def diagonal(x, offset=0, axis1=0, axis2=1, name=None):
    """
    This OP computes the diagonals of the input tensor x.

    If ``x`` is 2D, returns the diagonal.
    If ``x`` has larger dimensions, diagonals be taken from the 2D planes specified by axis1 and axis2. 
    By default, the 2D planes formed by the first and second axis of the input tensor x.

    The argument ``offset`` determines where diagonals are taken from input tensor x:

    - If offset = 0, it is the main diagonal.
    - If offset > 0, it is above the main diagonal.
    - If offset < 0, it is below the main diagonal.
    
    Args:
        x(Tensor): The input tensor x. Must be at least 2-dimensional. The input data type should be bool, int32, int64, float16, float32, float64.
        offset(int, optional): Which diagonals in input tensor x will be taken. Default: 0 (main diagonals).
        axis1(int, optional): The first axis with respect to take diagonal. Default: 0.
        axis2(int, optional): The second axis with respect to take diagonal. Default: 1.
        name (str, optional): Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Default: None.

    Returns:
        Tensor: a partial view of input tensor in specify two dimensions, the output data type is the same as input data type.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.rand([2,2,3],'float32')
            print(x)
            # Tensor(shape=[2, 2, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [[[0.45661032, 0.03751532, 0.90191704],
            #          [0.43760979, 0.86177313, 0.65221709]],

            #         [[0.17020577, 0.00259554, 0.28954273],
            #          [0.51795638, 0.27325270, 0.18117726]]])

            out1 = paddle.diagonal(x)
            print(out1)
            #Tensor(shape=[3, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [[0.45661032, 0.51795638],
            #        [0.03751532, 0.27325270],
            #        [0.90191704, 0.18117726]])

            out2 = paddle.diagonal(x, offset=0, axis1=2, axis2=1)
            print(out2)
            #Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [[0.45661032, 0.86177313],
            #        [0.17020577, 0.27325270]])

            out3 = paddle.diagonal(x, offset=1, axis1=0, axis2=1)
            print(out3)
            #Tensor(shape=[3, 1], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [[0.43760979],
            #        [0.86177313],
            #        [0.65221709]])

            out4 = paddle.diagonal(x, offset=0, axis1=1, axis2=2)
            print(out4)
            #Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [[0.45661032, 0.86177313],
            #        [0.17020577, 0.27325270]])
            
    """
W
wanghuancoder 已提交
1894
    if in_dygraph_mode():
W
wanghuancoder 已提交
1895
        return _C_ops.diagonal(x, 'offset', offset, 'axis1', axis1, 'axis2', axis2)
W
wanghuancoder 已提交
1896

1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936
    def __check_input(input, offset, dim1, dim2):
        check_dtype(x.dtype, 'Input',
                    ['bool', 'int32', 'int64', 'float16', 'float32', 'float64'],
                    'diagonal')

        input_shape = list(x.shape)
        assert len(input_shape) >= 2,                     \
                "The x must be at least 2-dimensional, "   \
                "But received Input x's dimensional: %s.\n" %  \
                len(input_shape)

        axis1_ = axis1 if axis1 >= 0 else len(input_shape) + axis1
        axis2_ = axis2 if axis2 >= 0 else len(input_shape) + axis2

        assert axis1_ < len(input_shape),     \
            "The argument axis1 is out of range (expected to be in range of [%d, %d], but got %d).\n"  \
            % (-(len(input_shape)), len(input_shape) - 1, axis1)

        assert axis2_ < len(input_shape),   \
            "The argument axis2 is out of range (expected to be in range of [%d, %d], but got %d).\n"   \
            % (-(len(input_shape)), len(input_shape) - 1, axis2)

        assert  axis1_ != axis2_,   \
               "axis1 and axis2 cannot be the same axis." \
                "But received axis1 = %d, axis2 = %d\n"%(axis1, axis2)

    __check_input(input, offset, axis1, axis2)
    helper = LayerHelper('diagonal', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(
        type='diagonal',
        inputs={'Input': [x]},
        attrs={'offset': offset,
               'axis1': axis1,
               'axis2': axis2},
               outputs={'Out': [out]})
    return out


F
Feiyu Chan 已提交
1937
@templatedoc(op_type="kron")
W
WuHaobo 已提交
1938
def kron(x, y, name=None):
S
swtkiwi 已提交
1939 1940 1941
    """

${comment}
F
Feiyu Chan 已提交
1942 1943

    Args:
N
Noel 已提交
1944
        x (Tensor): the fist operand of kron op, data type: float16, float32,
F
Feiyu Chan 已提交
1945
            float64, int32 or int64.
N
Noel 已提交
1946
        y (Tensor): the second operand of kron op, data type: float16,
1947
            float32, float64, int32 or int64. Its data type should be the same
F
Feiyu Chan 已提交
1948
            with x.
1949 1950
        name(str, optional): The default value is None.  Normally there is no
            need for user to set this property.  For more information, please
F
Feiyu Chan 已提交
1951 1952 1953
            refer to :ref:`api_guide_Name`.

    Returns:
N
Noel 已提交
1954
        Tensor: The output of kron op, data type: float16, float32, float64, int32 or int64. Its data is the same with x.
F
Feiyu Chan 已提交
1955 1956 1957

    Examples:
        .. code-block:: python
1958

1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969
            import paddle
            x = paddle.to_tensor([[1, 2], [3, 4]], dtype='int64')
            y = paddle.to_tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype='int64')
            out = paddle.kron(x, y)
            print(out)
            #        [[1, 2, 3, 2, 4, 6],
            #         [ 4,  5,  6,  8, 10, 12],
            #         [ 7,  8,  9, 14, 16, 18],
            #         [ 3,  6,  9,  4,  8, 12],
            #         [12, 15, 18, 16, 20, 24],
            #         [21, 24, 27, 28, 32, 36]])
F
Feiyu Chan 已提交
1970 1971
    """
    if in_dygraph_mode():
W
wanghuancoder 已提交
1972
        return _C_ops.kron(x, y)
F
Feiyu Chan 已提交
1973 1974 1975 1976 1977

    helper = LayerHelper('kron', **locals())
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'kron')
    check_variable_and_dtype(y, 'y', ['float16', 'float32', 'float64', 'int32', 'int64'], 'kron')

W
WuHaobo 已提交
1978
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
F
Feiyu Chan 已提交
1979 1980
    helper.append_op(type="kron", inputs={"X": x, "Y": y}, outputs={"Out": out})
    return out
1981 1982 1983 1984


def cumsum(x, axis=None, dtype=None, name=None):
    """
1985 1986 1987 1988
    The cumulative sum of the elements along a given axis. 
    
    **Note**:
    The first element of the result is the same of the first element of the input. 
1989 1990

    Args:
1991
        x (Tensor): The input tensor needed to be cumsumed.
1992 1993 1994 1995 1996
        axis (int, optional): The dimension to accumulate along. -1 means the last dimension. The default (None) is to compute the cumsum over the flattened array.
        dtype (str, optional): The data type of the output tensor, can be float32, float64, int32, int64. If specified, the input tensor is casted to dtype before the operation is performed. This is useful for preventing data type overflows. The default value is None. 
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
1997
        Tensor, the result of cumsum operator. 
1998 1999 2000 2001 2002

    Examples:
        .. code-block:: python
            
            import paddle
2003 2004 2005
            
            data = paddle.arange(12)
            data = paddle.reshape(data, (3, 4))
2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032

            y = paddle.cumsum(data)
            # [ 0  1  3  6 10 15 21 28 36 45 55 66]

            y = paddle.cumsum(data, axis=0)
            # [[ 0  1  2  3]
            #  [ 4  6  8 10]
            #  [12 15 18 21]]
            
            y = paddle.cumsum(data, axis=-1)
            # [[ 0  1  3  6]
            #  [ 4  9 15 22]
            #  [ 8 17 27 38]]

            y = paddle.cumsum(data, dtype='float64')
            print(y.dtype)
            # VarType.FP64
    """
    if axis is None:
        flatten = True
    else:
        flatten = False
    if dtype is not None and x.dtype != convert_np_dtype_to_dtype_(dtype):
        x = layers.cast(x, dtype)

    if in_dygraph_mode():
        if axis is None:
W
wanghuancoder 已提交
2033
            return _C_ops.cumsum(x, 'flatten', flatten)
2034
        else:
W
wanghuancoder 已提交
2035
            return _C_ops.cumsum(x, 'axis', axis, 'flatten', flatten)
2036 2037 2038 2039 2040 2041 2042 2043 2044

    check_type(x, 'x', (Variable), 'cumsum')
    locals_var = locals().copy()
    kwargs = dict()
    for name, val in locals_var.items():
        if val is not None:
            kwargs[name] = val
    _cum_sum_ = generate_layer_fn('cumsum')
    return _cum_sum_(**kwargs)
G
guofei 已提交
2045

H
hlygit66666 已提交
2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056
def cumprod(x, dim=None, dtype=None, name=None):
    """
    Compute the cumulative product of the input tensor x along a given dimension dim.

    **Note**:
    The first element of the result is the same as the first element of the input.

    Args:
        x (Tensor): the input tensor need to be cumproded.
        dim (int): the dimension along which the input tensor will be accumulated. It need to be in the range of [-x.rank, x.rank), where x.rank means the dimensions of the input tensor x and -1 means the last dimension.
        dtype (str, optional): The data type of the output tensor, can be float32, float64, int32, int64, complex64, complex128. If specified, the input tensor is casted to dtype before the operation is performed. This is useful for preventing data type overflows. The default value is None.
H
hlygit66666 已提交
2057
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
H
hlygit66666 已提交
2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106

    Returns:
        Tensor, the result of cumprod operator.

    Examples:
        .. code-block:: python

            import paddle

            data = paddle.arange(12)
            data = paddle.reshape(data, (3, 4))
            # [[ 0  1  2  3 ]
            #  [ 4  5  6  7 ]
            #  [ 8  9  10 11]]

            y = paddle.cumprod(data, dim=0)
            # [[ 0  1   2   3]
            #  [ 0  5  12  21]
            #  [ 0 45 120 231]]

            y = paddle.cumprod(data, dim=-1)
            # [[ 0   0   0    0]
            #  [ 4  20 120  840]
            #  [ 8  72 720 7920]]

            y = paddle.cumprod(data, dim=1, dtype='float64')
            # [[ 0.   0.   0.    0.]
            #  [ 4.  20. 120.  840.]
            #  [ 8.  72. 720. 7920.]]

            print(y.dtype)
            # paddle.float64

    """

    if dtype is not None and x.dtype != convert_np_dtype_to_dtype_(dtype):
        x = layers.cast(x, dtype)

    if in_dygraph_mode():
        return _C_ops.cumprod(x, 'dim', dim)

    check_variable_and_dtype(x, "x", ['complex64', 'complex128', 'float32', 'float64', 'int32', 'int64'], 'cumprod')
    check_type(dim, 'dim', int, 'cumprod')

    helper = LayerHelper('cumprod', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='cumprod', inputs={'X': x}, outputs={'Out': out}, attrs={'dim': dim})
    return out

J
Jack Zhou 已提交
2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122
def isfinite(x, name=None):
    """

    Return whether every element of input tensor is finite number or not.

    Args:
        x (Tensor): The input tensor, it's data type should be float16, float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        `Tensor`, the bool result which shows every element of `x` whether it is finite number or not.

    Examples:
        .. code-block:: python

            import paddle
N
Noel 已提交
2123

2124
            x = paddle.to_tensor([float('-inf'), -2, 3.6, float('inf'), 0, float('-nan'), float('nan')])
J
Jack Zhou 已提交
2125
            out = paddle.tensor.isfinite(x)
N
Noel 已提交
2126
            print(out)  # [False  True  True False  True False False]
J
Jack Zhou 已提交
2127 2128
    """
    if in_dygraph_mode():
W
wanghuancoder 已提交
2129
        return _C_ops.isfinite_v2(x)
J
Jack Zhou 已提交
2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151
    helper = LayerHelper("isfinite_v2", **locals())
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'isfinite')
    out = helper.create_variable_for_type_inference('bool')
    helper.append_op(type="isfinite_v2", inputs={"X": x}, outputs={"Out": out})
    return out

def isinf(x, name=None):
    """

    Return whether every element of input tensor is `+/-INF` or not.

    Args:
        x (Tensor): The input tensor, it's data type should be float16, float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        `Tensor`, the bool result which shows every element of `x` whether it is `+/-INF` or not.

    Examples:
        .. code-block:: python

            import paddle
2152
            x = paddle.to_tensor([float('-inf'), -2, 3.6, float('inf'), 0, float('-nan'), float('nan')])
J
Jack Zhou 已提交
2153
            out = paddle.tensor.isinf(x)
N
Noel 已提交
2154
            print(out)  # [ True False False  True False False False]
J
Jack Zhou 已提交
2155 2156
    """
    if in_dygraph_mode():
W
wanghuancoder 已提交
2157
        return _C_ops.isinf_v2(x)
J
Jack Zhou 已提交
2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179
    helper = LayerHelper("isinf_v2", **locals())
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'isinf')
    out = helper.create_variable_for_type_inference(dtype='bool')
    helper.append_op(type="isinf_v2", inputs={"X": x}, outputs={"Out": out})
    return out

def isnan(x, name=None):
    """

    Return whether every element of input tensor is `NaN` or not.

    Args:
        x (Tensor): The input tensor, it's data type should be float16, float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        `Tensor`, the bool result which shows every element of `x` whether it is `NaN` or not.

    Examples:
        .. code-block:: python

            import paddle
2180
            x = paddle.to_tensor([float('-inf'), -2, 3.6, float('inf'), 0, float('-nan'), float('nan')])
J
Jack Zhou 已提交
2181
            out = paddle.tensor.isnan(x)
N
Noel 已提交
2182
            print(out)  # [False False False False False  True  True]
J
Jack Zhou 已提交
2183 2184
    """
    if in_dygraph_mode():
W
wanghuancoder 已提交
2185
        return _C_ops.isnan_v2(x)
J
Jack Zhou 已提交
2186 2187 2188 2189 2190 2191 2192
    helper = LayerHelper("isnan_v2", **locals())
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'isnan')
    out = helper.create_variable_for_type_inference(dtype='bool')
    helper.append_op(type="isnan_v2", inputs={"X": x}, outputs={"Out": out})
    return out


G
guofei 已提交
2193 2194 2195 2196 2197
def prod(x, axis=None, keepdim=False, dtype=None, name=None):
    """
    Compute the product of tensor elements over the given axis.

    Args:
2198
        x(Tensor): The input tensor, its data type should be float32, float64, int32, int64.
G
guofei 已提交
2199 2200 2201 2202 2203 2204 2205 2206 2207
        axis(int|list|tuple, optional): The axis along which the product is computed. If :attr:`None`, 
            multiply all elements of `x` and return a Tensor with a single element, 
            otherwise must be in the range :math:`[-x.ndim, x.ndim)`. If :math:`axis[i]<0`, 
            the axis to reduce is :math:`x.ndim + axis[i]`. Default is None.
        dtype(str|np.dtype, optional): The desired date type of returned tensor, can be float32, float64, 
            int32, int64. If specified, the input tensor is casted to dtype before operator performed. 
            This is very useful for avoiding data type overflows. The default value is None, the dtype 
            of output is the same as input Tensor `x`.
        keepdim(bool, optional): Whether to reserve the reduced dimension in the output Tensor. The result 
2208
            tensor will have one fewer dimension than the input unless `keepdim` is true. Default is False.
G
guofei 已提交
2209 2210 2211 2212 2213 2214 2215 2216 2217
        name(string, optional): The default value is None. Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .

    Returns:
        Tensor, result of product on the specified dim of input tensor.

    Raises:
        ValueError: The :attr:`dtype` must be float32, float64, int32 or int64.
        TypeError: The type of :attr:`axis` must be int, list or tuple.
J
Jack Zhou 已提交
2218
    
G
guofei 已提交
2219 2220 2221 2222 2223 2224
    Examples:
        .. code-block:: python

            import paddle

            # the axis is a int element
2225 2226
            x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
                                  [0.1, 0.2, 0.6, 0.7]])
G
guofei 已提交
2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242
            out1 = paddle.prod(x)
            # [0.0002268]

            out2 = paddle.prod(x, -1)
            # [0.027  0.0084]

            out3 = paddle.prod(x, 0)
            # [0.02 0.06 0.3  0.63]

            out4 = paddle.prod(x, 0, keepdim=True)
            # [[0.02 0.06 0.3  0.63]]

            out5 = paddle.prod(x, 0, dtype='int64')
            # [0 0 0 0]

            # the axis is list
2243 2244
            y = paddle.to_tensor([[[1.0, 2.0], [3.0, 4.0]],
                                  [[5.0, 6.0], [7.0, 8.0]]])
G
guofei 已提交
2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257
            out6 = paddle.prod(y, [0, 1])
            # [105. 384.]

            out7 = paddle.prod(y, (1, 2))
            # [  24. 1680.]

    """
    if dtype is not None:
        check_dtype(dtype, 'dtype', ['float32', 'float64', 'int32', 'int64'], 'prod')
        if x.dtype != convert_np_dtype_to_dtype_(dtype):
            x = layers.cast(x, dtype)

    return layers.reduce_prod(input=x, dim=axis, keep_dim=keepdim, name=name)
W
WangXi 已提交
2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276


def sign(x, name=None):
    """
    This OP returns sign of every element in `x`: 1 for positive, -1 for negative and 0 for zero.

    Args:
        x(Tensor): The input tensor. The data type can be float16, float32 or float64.
        name (str, optional): The default value is None. Normally there is no need for user to
            set this property. For more information, please refer to :ref:`api_guide_Name`

    Returns:
        Tensor: The output sign tensor with identical shape and data type to the input :attr:`x`.

    Examples:
        .. code-block:: python

          import paddle

2277
          x = paddle.to_tensor([3.0, 0.0, -2.0, 1.7], dtype='float32')
W
WangXi 已提交
2278 2279 2280 2281
          out = paddle.sign(x=x)
          print(out)  # [1.0, 0.0, -1.0, 1.0]
    """
    if in_dygraph_mode():
W
wanghuancoder 已提交
2282
        return _C_ops.sign(x)
W
WangXi 已提交
2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'sign')
    helper = LayerHelper("sign", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(type='sign', inputs={'X': [x]}, outputs={'Out': [out]})

    return out


def tanh(x, name=None):
2294
    r"""
W
WangXi 已提交
2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312
    Tanh Activation Operator.

    .. math::
        out = \\frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}

    Args:
        x (Tensor): Input of Tanh operator, an N-D Tensor, with data type float32, float64 or float16.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Output of Tanh operator, a Tensor with same data type and shape as input.

    Examples:

        .. code-block:: python

            import paddle

2313
            x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
W
WangXi 已提交
2314
            out = paddle.tanh(x)
N
Noel 已提交
2315
            print(out)
W
WangXi 已提交
2316 2317 2318
            # [-0.37994896 -0.19737532  0.09966799  0.29131261]
    """
    if in_dygraph_mode():
W
wanghuancoder 已提交
2319
        return _C_ops.tanh(x)
W
WangXi 已提交
2320 2321

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'tanh')
S
ShenLiang 已提交
2322
    check_type(x, 'x', (Variable), 'tanh')
W
WangXi 已提交
2323 2324 2325 2326
    helper = LayerHelper('tanh', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='tanh', inputs={'X': x}, outputs={'Out': out})
    return out
S
Steffy-zxf 已提交
2327

2328
@inplace_apis_in_dygraph_only
2329 2330 2331 2332 2333
def tanh_(x, name=None):
    r"""
    Inplace version of ``tanh`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_tanh`.
    """
W
wanghuancoder 已提交
2334
    return _C_ops.tanh_(x)
2335 2336


S
Steffy-zxf 已提交
2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360
def increment(x, value=1.0, name=None):
    """
    The OP is usually used for control flow to increment the data of :attr:`x` by an amount :attr:`value`.
    Notice that the number of elements in :attr:`x` must be equal to 1.

    Args:
        x (Tensor): A tensor that must always contain only one element, its data type supports float32, float64, int32 and int64.
        value(float, optional): The amount to increment the data of :attr:`x`. Default: 1.0.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, the elementwise-incremented tensor with the same shape and data type as :attr:`x`.

    Examples:
        .. code-block:: python

            import paddle

            data = paddle.zeros(shape=[1], dtype='float32')
            counter = paddle.increment(data)
            # [1.]

    """
    if in_dygraph_mode():
W
wanghuancoder 已提交
2361
        return _C_ops.increment(x, 'step', value)
S
Steffy-zxf 已提交
2362 2363 2364 2365 2366 2367 2368 2369 2370 2371

    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             'increment')
    helper = LayerHelper("increment", **locals())
    helper.append_op(
        type='increment',
        inputs={'X': [x]},
        outputs={'Out': [x]},
        attrs={'step': float(value)})
    return x
2372 2373 2374 2375 2376 2377 2378 2379 2380 2381


def all(x, axis=None, keepdim=False, name=None):
    """
    Computes the the ``logical and`` of tensor elements over the given dimension.

    Args:
        x (Tensor): An N-D Tensor, the input data type should be `bool`.
        axis (int|list|tuple, optional): The dimensions along which the ``logical and`` is compute. If
            :attr:`None`, and all elements of :attr:`x` and return a
N
Noel 已提交
2382
            Tensor with a single element, otherwise must be in the
2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
            value is False.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`

    Returns:
        Tensor: Results the ``logical and`` on the specified axis of input Tensor `x`,  it's data type is bool.

    Raises:
        ValueError: If the data type of `x` is not bool.
        TypeError: The type of :attr:`axis` must be int, list or tuple.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np
            
N
Noel 已提交
2405
            # x is a bool Tensor with following elements:
2406 2407
            #    [[True, False]
            #     [True, True]]
S
syyxsxx 已提交
2408
            x = paddle.assign(np.array([[1, 0], [1, 1]], dtype='int32'))
2409
            print(x)
S
syyxsxx 已提交
2410
            x = paddle.cast(x, 'bool')
2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424
            
            # out1 should be [False]
            out1 = paddle.all(x)  # [False]
            print(out1)
            
            # out2 should be [True, False]
            out2 = paddle.all(x, axis=0)  # [True, False]
            print(out2)
            
            # keep_dim=False, out3 should be [False, True], out.shape should be (2,)
            out3 = paddle.all(x, axis=-1)  # [False, True]
            print(out3)
            
            # keep_dim=True, out4 should be [[False], [True]], out.shape should be (2,1)
S
syyxsxx 已提交
2425 2426
            out4 = paddle.all(x, axis=1, keepdim=True)
            out4 = paddle.cast(out4, 'int32')  # [[False], [True]]
2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440
            print(out4)
            
    """
    if axis is not None and not isinstance(axis, (list, tuple)):
        axis = [axis]

    if not axis:
        reduce_all_flag = True
    else:
        if len(axis) == len(x.shape):
            reduce_all_flag = True
        else:
            reduce_all_flag = False

W
wanghuancoder 已提交
2441 2442
    if in_dygraph_mode():
        axis = axis if axis != None and axis != [] else [0]
W
wanghuancoder 已提交
2443
        return _C_ops.reduce_all(x, 'dim', axis, 'keep_dim', keepdim,
W
wanghuancoder 已提交
2444 2445
                                       'reduce_all', reduce_all_flag)

2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473
    attrs = {
        'dim': axis if axis != None and axis != [] and axis != () else [0],
        'keep_dim': keepdim,
        'reduce_all': reduce_all_flag
    }
    check_variable_and_dtype(x, 'x', ['bool'], 'all')


    check_type(axis, 'axis', (int, list, tuple, type(None)), 'all')

    helper = LayerHelper('all', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='reduce_all',
        inputs={'X': x},
        outputs={'Out': out},
        attrs=attrs)
    return out


def any(x, axis=None, keepdim=False, name=None):
    """
    Computes the the ``logical or`` of tensor elements over the given dimension.

    Args:
        x (Tensor): An N-D Tensor, the input data type should be `bool`.
        axis (int|list|tuple, optional): The dimensions along which the ``logical or`` is compute. If
            :attr:`None`, and all elements of :attr:`x` and return a
N
Noel 已提交
2474
            Tensor with a single element, otherwise must be in the
2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
            value is False.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`

    Returns:
        Tensor: Results the ``logical or`` on the specified axis of input Tensor `x`,  it's data type is bool.

    Raises:
        ValueError: If the data type of `x` is not bool.
        TypeError: The type of :attr:`axis` must be int, list or tuple.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np
            
N
Noel 已提交
2497
            # x is a bool Tensor with following elements:
2498 2499
            #    [[True, False]
            #     [False, False]]
S
syyxsxx 已提交
2500
            x = paddle.assign(np.array([[1, 0], [1, 1]], dtype='int32'))
2501
            print(x)
S
syyxsxx 已提交
2502
            x = paddle.cast(x, 'bool')
2503 2504 2505 2506 2507
            
            # out1 should be [True]
            out1 = paddle.any(x)  # [True]
            print(out1)
            
2508 2509
            # out2 should be [True, True]
            out2 = paddle.any(x, axis=0)  # [True, True]
2510 2511
            print(out2)
            
2512 2513
            # keep_dim=False, out3 should be [True, True], out.shape should be (2,)
            out3 = paddle.any(x, axis=-1)  # [True, True]
2514 2515
            print(out3)
            
2516
            # keep_dim=True, result should be [[True], [True]], out.shape should be (2,1)
S
syyxsxx 已提交
2517
            out4 = paddle.any(x, axis=1, keepdim=True)
2518
            out4 = paddle.cast(out4, 'int32')  # [[True], [True]]
2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532
            print(out4)
            
    """
    if axis is not None and not isinstance(axis, (list, tuple)):
        axis = [axis]

    if not axis:
        reduce_all_flag = True
    else:
        if len(axis) == len(x.shape):
            reduce_all_flag = True
        else:
            reduce_all_flag = False

W
wanghuancoder 已提交
2533 2534
    if in_dygraph_mode():
        axis = axis if axis != None and axis != [] else [0]
W
wanghuancoder 已提交
2535
        return _C_ops.reduce_any(x, 'dim', axis, 'keep_dim', keepdim,
W
wanghuancoder 已提交
2536 2537
                                       'reduce_all', reduce_all_flag)

2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556
    attrs = {
        'dim': axis if axis != None and axis != [] and axis != () else [0],
        'keep_dim': keepdim,
        'reduce_all': reduce_all_flag
    }

    check_variable_and_dtype(x, 'x', ['bool'], 'any')


    check_type(axis, 'axis', (int, list, tuple, type(None)), 'any')

    helper = LayerHelper('any', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='reduce_any',
        inputs={'X': x},
        outputs={'Out': out},
        attrs=attrs)
    return out
L
Leo Chen 已提交
2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583

def broadcast_shape(x_shape, y_shape):
    """
    The function returns the shape of doing operation with broadcasting on tensors of x_shape and y_shape, please refer to :ref:`user_guide_broadcasting` for more details.

    Args:
        x_shape (list[int]|tuple[int]): A shape of tensor.
        y_shape (list[int]|tuple[int]): A shape of tensor.
        

    Returns:
        list[int], the result shape.

    Examples:
        .. code-block:: python

            import paddle

            shape = paddle.broadcast_shape([2, 1, 3], [1, 3, 1])
            # [2, 3, 3]
            
            # shape = paddle.broadcast_shape([2, 1, 3], [3, 3, 1])
            # ValueError (terminated with error message).

    """

    return core.broadcast_shape(x_shape, y_shape)
2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614

def conj(x, name=None):
    r"""
    This function computes the conjugate of the Tensor elementwisely.

    Args:
        x (Tensor): The input tensor which hold the complex numbers. 
            Optional data types are: complex64, complex128, float32, float64, int32 or int64.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`

    Returns:
        out (Tensor): The conjugate of input. The shape and data type is the same with input.
            If the elements of tensor is real type such as float32, float64, int32 or int64, the out is the same with input.

    Examples:
        .. code-block:: python

          import paddle
          data=paddle.to_tensor([[1+1j, 2+2j, 3+3j], [4+4j, 5+5j, 6+6j]])
          #Tensor(shape=[2, 3], dtype=complex64, place=CUDAPlace(0), stop_gradient=True,
          #       [[(1+1j), (2+2j), (3+3j)],
          #        [(4+4j), (5+5j), (6+6j)]])

          conj_data=paddle.conj(data)
          #Tensor(shape=[2, 3], dtype=complex64, place=CUDAPlace(0), stop_gradient=True,
          #       [[(1-1j), (2-2j), (3-3j)],
          #        [(4-4j), (5-5j), (6-6j)]])

    """
    if in_dygraph_mode():
W
wanghuancoder 已提交
2615
        return _C_ops.conj(x)
2616 2617 2618 2619 2620 2621 2622 2623 2624

    check_variable_and_dtype(x, "x", ['complex64', 'complex128', 'float32', 'float64', 'int32', 'int64'], 'conj')

    helper = LayerHelper('conj', **locals())
    out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())

    helper.append_op(type='conj', inputs={'X': x}, outputs={'Out': [out]})
    return out
2625

Z
zyfncg 已提交
2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653
def digamma(x, name=None):
    r"""
    Calculates the digamma of the given input tensor, element-wise.

    .. math::
        Out = \Psi(x) = \frac{ \Gamma^{'}(x) }{ \Gamma(x) }

    Args:
        x (Tensor): Input Tensor. Must be one of the following types: float32, float64.
        name(str, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
    Returns:
        Tensor, the digamma of the input Tensor, the shape and data type is the same with input.

    Examples:
        .. code-block:: python

            import paddle

            data = paddle.to_tensor([[1, 1.5], [0, -2.2]], dtype='float32')
            res = paddle.digamma(data)
            print(res)
            # Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [[-0.57721591,  0.03648996],
            #        [ nan       ,  5.32286835]])
    """

    if in_dygraph_mode():
W
wanghuancoder 已提交
2654
        return _C_ops.digamma(x)
Z
zyfncg 已提交
2655 2656 2657 2658 2659 2660 2661

    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'digamma')
    helper = LayerHelper('digamma', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='digamma', inputs={'X': x}, outputs={'Out': out})
    return out

2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684
def neg(x, name=None):
    """
    This function computes the negative of the Tensor elementwisely.

    Args:
        x (Tensor): Input of neg operator, an N-D Tensor, with data type float32, float64, int8, int16, int32, or int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): The negative of input Tensor. The shape and data type are the same with input Tensor.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
            out = paddle.neg(x)
            print(out)
            # [0.4 0.2 -0.1 -0.3]
    """

    return layers.scale(x, scale=-1.0, bias=0.0, bias_after_scale=True, act=None, name=name)
R
ronnywang 已提交
2685

2686
def atan2(x, y, name=None):
R
ronnywang 已提交
2687
    r"""
2688
    Element-wise arctangent of x/y with consideration of the quadrant.
R
ronnywang 已提交
2689 2690 2691 2692

    Equation:
        .. math::

2693 2694 2695 2696 2697 2698 2699 2700
            atan2(x,y)=\left\{\begin{matrix}
            & tan^{-1}(\frac{x}{y}) & y > 0 \\
            & tan^{-1}(\frac{x}{y}) + \pi & x>=0, y < 0 \\
            & tan^{-1}(\frac{x}{y}) - \pi & x<0, y < 0 \\
            & +\frac{\pi}{2} & x>0, y = 0 \\
            & -\frac{\pi}{2} & x<0, y = 0 \\
            &\text{undefined} & x=0, y = 0
            \end{matrix}\right.
R
ronnywang 已提交
2701 2702

    Args:
2703 2704
        x (Tensor): An N-D Tensor, the data type is int32, int64, float16, float32, float64.
        y (Tensor): An N-D Tensor, must have the same type as `x`.
R
ronnywang 已提交
2705 2706 2707 2708 2709 2710 2711 2712
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the shape and data type is the same with input (The output data type is float64 when the input data type is int).

    Examples:
        .. code-block:: python

2713
            import paddle
R
ronnywang 已提交
2714

2715 2716 2717
            x = paddle.to_tensor([-1, +1, +1, -1]).astype('float32')
            #Tensor(shape=[4], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [-1,  1,  1, -1])
R
ronnywang 已提交
2718

2719 2720 2721
            y = paddle.to_tensor([-1, -1, +1, +1]).astype('float32')
            #Tensor(shape=[4], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [-1,  -1,  1, 1])
R
ronnywang 已提交
2722

2723 2724 2725
            out = paddle.atan2(x, y)
            #Tensor(shape=[4], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [-2.35619450,  2.35619450,  0.78539819, -0.78539819])
R
ronnywang 已提交
2726 2727 2728 2729

    """

    if in_dygraph_mode():
2730
        return _C_ops.atan2(x, y)
R
ronnywang 已提交
2731 2732
    else:
        check_variable_and_dtype(x, 'x', ['int32', 'int64', 'float16', 'float32', 'float64'], 'atan2')
2733
        check_variable_and_dtype(y, 'y', ['int32', 'int64', 'float16', 'float32', 'float64'], 'atan2')
R
ronnywang 已提交
2734 2735

        helper = LayerHelper('atan2', **locals())
2736
        inputs = {'X1' : x, 'X2' : y}
R
ronnywang 已提交
2737 2738 2739 2740
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
                type='atan2', inputs=inputs, outputs={'Out': out})
        return out
A
andyjpaddle 已提交
2741

W
wangzhen38 已提交
2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797
def logit(x, eps=None, name=None):
    r"""
    This function generates a new tensor with the logit of the elements of input x. x is clamped to [eps, 1-eps] when eps is not zero. When eps is zero and x < 0 or x > 1, the function will yields NaN.

    .. math::
 
        logit(x) = ln(\frac{x}{1 - x})

    where

    .. math::

        x_i=
            \left\{\begin{array}{rcl}
                x_i & &\text{if } eps == Default \\
                eps & &\text{if } x_i < eps \\
                x_i & &\text{if } eps <= x_i <= 1-eps \\
                1-eps & &\text{if } x_i > 1-eps
            \end{array}\right.

    Args:
        x (Tensor): The input Tensor with data type float32, float64.
        eps (float, optional):  the epsilon for input clamp bound. Default is None.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out(Tensor): A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([0.2635, 0.0106, 0.2780, 0.2097, 0.8095])
            out1 = paddle.logit(x)
            print(out1)
            # [-1.0277, -4.5365, -0.9544, -1.3269,  1.4468]  

    """

    if eps == None:
        eps = 0.0
    if in_dygraph_mode():
        return _C_ops.logit(x, 'eps', eps)

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'logit')
    helper = LayerHelper("logit", **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type='logit',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'eps': eps})
    return out

2798 2799 2800 2801 2802 2803 2804 2805 2806 2807
def lerp(x, y, weight, name=None):
    r"""
    Does a linear interpolation between x and y based on weight.

    Equation:
        .. math::

            lerp(x, y, weight) = x + weight * (y - x).

    Args:
2808 2809 2810
        x (Tensor): An N-D Tensor with starting points, the data type is float32, float64.
        y (Tensor): An N-D Tensor with ending points, the data type is float32, float64.
        weight (float|Tensor): The weight for the interpolation formula. When weight is Tensor, the data type is float32, float64.
2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the shape and data type is the same with input.

    Example:
        .. code-block:: python

            import paddle
            
            x = paddle.arange(1., 5., dtype='float32')
            y = paddle.empty([4], dtype='float32')
            y.fill_(10.)
            out = paddle.lerp(start, end, 0.5)
            # out: [5.5., 6., 6.5, 7.]

    """
    if in_dygraph_mode():
        check_type(weight, 'weight', (float, paddle.Tensor, Variable), 'lerp')
        if isinstance(weight, float):
            weight = paddle.to_tensor(weight, dtype=x.dtype)
        return _C_ops.lerp(x, y, weight)

2834 2835 2836
    if isinstance(weight, float):
        weight = paddle.full(shape=[1], fill_value=weight, dtype=x.dtype)

2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'lerp')
    check_variable_and_dtype(y, 'y', ['float32', 'float64'], 'lerp')
    check_variable_and_dtype(weight, 'weight', ['float32', 'float64'], 'lerp')

    helper = LayerHelper('lerp', **locals())
    inputs = {'X': x, 'Y': y, 'Weight': weight}
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(type='lerp', inputs=inputs, outputs={'Out': out})
    return out

@inplace_apis_in_dygraph_only
def lerp_(x, y, weight, name=None):
    r"""
    Inplace version of ``lerp`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_lerp`.
    """
    out_shape = broadcast_shape(x.shape, y.shape)
    check_type(weight, 'weight', (float, paddle.Tensor, Variable), 'lerp')
    if isinstance(weight, float):
        weight = paddle.to_tensor([weight], dtype=x.dtype)
    elif isinstance(weight, (paddle.Tensor, Variable)):
        out_shape = broadcast_shape(out_shape, weight.shape)
    if out_shape != x.shape:
        raise ValueError("The shape of broadcast output {} is different from that of inplace tensor {} in the Inplace operation.".format(out_shape, x.shape))
    return _C_ops.lerp_(x, y, weight)

W
wuhuanzhou 已提交
2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907
def erfinv(x, name=None):
    r"""
    The inverse error function of x, .

    Equation:
        .. math::

            erfinv(erf(x)) = x.

    Args:
        x (Tensor): An N-D Tensor, the data type is float32, float64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the shape and data type is the same with input.

    Example:
        .. code-block:: python

            import paddle
            
            x = paddle.to_tensor([0, 0.5, -1.], dtype="float32")
            out = paddle.erfinv(x)
            # out: [0, 0.4769, -inf]

    """
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'erfinv')

    if in_dygraph_mode():
        return _C_ops.erfinv(x)

    helper = LayerHelper('erfinv', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(type='erfinv', inputs={'X': x}, outputs={'Out': out})
    return out

@inplace_apis_in_dygraph_only
def erfinv_(x, name=None):
    r"""
    Inplace version of ``erfinv`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_erfinv`.
    """
    check_type(x, 'x', (paddle.Tensor, Variable), 'erfinv')
    return _C_ops.erfinv_(x)

2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018
def rad2deg(x, name=None):
    """
    Convert each of the elements of input x from angles in radians to degrees.
    
    Equation:
        .. math::

            rad2deg(x)=180/ \pi * x

    Args:
        x (Tensor): An N-D Tensor, the data type is float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the shape and data type is the same with input (The output data type is float32 when the input data type is int).

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np
            
            x1 = paddle.to_tensor([3.142, -3.142, 6.283, -6.283, 1.570, -1.570])
            result1 = paddle.rad2deg(x1)
            print(result1)
            # Tensor(shape=[6], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         [180.02334595, -180.02334595,  359.98937988, -359.98937988,
            #           9.95437622 , -89.95437622])

            x2 = paddle.to_tensor(np.pi/2)
            result2 = paddle.rad2deg(x2)
            print(result2)
            # Tensor(shape=[1], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         [90.])
                     
            x3 = paddle.to_tensor(1)
            result3 = paddle.rad2deg(x3)
            print(result3)
            # Tensor(shape=[1], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         [57.29578018])
    """
    rad2deg_scale = 180 / np.pi
    if in_dygraph_mode():
        if convert_dtype(x.dtype) in ['int32', 'int64']:
            x = cast(x, dtype="float32")
        return _C_ops.scale(x, 'scale', rad2deg_scale)
    else:
        check_variable_and_dtype(x, 'x', ['int32', 'int64', 'float32', 'float64'], 'rad2deg')
        helper = LayerHelper('rad2deg', **locals())
        out_cast = x
        if convert_dtype(x.dtype) in ['int32', 'int64']:
            out_cast = helper.create_variable_for_type_inference(dtype=paddle.float32)
            helper.append_op(
                    type='cast', inputs={'X':x}, outputs={'Out': out_cast}, attrs={'in_dtype': x.dtype,'out_dtype': paddle.float32})
        out = helper.create_variable_for_type_inference(dtype=out_cast.dtype)
        helper.append_op(
            type='scale', inputs={'X':out_cast}, outputs={'Out': out}, attrs={'scale': rad2deg_scale})
        return out

def deg2rad(x, name=None):
    """
    Convert each of the elements of input x from degrees to angles in radians.
    
    Equation:
        .. math::

            deg2rad(x)=\pi * x / 180

    Args:
        x (Tensor): An N-D Tensor, the data type is float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the shape and data type is the same with input (The output data type is float32 when the input data type is int).

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np
            
            x1 = paddle.to_tensor([180.0, -180.0, 360.0, -360.0, 90.0, -90.0])
            result1 = paddle.deg2rad(x1)
            print(result1)
            # Tensor(shape=[6], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         [3.14159274, -3.14159274,  6.28318548, -6.28318548,  1.57079637,
            #           -1.57079637])

            x2 = paddle.to_tensor(180)
            result2 = paddle.deg2rad(x2)
            print(result2)
            # Tensor(shape=[1], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         [3.14159274])
    """
    deg2rad_scale = np.pi / 180.0
    if in_dygraph_mode():
        if convert_dtype(x.dtype) in ['int32', 'int64']:
            x = cast(x, dtype="float32")
        return _C_ops.scale(x, 'scale', deg2rad_scale)
    else:
        check_variable_and_dtype(x, 'x', ['int32', 'int64', 'float32', 'float64'], 'deg2rad')
        helper = LayerHelper('deg2rad', **locals())
        out_cast = x
        if convert_dtype(x.dtype) in ['int32', 'int64']:
            out_cast = helper.create_variable_for_type_inference(dtype=paddle.float32)
            helper.append_op(
                    type='cast', inputs={'X':x}, outputs={'Out': out_cast}, attrs={'in_dtype': x.dtype,'out_dtype': paddle.float32})
        out = helper.create_variable_for_type_inference(dtype=out_cast.dtype)
        helper.append_op(
            type='scale', inputs={'X':out_cast}, outputs={'Out': out}, attrs={'scale': deg2rad_scale})
        return out
A
andyjpaddle 已提交
3019

T
Tao Luo 已提交
3020 3021 3022 3023 3024 3025 3026 3027
def gcd(x, y, name=None):
    """
    Computes the element-wise greatest common divisor (GCD) of input |x| and |y|.
    Both x and y must have integer types.
    
    Note:
        gcd(0,0)=0, gcd(0, y)=|y|

T
Tao Luo 已提交
3028 3029
        If x.shape != y.shape, they must be broadcastable to a common shape (which becomes the shape of the output).

T
Tao Luo 已提交
3030
    Args:
T
Tao Luo 已提交
3031 3032
        x (Tensor): An N-D Tensor, the data type is int8,int16,int32,int64,uint8. 
        y (Tensor): An N-D Tensor, the data type is int8,int16,int32,int64,uint8. 
T
Tao Luo 已提交
3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the data type is the same with input.

    Examples:
        .. code-block:: python

            import paddle
            
            x1 = paddle.to_tensor(12)
            x2 = paddle.to_tensor(20)
            paddle.gcd(x1, x2)
            # Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [4])

T
Tao Luo 已提交
3049
            x3 = paddle.arange(6)
T
Tao Luo 已提交
3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105
            paddle.gcd(x3, x2)
            # Tensor(shape=[6], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [20, 1 , 2 , 1 , 4 , 5])

            x4 = paddle.to_tensor(0)
            paddle.gcd(x4, x2)
            # Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [20])

            paddle.gcd(x4, x4)
            # Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [0])
            
            x5 = paddle.to_tensor(-20)
            paddle.gcd(x1, x5)
            # Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [4])
    """
    shape = paddle.broadcast_shape(x.shape, y.shape)
    x = paddle.broadcast_to(x, shape)
    y = paddle.broadcast_to(y, shape)
    x = paddle.abs(x)
    y = paddle.abs(y)

    def _gcd_cond_fn(x, y):
        return paddle.any(y != 0)

    def _gcd_body_fn(x, y):
        # paddle.mod will raise an error when any element of y is 0. To avoid
        # that, we change those zeros to ones. Their values don't matter because
        # they won't be used.
        y_not_equal_0 = (y != 0)
        y_safe = paddle.where(y_not_equal_0, y, paddle.ones(y.shape, y.dtype))
        x, y = (paddle.where(y_not_equal_0, y, x),
                  paddle.where(y_not_equal_0, paddle.mod(x, y_safe),paddle.zeros(y.shape, y.dtype)))
        return (paddle.where(x < y, y, x), paddle.where(x < y, x, y))

    if in_dygraph_mode():
        while _gcd_cond_fn(x, y):
            x, y = _gcd_body_fn(x, y)

        return x
    else:
        check_variable_and_dtype(x, 'x', ['int32', 'int64', 'int8', 'int16', 'uint8'], 'gcd')
        check_variable_and_dtype(y, 'y', ['int32', 'int64', 'int8', 'int16', 'uint8'], 'gcd')
        out, _ = paddle.static.nn.while_loop(_gcd_cond_fn, _gcd_body_fn, [x, y])
        return out

def lcm(x, y, name=None):
    """
    Computes the element-wise least common multiple (LCM) of input |x| and |y|.
    Both x and y must have integer types.
    
    Note:
        lcm(0,0)=0, lcm(0, y)=0

T
Tao Luo 已提交
3106 3107
        If x.shape != y.shape, they must be broadcastable to a common shape (which becomes the shape of the output).

T
Tao Luo 已提交
3108
    Args:
T
Tao Luo 已提交
3109 3110
        x (Tensor): An N-D Tensor, the data type is int8,int16,int32,int64,uint8. 
        y (Tensor): An N-D Tensor, the data type is int8,int16,int32,int64,uint8. 
T
Tao Luo 已提交
3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the data type is the same with input.

    Examples:
        .. code-block:: python

            import paddle
            
            x1 = paddle.to_tensor(12)
            x2 = paddle.to_tensor(20)
            paddle.lcm(x1, x2)
            # Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [60])

T
Tao Luo 已提交
3127
            x3 = paddle.arange(6)
T
Tao Luo 已提交
3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154
            paddle.lcm(x3, x2)
            # Tensor(shape=[6], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [0, 20, 20, 60, 20, 20])

            x4 = paddle.to_tensor(0)
            paddle.lcm(x4, x2)
            # Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [0])

            paddle.lcm(x4, x4)
            # Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [0])
            
            x5 = paddle.to_tensor(-20)
            paddle.lcm(x1, x5)
            # Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [60])
    """
    d = paddle.gcd(x, y)
    # paddle.mod will raise an error when any element of y is 0. To avoid
    # that, we change those zeros to ones. Their values don't matter because
    # they won't be used.
    d_equal_0 = paddle.equal(d, 0)
    d_safe = paddle.where(d_equal_0, paddle.ones(d.shape, d.dtype), d)
    out = paddle.where(d_equal_0, paddle.zeros(d.shape, d.dtype), paddle.abs(x * y) // d_safe)
    return out

A
andyjpaddle 已提交
3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187
def diff(x, n=1, axis=-1, prepend=None, append=None, name=None):
    r"""
    Computes the n-th forward difference along the given axis.
    The first-order differences is computed by using the following formula: 

    .. math::

        out[i] = x[i+1] - x[i]
    
    Higher-order differences are computed by using paddle.diff() recursively. 
    Only n=1 is currently supported.

    Args:
        x(Tensor): The input tensor to compute the forward difference on
        n(int, optional): The number of times to recursively compute the difference. 
                          Only support n=1. Default:1
        axis(int, optional): The axis to compute the difference along. Default:-1
        prepend(Tensor, optional): The tensor to prepend to input along axis before computing the difference.
                                   It's dimensions must be equivalent to that of x, 
                                   and its shapes must match x's shape except on axis.
        append(Tensor, optional): The tensor to append to input along axis before computing the difference, 
                                   It's dimensions must be equivalent to that of x, 
                                   and its shapes must match x's shape except on axis.
        name(str|None): A name for this layer(optional). If set None, 
                        the layer will be named automatically.
    
    Returns:
        Tensor: The output tensor with same dtype with x.

    Examples:
        .. code-block:: python

            import paddle
3188

A
andyjpaddle 已提交
3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314
            x = paddle.to_tensor([1, 4, 5, 2])
            out = paddle.diff(x)
            print(out)
            # out:
            # [3, 1, -3]

            y = paddle.to_tensor([7, 9])
            out = paddle.diff(x, append=y)
            print(out)
            # out: 
            # [3, 1, -3, 5, 2]

            z = paddle.to_tensor([[1, 2, 3], [4, 5, 6]])
            out = paddle.diff(z, axis=0)
            print(out)
            # out:
            # [[3, 3, 3]]
            out = paddle.diff(z, axis=1)
            print(out)
            # out:
            # [[1, 1], [1, 1]]
    """

    if axis < 0:
        axis = axis + len(x.shape)
    if axis > len(x.shape):
        axis = len(x.shape)
    if axis < 0:
        axis = 0
    dtype = x.dtype
    axes = [axis]
    infer_flags = list(1 for i in range(len(axes)))
    if in_dygraph_mode():
        has_pend = False
        input_list = []
        if prepend is not None and append is not None:
            input_list = [prepend, x, append]
            has_pend = True
        elif prepend is not None:
            input_list = [prepend, x]
            has_pend = True
        elif append is not None:
            input_list = [x, append]
            has_pend = True
        if has_pend:
            new_input = _C_ops.concat(input_list, 'axis', axis)
        else:
            new_input = x

        attrs_1 = ()
        attrs_2 = ()

        dim_len = new_input.shape[axis]

        starts_1 = [0]
        attrs_1 += ('starts', starts_1)
        ends_1 = [dim_len - 1]
        attrs_1 += ('ends', ends_1)
        input_front = _C_ops.slice(new_input, None, None, 'axes', axes, \
            'infer_flags', infer_flags, *attrs_1)
        starts_2 = [1]
        attrs_2 += ('starts', starts_2)
        ends_2 = [dim_len]
        attrs_2 += ('ends', ends_2)
        input_back = _C_ops.slice(new_input, None, None, 'axes', axes, \
            'infer_flags', infer_flags, *attrs_2)

        if x.dtype == paddle.bool:
            op = getattr(_C_ops, "logical_xor")
            out = op(input_back, input_front)
        else:
            out = layers.elementwise_sub(input_back, input_front, axis=axis)
        return out
    else:
        check_variable_and_dtype(x, 'x', ['float32', 'float64', 'bool', 'int32', 'int64'], 'diff')
        check_type(axis, 'axis', (int), 'diff')
        helper = LayerHelper('diff', **locals())
        has_pend = False
        input_list = []
        if prepend is not None and append is not None:
            input_list = [prepend, x, append]
            has_pend = True
        elif prepend is not None:
            input_list = [prepend, x]
            has_pend = True
        elif append is not None:
            input_list = [x, append]
            has_pend = True

        if has_pend:
            new_input = helper.create_variable_for_type_inference(dtype)
            helper.append_op(
                type='concat', inputs={'X': input_list}, outputs={'Out': [new_input]}, attrs={'axis': axis}
            )
        else:
            new_input = x

        dim_len = new_input.shape[axis]
        attrs_1 = {'axes': axes}
        starts_1 = [0]
        ends_1 = [dim_len - 1]
        attrs_1['starts'] = starts_1
        attrs_1['ends'] = ends_1
        input_front = helper.create_variable_for_type_inference(dtype)
        helper.append_op(
            type='slice', inputs={'Input': new_input}, attrs=attrs_1, outputs={'Out': input_front}
        )
        attrs_2 = {'axes': axes}
        starts_2 = [1]
        ends_2 = [dim_len]
        attrs_2['starts'] = starts_2
        attrs_2['ends'] = ends_2
        input_back = helper.create_variable_for_type_inference(dtype)
        helper.append_op(
            type='slice', inputs={'Input': new_input}, attrs=attrs_2, outputs={'Out': input_back}
        )

        if dtype == paddle.bool:
            out = helper.create_variable_for_type_inference(dtype)
            helper.append_op(
                type='logical_xor', inputs={"X": input_back, "Y": input_front}, outputs={"Out": out}
            )
        else:
            out = layers.elementwise_sub(input_back, input_front, axis=axis)

        return out
F
Feiyu Chan 已提交
3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330

def angle(x, name=None):
    r"""
    Element-wise angle of complex numbers. For non-negative real numbers, the angle is 0 while 
    for negative real numbers, the angle is :math:`\pi`.

    Equation:
        .. math::

            angle(x)=arctan2(x.imag, x.real)

    Args:
        x (Tensor): An N-D Tensor, the data type is complex64, complex128, or float32, float64 .
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
3331
        Tensor: An N-D Tensor of real data type with the same precision as that of x's data type.
F
Feiyu Chan 已提交
3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([-2, -1, 0, 1]).unsqueeze(-1).astype('float32')
            y = paddle.to_tensor([-2, -1, 0, 1]).astype('float32')
            z = x + 1j * y
            print(z.numpy())
            # [[-2.-2.j -2.-1.j -2.+0.j -2.+1.j]
            #  [-1.-2.j -1.-1.j -1.+0.j -1.+1.j]
            #  [ 0.-2.j  0.-1.j  0.+0.j  0.+1.j]
            #  [ 1.-2.j  1.-1.j  1.+0.j  1.+1.j]]

            theta = paddle.angle(z)
            print(theta.numpy())
            # [[-2.3561945 -2.6779451  3.1415927  2.6779451]
            #  [-2.0344439 -2.3561945  3.1415927  2.3561945]
            #  [-1.5707964 -1.5707964  0.         1.5707964]
            #  [-1.1071488 -0.7853982  0.         0.7853982]]
    """

    if in_dygraph_mode():
        return _C_ops.angle(x)

    check_variable_and_dtype(x, 'x',
        ['float32', 'float64', 'complex64', 'complex128'], 'angle')
    op_type = "angle"
    helper = LayerHelper(op_type, **locals())
    inputs = {"X": x}
    out = helper.create_variable_for_type_inference(
        dtype=_complex_to_real_dtype(x.dtype))
    outputs = {"Out": out}
    helper.append_op(type=op_type, inputs=inputs, outputs=outputs)
    return out