ps_gpu_wrapper.cc 47.9 KB
Newer Older
T
Thunderbrook 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

  http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

T
Thunderbrook 已提交
29
#ifdef PADDLE_WITH_HETERPS
Y
yaoxuefeng 已提交
30

31 32
#include "paddle/fluid/framework/fleet/ps_gpu_wrapper.h"

T
Thunderbrook 已提交
33
#include <algorithm>
Y
yaoxuefeng 已提交
34 35
#include <deque>

T
Thunderbrook 已提交
36
#include "paddle/fluid/platform/timer.h"
37 38 39 40
#if defined(PADDLE_WITH_PSCORE)
#include "paddle/fluid/distributed/ps/table/ctr_dymf_accessor.h"
#include "paddle/fluid/distributed/ps/table/depends/feature_value.h"
#endif
T
Thunderbrook 已提交
41 42 43 44

namespace paddle {
namespace framework {

T
Thunderbrook 已提交
45
#ifdef PADDLE_WITH_PSLIB
46 47 48 49 50 51
void AfsWrapper::init(const std::string& fs_name,
                      const std::string& fs_user,
                      const std::string& pass_wd,
                      const std::string& conf) {
  int ret = afs_handler_.init(
      fs_name.c_str(), fs_user.c_str(), pass_wd.c_str(), conf.c_str());
T
Thunderbrook 已提交
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
  if (ret != 0) {
    LOG(ERROR) << "AFS Init Error";
  }
}

int AfsWrapper::remove(const std::string& path) {
  return afs_handler_.remove(path);
}

int AfsWrapper::mkdir(const std::string& path) {
  return afs_handler_.mkdir(path);
}

std::vector<std::string> AfsWrapper::list(const std::string& path) {
  return afs_handler_.list(path);
}

int AfsWrapper::exist(const std::string& path) {
  return afs_handler_.exist(path);
}

int AfsWrapper::upload(const std::string& local_file,
                       const std::string& afs_file) {
  return afs_handler_.upload_file(local_file, afs_file);
}

int AfsWrapper::download(const std::string& local_file,
                         const std::string& afs_file) {
  return afs_handler_.download_file(local_file, afs_file);
}
82 83 84 85 86 87 88 89 90 91 92 93

int AfsWrapper::touchz(const std::string& path) {
  return afs_handler_.touchz(path);
}

std::string AfsWrapper::cat(const std::string& path) {
  return afs_handler_.cat(path);
}

int AfsWrapper::mv(const std::string& old_path, const std::string& dest_path) {
  return afs_handler_.mv(old_path, dest_path);
}
T
Thunderbrook 已提交
94 95
#endif

T
Thunderbrook 已提交
96 97
std::shared_ptr<PSGPUWrapper> PSGPUWrapper::s_instance_ = NULL;
bool PSGPUWrapper::is_initialized_ = false;
T
Thunderbrook 已提交
98 99 100 101 102
#ifdef PADDLE_WITH_PSLIB
void PSGPUWrapper::InitAfsApi(const std::string& fs_name,
                              const std::string& fs_user,
                              const std::string& pass_wd,
                              const std::string& conf) {
103 104
  int ret = afs_handler_.init(
      fs_name.c_str(), fs_user.c_str(), pass_wd.c_str(), conf.c_str());
T
Thunderbrook 已提交
105
  if (ret != 0) {
106
    VLOG(0) << "AFS Init Error";
T
Thunderbrook 已提交
107 108 109 110
  }
  use_afs_api_ = 1;
}
#endif
111
void PSGPUWrapper::PreBuildTask(std::shared_ptr<HeterContext> gpu_task) {
Y
yaoxuefeng 已提交
112
  VLOG(3) << "PSGPUWrapper::BuildGPUPSTask begin";
T
Thunderbrook 已提交
113 114
  platform::Timer timeline;
  timeline.Start();
115
  int device_num = heter_devices_.size();
Y
yaoxuefeng 已提交
116
  gpu_task->init(thread_keys_shard_num_, device_num, multi_mf_dim_);
117

Y
yaoxuefeng 已提交
118
  std::vector<std::thread> threads;
Y
yaoxuefeng 已提交
119 120 121 122 123 124 125 126

  // data should be in input channel

  thread_dim_keys_.resize(thread_keys_thread_num_);
  for (int i = 0; i < thread_keys_thread_num_; i++) {
    thread_dim_keys_[i].resize(thread_keys_shard_num_);
    for (int j = 0; j < thread_keys_shard_num_; j++) {
      thread_dim_keys_[i][j].resize(multi_mf_dim_);
127
    }
Y
yaoxuefeng 已提交
128
  }
Y
yaoxuefeng 已提交
129 130 131 132

  size_t total_len = 0;
  size_t len_per_thread = 0;
  int remain = 0;
Y
yaoxuefeng 已提交
133
  size_t begin = 0;
Y
yaoxuefeng 已提交
134 135 136 137 138 139

  std::string data_set_name = std::string(typeid(*dataset_).name());

  if (data_set_name.find("SlotRecordDataset") != std::string::npos) {
    SlotRecordDataset* dataset = dynamic_cast<SlotRecordDataset*>(dataset_);
    auto input_channel = dataset->GetInputChannel();
Y
yaoxuefeng 已提交
140
    VLOG(0) << "psgpu wrapperinputslotchannle size: " << input_channel->Size();
Y
yaoxuefeng 已提交
141 142 143 144 145
    const std::deque<SlotRecord>& vec_data = input_channel->GetData();
    total_len = vec_data.size();
    len_per_thread = total_len / thread_keys_thread_num_;
    remain = total_len % thread_keys_thread_num_;
    VLOG(0) << "total len: " << total_len;
146
    auto gen_dynamic_mf_func = [this](const std::deque<SlotRecord>& total_data,
147 148 149
                                      int begin_index,
                                      int end_index,
                                      int i) {
150
      for (auto iter = total_data.begin() + begin_index;
151 152
           iter != total_data.begin() + end_index;
           iter++) {
153 154 155 156 157 158
        const auto& ins = *iter;
        const auto& feasign_v = ins->slot_uint64_feasigns_.slot_values;
        const auto& slot_offset = ins->slot_uint64_feasigns_.slot_offsets;
        for (size_t slot_idx = 0; slot_idx < slot_offset_vector_.size();
             slot_idx++) {
          for (size_t j = slot_offset[slot_offset_vector_[slot_idx]];
159 160
               j < slot_offset[slot_offset_vector_[slot_idx] + 1];
               j++) {
161 162
            int shard_id = feasign_v[j] % thread_keys_shard_num_;
            int dim_id = slot_index_vec_[slot_idx];
Y
yaoxuefeng 已提交
163 164 165
            if (feasign_v[j] != 0) {
              this->thread_dim_keys_[i][shard_id][dim_id].insert(feasign_v[j]);
            }
166 167 168 169
          }
        }
      }
    };
Y
yaoxuefeng 已提交
170
    for (int i = 0; i < thread_keys_thread_num_; i++) {
Y
yaoxuefeng 已提交
171
      threads.push_back(
172 173 174 175 176
          std::thread(gen_dynamic_mf_func,
                      std::ref(vec_data),
                      begin,
                      begin + len_per_thread + (i < remain ? 1 : 0),
                      i));
Y
yaoxuefeng 已提交
177

Y
yaoxuefeng 已提交
178
      begin += len_per_thread + (i < remain ? 1 : 0);
Y
yaoxuefeng 已提交
179
    }
Y
yaoxuefeng 已提交
180 181 182 183
    for (std::thread& t : threads) {
      t.join();
    }
    timeline.Pause();
T
Thunderbrook 已提交
184
    VLOG(0) << "GpuPs build task cost " << timeline.ElapsedSec() << " seconds.";
Y
yaoxuefeng 已提交
185 186 187 188 189 190 191 192 193 194 195
  } else {
    CHECK(data_set_name.find("MultiSlotDataset") != std::string::npos);
    VLOG(0) << "ps_gpu_wrapper use MultiSlotDataset";
    MultiSlotDataset* dataset = dynamic_cast<MultiSlotDataset*>(dataset_);
    auto input_channel = dataset->GetInputChannel();

    const std::deque<Record>& vec_data = input_channel->GetData();
    total_len = vec_data.size();
    len_per_thread = total_len / thread_keys_thread_num_;
    remain = total_len % thread_keys_thread_num_;
    auto gen_func = [this](const std::deque<Record>& total_data,
196 197 198
                           int begin_index,
                           int end_index,
                           int i) {
Y
yaoxuefeng 已提交
199
      for (auto iter = total_data.begin() + begin_index;
200 201
           iter != total_data.begin() + end_index;
           iter++) {
Y
yaoxuefeng 已提交
202 203 204 205 206 207 208 209 210 211 212
        const auto& ins = *iter;
        const auto& feasign_v = ins.uint64_feasigns_;
        for (const auto feasign : feasign_v) {
          uint64_t cur_key = feasign.sign().uint64_feasign_;
          int shard_id = cur_key % thread_keys_shard_num_;
          this->thread_keys_[i][shard_id].insert(cur_key);
        }
      }
    };
    for (int i = 0; i < thread_keys_thread_num_; i++) {
      threads.push_back(
213 214 215 216 217
          std::thread(gen_func,
                      std::ref(vec_data),
                      begin,
                      begin + len_per_thread + (i < remain ? 1 : 0),
                      i));
Y
yaoxuefeng 已提交
218 219 220 221 222 223
      begin += len_per_thread + (i < remain ? 1 : 0);
    }
    for (std::thread& t : threads) {
      t.join();
    }
    timeline.Pause();
T
Thunderbrook 已提交
224
    VLOG(0) << "GpuPs build task cost " << timeline.ElapsedSec() << " seconds.";
Y
yaoxuefeng 已提交
225 226 227 228
  }

  timeline.Start();

229
  threads.clear();
Y
yaoxuefeng 已提交
230
  // merge thread_keys to shard_keys
231 232
  auto merge_ins_dynamic_mf_func = [this, gpu_task](int shard_num, int dim_id) {
    for (int i = 0; i < thread_keys_thread_num_; ++i) {
233 234
      gpu_task->batch_add_keys(
          shard_num, dim_id, thread_dim_keys_[i][shard_num][dim_id]);
235 236 237
      thread_dim_keys_[i][shard_num][dim_id].clear();
    }
  };
238
  for (int i = 0; i < thread_keys_shard_num_; ++i) {
Y
yaoxuefeng 已提交
239 240
    for (int j = 0; j < multi_mf_dim_; j++) {
      threads.push_back(std::thread(merge_ins_dynamic_mf_func, i, j));
241
    }
242 243 244
  }
  for (auto& t : threads) {
    t.join();
Y
yaoxuefeng 已提交
245 246 247
  }
  timeline.Pause();

248
  VLOG(0) << "GpuPs task add keys cost " << timeline.ElapsedSec()
Y
yaoxuefeng 已提交
249 250 251 252 253
          << " seconds.";
  timeline.Start();
  gpu_task->UniqueKeys();
  timeline.Pause();

254
  VLOG(0) << "GpuPs task unique cost " << timeline.ElapsedSec() << " seconds.";
Y
yaoxuefeng 已提交
255 256 257 258 259 260
  for (int i = 0; i < thread_keys_shard_num_; i++) {
    for (int j = 0; j < multi_mf_dim_; j++) {
      VLOG(0) << "GpuPs shard: " << i << "mf dim: " << index_dim_vec_[j]
              << " key len: " << gpu_task->feature_dim_keys_[i][j].size();
      gpu_task->value_dim_ptr_[i][j].resize(
          gpu_task->feature_dim_keys_[i][j].size());
261
    }
Y
yaoxuefeng 已提交
262
  }
263 264 265 266
}

void PSGPUWrapper::BuildPull(std::shared_ptr<HeterContext> gpu_task) {
  platform::Timer timeline;
T
Thunderbrook 已提交
267
  std::vector<std::future<void>> task_futures;
268 269 270 271
  int device_num = heter_devices_.size();
  auto& local_keys = gpu_task->feature_keys_;
  auto& local_ptr = gpu_task->value_ptr_;

272 273 274
  auto& local_dim_keys = gpu_task->feature_dim_keys_;
  auto& local_dim_ptr = gpu_task->value_dim_ptr_;

275 276
  auto& device_keys = gpu_task->device_keys_;
  auto& device_vals = gpu_task->device_values_;
277 278 279
  auto& device_dim_keys = gpu_task->device_dim_keys_;
  auto& device_dim_ptr = gpu_task->device_dim_ptr_;
  auto& device_dim_mutex = gpu_task->dim_mutex_;
Y
yaoxuefeng 已提交
280 281 282 283

  for (size_t dev = 0; dev < device_dim_keys.size(); dev++) {
    device_dim_keys[dev].resize(multi_mf_dim_);
    device_dim_ptr[dev].resize(multi_mf_dim_);
284
  }
Y
yaoxuefeng 已提交
285

T
Thunderbrook 已提交
286
  // auto& device_mutex = gpu_task->mutex_;
287 288 289 290 291 292

  std::vector<std::thread> threads(thread_keys_shard_num_);
#ifdef PADDLE_WITH_PSLIB
  auto fleet_ptr = FleetWrapper::GetInstance();
#endif
#ifdef PADDLE_WITH_PSCORE
293
  auto fleet_ptr = paddle::distributed::FleetWrapper::GetInstance();
294
#endif
295

296
#if (defined PADDLE_WITH_PSLIB) && (defined PADDLE_WITH_HETERPS)
297 298 299 300 301 302 303 304 305 306 307
  // get day_id: day nums from 1970
  struct std::tm b;
  b.tm_year = year_ - 1900;
  b.tm_mon = month_ - 1;
  b.tm_mday = day_;
  b.tm_min = b.tm_hour = b.tm_sec = 0;
  std::time_t seconds_from_1970 = std::mktime(&b);
  int day_id = seconds_from_1970 / 86400;
  fleet_ptr->pslib_ptr_->_worker_ptr->set_day_id(table_id_, day_id);
#endif

308
  timeline.Start();
309

310 311 312 313 314
  auto ptl_dynamic_mf_func =
      [this, &local_dim_keys, &local_dim_ptr, &fleet_ptr](int i, int j) {
        size_t key_size = local_dim_keys[i][j].size();
        int32_t status = -1;
        int32_t cnt = 0;
315
#ifdef PADDLE_WITH_PSLIB
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
        while (true) {
          auto tt = fleet_ptr->pslib_ptr_->_worker_ptr->pull_sparse_ptr(
              i,
              reinterpret_cast<char**>(local_dim_ptr[i][j].data()),
              this->table_id_,
              local_dim_keys[i][j].data(),
              key_size);
          bool flag = true;

          tt.wait();

          try {
            status = tt.get();
          } catch (const std::future_error& e) {
            VLOG(0) << "Caught a future_error with code" << e.code()
                    << ", Message:" << e.what();
          }
          if (status != 0) {
            VLOG(0) << "fleet pull sparse failed, status[" << status << "]";
            sleep(sleep_seconds_before_fail_exit_);
            flag = false;
            cnt++;
          }
          if (cnt > 3) {
            VLOG(0) << "fleet pull sparse failed, retry 3 times";
            exit(-1);
          }
343

344 345 346 347
          if (flag) {
            break;
          }
        }
348 349
#endif
#ifdef PADDLE_WITH_PSCORE
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
        while (true) {
          auto tt = fleet_ptr->worker_ptr_->PullSparsePtr(
              reinterpret_cast<char**>(local_dim_ptr[i][j].data()),
              this->table_id_,
              local_dim_keys[i][j].data(),
              key_size);
          bool flag = true;

          tt.wait();

          try {
            status = tt.get();
          } catch (const std::future_error& e) {
            VLOG(0) << "Caught a future_error with code" << e.code()
                    << ", Message:" << e.what();
          }
          if (status != 0) {
            VLOG(0) << "fleet pull sparse failed, status[" << status << "]";
            sleep(sleep_seconds_before_fail_exit_);
            flag = false;
            cnt++;
          }
          if (cnt > 3) {
            VLOG(0) << "fleet pull sparse failed, retry 3 times";
            exit(-1);
          }
376

377 378 379 380
          if (flag) {
            break;
          }
        }
381
#endif
382 383 384 385 386 387 388 389 390
        if (status != 0) {
          LOG(ERROR) << "fleet pull sparse failed, status[" << status << "]";
          sleep(300);
          exit(-1);
        } else {
          VLOG(0) << "FleetWrapper Pull sparse to local done with table size: "
                  << local_dim_keys[i][j].size();
        }
      };
Y
yaoxuefeng 已提交
391 392 393 394 395 396

  threads.resize(thread_keys_shard_num_ * multi_mf_dim_);
  for (int i = 0; i < thread_keys_shard_num_; i++) {
    for (int j = 0; j < multi_mf_dim_; j++) {
      task_futures.emplace_back(
          pull_thread_pool_[i]->enqueue(ptl_dynamic_mf_func, i, j));
397
    }
398
  }
Y
yaoxuefeng 已提交
399 400
  for (auto& f : task_futures) {
    f.wait();
401
  }
Y
yaoxuefeng 已提交
402
  task_futures.clear();
403
  timeline.Pause();
T
Thunderbrook 已提交
404
  VLOG(0) << "pull sparse from CpuPS into GpuPS cost " << timeline.ElapsedSec()
405
          << " seconds.";
Y
yaoxuefeng 已提交
406 407 408 409 410 411 412 413
  if (multi_node_) {
    auto gloo_wrapper = paddle::framework::GlooWrapper::GetInstance();
    if (!gloo_wrapper->IsInitialized()) {
      VLOG(0) << "GLOO is not inited";
      gloo_wrapper->Init();
    }
    gloo_wrapper->Barrier();
  }
414 415

  timeline.Start();
Y
yaoxuefeng 已提交
416 417 418
  std::vector<std::vector<std::pair<uint64_t, char*>>> pass_values;

  bool record_status = false;
T
Thunderbrook 已提交
419 420
  auto& device_task_keys = gpu_task->device_task_keys_;
  auto& device_task_ptrs = gpu_task->device_task_ptr_;
421 422 423 424 425
  auto build_pull_dynamic_mf_func = [this,
                                     device_num,
                                     &local_dim_keys,
                                     &local_dim_ptr,
                                     &device_dim_keys,
Y
yaoxuefeng 已提交
426 427
                                     &device_dim_ptr,
                                     &device_dim_mutex](int i, int j) {
428
    std::vector<std::vector<FeatureKey>> task_keys(device_num);
429
#ifdef PADDLE_WITH_PSLIB
430 431
    std::vector<std::vector<paddle::ps::DownpourFixedFeatureValue*>> task_ptrs(
        device_num);
432 433 434 435 436 437
#endif

#ifdef PADDLE_WITH_PSCORE
    std::vector<std::vector<paddle::distributed::FixedFeatureValue*>> task_ptrs(
        device_num);
#endif
438 439 440 441 442
    for (size_t k = 0; k < local_dim_keys[i][j].size(); k++) {
      int shard = local_dim_keys[i][j][k] % device_num;
      task_keys[shard].push_back(local_dim_keys[i][j][k]);
      task_ptrs[shard].push_back(local_dim_ptr[i][j][k]);
    }
Y
yaoxuefeng 已提交
443
    // allocate local keys to devices
444
    for (int dev = 0; dev < device_num; dev++) {
Y
yaoxuefeng 已提交
445 446 447 448 449 450 451 452
      device_dim_mutex[dev][j]->lock();
      int len = task_keys[dev].size();
      int cur = device_dim_keys[dev][j].size();
      device_dim_keys[dev][j].resize(device_dim_keys[dev][j].size() + len);
      device_dim_ptr[dev][j].resize(device_dim_ptr[dev][j].size() + len);
      for (int k = 0; k < len; ++k) {
        device_dim_keys[dev][j][cur + k] = task_keys[dev][k];
        device_dim_ptr[dev][j][cur + k] = task_ptrs[dev][k];
453
      }
Y
yaoxuefeng 已提交
454
      device_dim_mutex[dev][j]->unlock();
455 456
    }
  };
457 458 459 460 461 462 463
  auto build_func = [device_num,
                     record_status,
                     &pass_values,
                     &local_keys,
                     &local_ptr,
                     &device_task_keys,
                     &device_task_ptrs](int i) {
T
Thunderbrook 已提交
464
    auto& task_keys = device_task_keys[i];
T
Thunderbrook 已提交
465
#ifdef PADDLE_WITH_PSLIB
T
Thunderbrook 已提交
466
    auto& task_ptrs = device_task_ptrs[i];
T
Thunderbrook 已提交
467 468 469
#endif

#ifdef PADDLE_WITH_PSCORE
T
Thunderbrook 已提交
470
    auto& task_ptrs = device_task_ptrs[i];
T
Thunderbrook 已提交
471
#endif
472 473 474 475 476 477

    for (size_t j = 0; j < local_keys[i].size(); j++) {
      int shard = local_keys[i][j] % device_num;
      task_keys[shard].push_back(local_keys[i][j]);
      task_ptrs[shard].push_back(local_ptr[i][j]);
    }
478
#ifdef PADDLE_WITH_PSLIB
Y
yaoxuefeng 已提交
479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
    if (record_status) {
      size_t local_keys_size = local_keys.size();
      size_t pass_values_size = pass_values.size();
      for (size_t j = 0; j < pass_values_size; j += local_keys_size) {
        auto& shard_values = pass_values[j];
        for (size_t pair_idx = 0; pair_idx < pass_values[j].size();
             pair_idx++) {
          auto& cur_pair = shard_values[pair_idx];
          int shard = cur_pair.first % device_num;
          task_keys[shard].push_back(cur_pair.first);
          task_ptrs[shard].push_back(
              (paddle::ps::DownpourFixedFeatureValue*)cur_pair.second);
        }
      }
    }
494
#endif
T
Thunderbrook 已提交
495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
  };
  if (!multi_mf_dim_) {
    for (int i = 0; i < thread_keys_shard_num_; i++) {
      task_futures.emplace_back(hbm_thread_pool_[i]->enqueue(build_func, i));
    }
    for (auto& f : task_futures) {
      f.wait();
    }
    task_futures.clear();
    VLOG(0) << "GpuPs build hbmps done";
  }
  std::vector<std::vector<int>> prefix_sum;
  prefix_sum.resize(device_num);
  for (int i = 0; i < device_num; i++) {
    prefix_sum[i].resize(thread_keys_shard_num_ + 1);
    prefix_sum[i][0] = 0;
  }
512 513 514 515
  auto calc_prefix_func = [this,
                           &prefix_sum,
                           &device_keys,
                           &device_vals,
T
Thunderbrook 已提交
516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
                           &device_task_keys](int device_num) {
    for (int j = 0; j < thread_keys_shard_num_; j++) {
      prefix_sum[device_num][j + 1] =
          prefix_sum[device_num][j] + device_task_keys[j][device_num].size();
    }
    device_keys[device_num].resize(
        prefix_sum[device_num][thread_keys_shard_num_]);
    device_vals[device_num].resize(
        prefix_sum[device_num][thread_keys_shard_num_]);
  };
  if (!multi_mf_dim_) {
    for (int i = 0; i < device_num; i++) {
      task_futures.emplace_back(
          hbm_thread_pool_[i]->enqueue(calc_prefix_func, i));
    }
    for (auto& f : task_futures) {
      f.wait();
    }
    task_futures.clear();
  }
  VLOG(0) << "prefix done";
537 538 539 540 541
  auto prepare_dev_value_func = [device_num,
                                 &prefix_sum,
                                 &device_keys,
                                 &device_vals,
                                 &device_task_keys,
T
Thunderbrook 已提交
542 543 544 545 546 547 548
                                 &device_task_ptrs](int dev, int shard_id) {
    auto& task_keys = device_task_keys[shard_id];
#ifdef PADDLE_WITH_PSLIB
    auto& task_ptrs = device_task_ptrs[shard_id];
#endif

#ifdef PADDLE_WITH_PSCORE
549
    auto& task_ptrs = device_task_ptrs[shard_id];
T
Thunderbrook 已提交
550
#endif
551

T
Thunderbrook 已提交
552 553
    int len = prefix_sum[dev][shard_id + 1] - prefix_sum[dev][shard_id];
    int cur = prefix_sum[dev][shard_id];
T
Thunderbrook 已提交
554
#ifdef PADDLE_WITH_PSLIB
T
Thunderbrook 已提交
555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577
    for (int j = 0; j < len; ++j) {
      device_keys[dev][cur + j] = task_keys[dev][j];
      float* ptr_val = task_ptrs[dev][j]->data();
      FeatureValue& val = device_vals[dev][cur + j];
      size_t dim = task_ptrs[dev][j]->size();

      val.delta_score = ptr_val[1];
      val.show = ptr_val[2];
      val.clk = ptr_val[3];
      val.slot = ptr_val[6];
      val.lr = ptr_val[4];
      val.lr_g2sum = ptr_val[5];
      val.cpu_ptr = (uint64_t)(task_ptrs[dev][j]);

      if (dim > 7) {
        val.mf_size = MF_DIM + 1;
        for (int x = 0; x < val.mf_size; x++) {
          val.mf[x] = ptr_val[x + 7];
        }
      } else {
        val.mf_size = 0;
        for (int x = 0; x < MF_DIM + 1; x++) {
          val.mf[x] = 0;
Y
yaoxuefeng 已提交
578 579
        }
      }
T
Thunderbrook 已提交
580
    }
T
Thunderbrook 已提交
581 582
#endif
#ifdef PADDLE_WITH_PSCORE
T
Thunderbrook 已提交
583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604
    for (int j = 0; j < len; ++j) {
      device_keys[dev][cur + j] = task_keys[dev][j];
      float* ptr_val = task_ptrs[dev][j]->data();
      FeatureValue& val = device_vals[dev][cur + j];
      size_t dim = task_ptrs[dev][j]->size();
      val.delta_score = ptr_val[2];
      val.show = ptr_val[3];
      val.clk = ptr_val[4];
      val.slot = ptr_val[0];
      val.lr = ptr_val[5];
      val.lr_g2sum = ptr_val[6];
      val.cpu_ptr = (uint64_t)(task_ptrs[dev][j]);

      if (dim > 7) {
        val.mf_size = MF_DIM + 1;
        for (int x = 0; x < val.mf_size; x++) {
          val.mf[x] = ptr_val[x + 7];
        }
      } else {
        val.mf_size = 0;
        for (int x = 0; x < MF_DIM + 1; x++) {
          val.mf[x] = 0;
T
Thunderbrook 已提交
605 606
        }
      }
T
Thunderbrook 已提交
607
    }
T
Thunderbrook 已提交
608
#endif
T
Thunderbrook 已提交
609
    VLOG(3) << "GpuPs build hbmps done";
Y
yaoxuefeng 已提交
610
  };
611

T
Thunderbrook 已提交
612
  if (multi_mf_dim_) {
613 614 615
    for (int i = 0; i < thread_keys_shard_num_; i++) {
      for (int j = 0; j < multi_mf_dim_; j++) {
        threads[i * multi_mf_dim_ + j] =
Y
yaoxuefeng 已提交
616
            std::thread(build_pull_dynamic_mf_func, i, j);
617 618
      }
    }
T
Thunderbrook 已提交
619 620 621 622 623 624 625 626 627 628 629 630 631 632
    for (std::thread& t : threads) {
      t.join();
    }
  } else {
    for (int i = 0; i < thread_keys_shard_num_; i++) {
      for (int j = 0; j < device_num; j++) {
        task_futures.emplace_back(
            hbm_thread_pool_[i]->enqueue(prepare_dev_value_func, j, i));
      }
    }
    for (auto& f : task_futures) {
      f.wait();
    }
    task_futures.clear();
Y
yaoxuefeng 已提交
633 634
  }
  timeline.Pause();
T
Thunderbrook 已提交
635
  VLOG(0) << "GpuPs prepare for build hbm cost " << timeline.ElapsedSec()
636
          << " seconds.";
Y
yaoxuefeng 已提交
637 638
}

639
void PSGPUWrapper::BuildGPUTask(std::shared_ptr<HeterContext> gpu_task) {
640
  int device_num = heter_devices_.size();
Y
yaoxuefeng 已提交
641 642
  platform::Timer timeline;
  timeline.Start();
T
Thunderbrook 已提交
643

644
  std::vector<size_t> feature_keys_count(device_num);
T
Thunderbrook 已提交
645
  size_t size_max = 0;
Y
yaoxuefeng 已提交
646 647 648 649 650 651 652

  for (int i = 0; i < device_num; i++) {
    for (int j = 0; j < multi_mf_dim_; j++) {
      feature_keys_count[i] += gpu_task->device_dim_ptr_[i][j].size();
      VLOG(1) << i << " card with dynamic mf dim: " << index_dim_vec_[j]
              << " dim index: " << j << " contains feasign nums: "
              << gpu_task->device_dim_ptr_[i][j].size();
653
    }
Y
yaoxuefeng 已提交
654 655 656
    VLOG(1) << i << " card with dynamic mf contains feasign nums total: "
            << feature_keys_count[i];
    size_max = std::max(size_max, feature_keys_count[i]);
T
Thunderbrook 已提交
657
  }
Y
yaoxuefeng 已提交
658

T
Thunderbrook 已提交
659
  if (HeterPs_) {
660 661
    delete HeterPs_;
    HeterPs_ = nullptr;
T
Thunderbrook 已提交
662
  }
663
  if (size_max <= 0) {
664
    VLOG(0) << "Skip build gpu ps cause feasign nums = " << size_max;
665 666
    return;
  }
667
  std::vector<std::thread> threads(device_num);
T
Thunderbrook 已提交
668
  HeterPs_ = HeterPsBase::get_instance(size_max, resource_);
F
Fan Zhang 已提交
669
#ifdef PADDLE_WITH_CUDA
670
  HeterPs_->set_nccl_comm_and_size(inner_comms_, inter_comms_, node_size_);
F
Fan Zhang 已提交
671
#endif
Y
yaoxuefeng 已提交
672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703
  auto build_dynamic_mf_func = [this, &gpu_task](int i, int j) {
    this->HeterPs_->set_multi_mf_dim(multi_mf_dim_, max_mf_dim_);
    int mf_dim = this->index_dim_vec_[j];
    VLOG(0) << "building table: " << i << "with mf dim: " << mf_dim;
    size_t feature_value_size =
        TYPEALIGN(8, sizeof(FeatureValue) + ((mf_dim + 1) * sizeof(float)));
    auto& device_dim_keys = gpu_task->device_dim_keys_[i][j];
    auto& device_dim_ptrs = gpu_task->device_dim_ptr_[i][j];
    size_t len = device_dim_keys.size();
    CHECK(len == device_dim_ptrs.size());
    this->mem_pools_[i * this->multi_mf_dim_ + j] =
        new MemoryPool(len, feature_value_size);
    auto& mem_pool = this->mem_pools_[i * this->multi_mf_dim_ + j];
    for (size_t k = 0; k < len; k++) {
      FeatureValue* val = (FeatureValue*)(mem_pool->mem_address(k));
      float* ptr_val = device_dim_ptrs[k]->data();
      size_t dim = device_dim_ptrs[k]->size();
#ifdef PADDLE_WITH_PSLIB
      val->delta_score =
          ptr_val[paddle::ps::DownpourCtrDymfAccessor::
                      DownpourCtrDymfFeatureValue::delta_score_index()];
      val->show = ptr_val[paddle::ps::DownpourCtrDymfAccessor::
                              DownpourCtrDymfFeatureValue::show_index()];
      val->clk = ptr_val[paddle::ps::DownpourCtrDymfAccessor::
                             DownpourCtrDymfFeatureValue::click_index()];
      val->slot = int(ptr_val[paddle::ps::DownpourCtrDymfAccessor::
                                  DownpourCtrDymfFeatureValue::slot_index()]);
      val->lr = ptr_val[paddle::ps::DownpourCtrDymfAccessor::
                            DownpourCtrDymfFeatureValue::embed_w_index()];
      val->lr_g2sum =
          ptr_val[paddle::ps::DownpourCtrDymfAccessor::
                      DownpourCtrDymfFeatureValue::embed_g2sum_index()];
Y
yaoxuefeng 已提交
704
      // TODO(xuefeng) set mf_dim while using DownpourCtrDymfAccessor
Y
yaoxuefeng 已提交
705 706 707
      ptr_val[paddle::ps::DownpourCtrDymfAccessor::DownpourCtrDymfFeatureValue::
                  mf_dim_index()] = float(mf_dim);
      val->mf_dim = mf_dim;
708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723
#endif
#ifdef PADDLE_WITH_PSCORE
      paddle::distributed::CtrDymfAccessor accessor;
      val->delta_score =
          ptr_val[accessor.common_feature_value.DeltaScoreIndex()];
      val->show = ptr_val[accessor.common_feature_value.ShowIndex()];
      val->clk = ptr_val[accessor.common_feature_value.ClickIndex()];
      val->slot = int(ptr_val[accessor.common_feature_value.SlotIndex()]);
      val->lr = ptr_val[accessor.common_feature_value.EmbedWIndex()];
      val->lr_g2sum = ptr_val[accessor.common_feature_value.EmbedG2SumIndex()];

      val->cpu_ptr = (uint64_t)(device_dim_ptrs[k]);

      // TODO(xuefeng) set mf_dim while using DownpourCtrDymfAccessor
      ptr_val[accessor.common_feature_value.MfDimIndex()] = float(mf_dim);
      val->mf_dim = mf_dim;
Y
yaoxuefeng 已提交
724 725 726 727 728 729 730 731 732 733 734 735 736
#endif
      if (dim > 8) {  // CpuPS alreay expand as mf_dim
        val->mf_size = mf_dim + 1;
        for (int x = 0; x < val->mf_dim + 1; x++) {
          val->mf[x] = ptr_val[x + 8];
        }
      } else {
        val->mf_size = 0;
        for (int x = 0; x < val->mf_dim + 1; x++) {
          val->mf[x] = 0;
        }
      }
    }
Y
yaoxuefeng 已提交
737

Y
yaoxuefeng 已提交
738
    platform::CUDADeviceGuard guard(resource_->dev_id(i));
Y
yaoxuefeng 已提交
739

Y
yaoxuefeng 已提交
740 741
    this->hbm_pools_[i * this->multi_mf_dim_ + j] = new HBMMemoryPool(mem_pool);
    auto& cur_pool = this->hbm_pools_[i * this->multi_mf_dim_ + j];
Y
yaoxuefeng 已提交
742

743 744 745 746 747 748 749
    this->HeterPs_->build_ps(i,
                             device_dim_keys.data(),
                             cur_pool->mem(),
                             len,
                             feature_value_size,
                             500000,
                             2);
Y
yaoxuefeng 已提交
750

Y
yaoxuefeng 已提交
751 752 753 754 755 756 757
    if (device_dim_keys.size() > 0) {
      VLOG(0) << "show ptr table: " << i
              << " table kv size: " << device_dim_keys.size()
              << "dim: " << mf_dim << " len: " << len;
      this->HeterPs_->show_one_table(i);
    }
    delete mem_pool;
Y
yaoxuefeng 已提交
758
  };
Y
yaoxuefeng 已提交
759 760 761 762 763
  threads.resize(device_num * multi_mf_dim_);
  for (int i = 0; i < device_num; i++) {
    for (int j = 0; j < multi_mf_dim_; j++) {
      threads[i + j * device_num] = std::thread(build_dynamic_mf_func, i, j);
    }
Y
yaoxuefeng 已提交
764
  }
Y
yaoxuefeng 已提交
765

Y
yaoxuefeng 已提交
766 767
  for (std::thread& t : threads) {
    t.join();
T
Thunderbrook 已提交
768 769
  }
  timeline.Pause();
770
  VLOG(0) << "GpuPs build table total costs: " << timeline.ElapsedSec()
T
Thunderbrook 已提交
771
          << " s.";
772 773 774 775 776 777 778 779 780 781 782 783 784 785
}

void PSGPUWrapper::LoadIntoMemory(bool is_shuffle) {
  platform::Timer timer;
  VLOG(3) << "Begin LoadIntoMemory(), dataset[" << dataset_ << "]";
  timer.Start();
  dataset_->LoadIntoMemory();
  timer.Pause();
  VLOG(0) << "LoadIntoMemory cost: " << timer.ElapsedSec() << "s";

  // local shuffle
  if (is_shuffle) {
    dataset_->LocalShuffle();
  }
Y
yaoxuefeng 已提交
786
  InitSlotInfo();
787 788
  std::shared_ptr<HeterContext> gpu_task = gpu_task_pool_.Get();
  gpu_task->Reset();
Y
yaoxuefeng 已提交
789

790
  data_ready_channel_->Put(gpu_task);
Y
yaoxuefeng 已提交
791

792 793 794 795 796
  VLOG(3) << "End LoadIntoMemory(), dataset[" << dataset_ << "]";
}

void PSGPUWrapper::start_build_thread() {
  running_ = true;
797
  VLOG(3) << "start build CPU ps thread.";
798
  pre_build_threads_ = std::thread([this] { pre_build_thread(); });
799 800
}

801 802
void PSGPUWrapper::pre_build_thread() {
  // prebuild: process load_data
803 804 805 806 807
  while (running_) {
    std::shared_ptr<HeterContext> gpu_task = nullptr;
    if (!data_ready_channel_->Get(gpu_task)) {
      continue;
    }
808
    VLOG(3) << "thread PreBuildTask start.";
809 810 811
    platform::Timer timer;
    timer.Start();
    // build cpu ps data process
812
    PreBuildTask(gpu_task);
813
    timer.Pause();
814
    VLOG(0) << "thread PreBuildTask end, cost time: " << timer.ElapsedSec()
T
Thunderbrook 已提交
815
            << " s";
816 817 818 819 820
    buildcpu_ready_channel_->Put(gpu_task);
  }
  VLOG(3) << "build cpu thread end";
}

821 822 823 824 825 826 827 828 829 830
void PSGPUWrapper::build_task() {
  // build_task: build_pull + build_gputask
  std::shared_ptr<HeterContext> gpu_task = nullptr;
  // train end, gpu free
  if (!gpu_free_channel_->Get(gpu_task)) {
    return;
  }
  // ins and pre_build end
  if (!buildcpu_ready_channel_->Get(gpu_task)) {
    return;
831
  }
832

833
  VLOG(0) << "BuildPull start.";
834 835 836 837 838
  platform::Timer timer;
  timer.Start();
  BuildPull(gpu_task);
  BuildGPUTask(gpu_task);
  timer.Pause();
839
  VLOG(0) << "BuildPull + BuildGPUTask end, cost time: " << timer.ElapsedSec()
840 841 842
          << "s";

  current_task_ = gpu_task;
843 844 845 846 847 848 849 850 851
}

void PSGPUWrapper::BeginPass() {
  platform::Timer timer;
  timer.Start();
  if (current_task_) {
    PADDLE_THROW(
        platform::errors::Fatal("[BeginPass] current task is not ended."));
  }
852 853

  build_task();
854
  timer.Pause();
855 856 857 858 859 860

  if (current_task_ == nullptr) {
    PADDLE_THROW(platform::errors::Fatal(
        "[BeginPass] after build_task, current task is not null."));
  }

T
Thunderbrook 已提交
861
  VLOG(0) << "BeginPass end, cost time: " << timer.ElapsedSec() << "s";
862 863 864 865 866 867 868 869 870 871 872
}

void PSGPUWrapper::EndPass() {
  if (!current_task_) {
    PADDLE_THROW(
        platform::errors::Fatal("[EndPass] current task has been ended."));
  }
  platform::Timer timer;
  timer.Start();
  size_t keysize_max = 0;
  // in case of feasign_num = 0, skip dump_to_cpu
Y
yaoxuefeng 已提交
873

874
  for (size_t i = 0; i < heter_devices_.size(); i++) {
Y
yaoxuefeng 已提交
875 876 877 878 879
    for (int j = 0; j < multi_mf_dim_; j++) {
      keysize_max =
          std::max(keysize_max, current_task_->device_dim_keys_[i][j].size());
    }
  }
880 881
  int thread_num = 8;
  auto dump_pool_to_cpu_func = [this, thread_num](int i, int j, int z) {
Y
yaoxuefeng 已提交
882 883 884 885
    PADDLE_ENFORCE_GPU_SUCCESS(cudaSetDevice(this->resource_->dev_id(i)));
    auto& hbm_pool = this->hbm_pools_[i * this->multi_mf_dim_ + j];
    auto& device_keys = this->current_task_->device_dim_keys_[i][j];
    size_t len = device_keys.size();
886 887 888 889 890 891 892 893 894 895 896 897 898 899
    // ====== multi-thread process feasign================
    int len_per_thread = len / thread_num;
    int remain = len % thread_num;
    int left = -1, right = -1;
    int real_len = len_per_thread;
    if (z < remain) real_len++;
    if (z < remain) {
      left = z * (len_per_thread + 1);
      right = left + real_len;
    } else {
      left = remain * (len_per_thread + 1) + (z - remain) * len_per_thread;
      right = left + real_len;
    }
    // ============ multi-thread process feasign============
Y
yaoxuefeng 已提交
900 901 902 903
    int mf_dim = this->index_dim_vec_[j];
    VLOG(0) << "dump pool to cpu table: " << i << "with mf dim: " << mf_dim;
    size_t feature_value_size =
        TYPEALIGN(8, sizeof(FeatureValue) + ((mf_dim + 1) * sizeof(float)));
904 905
    char* test_build_values = (char*)malloc(feature_value_size * real_len);
    uint64_t offset = left * feature_value_size;
906 907 908 909
    cudaMemcpy(test_build_values,
               hbm_pool->mem() + offset,
               feature_value_size * real_len,
               cudaMemcpyDeviceToHost);
Y
yaoxuefeng 已提交
910 911
    CHECK(len == hbm_pool->capacity());
    uint64_t unuse_key = std::numeric_limits<uint64_t>::max();
912
    for (int i = left; i < right; ++i) {
Y
yaoxuefeng 已提交
913 914 915
      if (device_keys[i] == unuse_key) {
        continue;
      }
916 917
      size_t local_offset = (i - left) * feature_value_size;
      FeatureValue* gpu_val = (FeatureValue*)(test_build_values + local_offset);
918
#ifdef PADDLE_WITH_PSLIB
Y
yaoxuefeng 已提交
919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937
      auto* downpour_value =
          (paddle::ps::DownpourFixedFeatureValue*)(gpu_val->cpu_ptr);
      int downpour_value_size = downpour_value->size();
      if (gpu_val->mf_size > 0 && downpour_value_size == 8) {
        downpour_value->resize(gpu_val->mf_dim + 1 + downpour_value_size);
      }
      float* cpu_val = downpour_value->data();
      cpu_val[paddle::ps::DownpourCtrDymfAccessor::DownpourCtrDymfFeatureValue::
                  delta_score_index()] = gpu_val->delta_score;
      cpu_val[paddle::ps::DownpourCtrDymfAccessor::DownpourCtrDymfFeatureValue::
                  show_index()] = gpu_val->show;
      cpu_val[paddle::ps::DownpourCtrDymfAccessor::DownpourCtrDymfFeatureValue::
                  click_index()] = gpu_val->clk;
      cpu_val[paddle::ps::DownpourCtrDymfAccessor::DownpourCtrDymfFeatureValue::
                  embed_w_index()] = gpu_val->lr;
      cpu_val[paddle::ps::DownpourCtrDymfAccessor::DownpourCtrDymfFeatureValue::
                  embed_g2sum_index()] = gpu_val->lr_g2sum;
      cpu_val[paddle::ps::DownpourCtrDymfAccessor::DownpourCtrDymfFeatureValue::
                  slot_index()] = gpu_val->slot;
938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957
#endif
#ifdef PADDLE_WITH_PSCORE
      auto* downpour_value =
          (paddle::distributed::FixedFeatureValue*)(gpu_val->cpu_ptr);
      int downpour_value_size = downpour_value->size();
      if (gpu_val->mf_size > 0 && downpour_value_size == 8) {
        downpour_value->resize(gpu_val->mf_dim + 1 + downpour_value_size);
      }
      float* cpu_val = downpour_value->data();

      paddle::distributed::CtrDymfAccessor accessor;
      cpu_val[accessor.common_feature_value.DeltaScoreIndex()] =
          gpu_val->delta_score;
      cpu_val[accessor.common_feature_value.ShowIndex()] = gpu_val->show;
      cpu_val[accessor.common_feature_value.ClickIndex()] = gpu_val->clk;
      cpu_val[accessor.common_feature_value.EmbedWIndex()] = gpu_val->lr;
      cpu_val[accessor.common_feature_value.EmbedG2SumIndex()] =
          gpu_val->lr_g2sum;
      cpu_val[accessor.common_feature_value.SlotIndex()] = gpu_val->slot;
#endif
Y
yaoxuefeng 已提交
958 959 960 961 962 963 964 965 966 967 968
      if (gpu_val->mf_size > 0) {
        for (int x = 0; x < gpu_val->mf_dim + 1; x++) {
          cpu_val[x + 8] = gpu_val->mf[x];
        }
      }
    }
    free(test_build_values);
  };
  if (multi_mf_dim_) {
    VLOG(0) << "psgpu wrapper dump pool: multi_mf_dim_: " << multi_mf_dim_;
    size_t device_num = heter_devices_.size();
969
    std::vector<std::thread> threads(device_num * multi_mf_dim_ * thread_num);
Y
yaoxuefeng 已提交
970 971
    for (size_t i = 0; i < device_num; i++) {
      for (int j = 0; j < multi_mf_dim_; j++) {
972 973 974 975
        for (int k = 0; k < thread_num; k++) {
          threads[(i + j * device_num) * thread_num + k] =
              std::thread(dump_pool_to_cpu_func, i, j, k);
        }
Y
yaoxuefeng 已提交
976 977 978 979 980
      }
    }
    for (std::thread& t : threads) {
      t.join();
    }
981 982 983 984
  }
  if (keysize_max != 0) {
    HeterPs_->end_pass();
  }
985

Y
yaoxuefeng 已提交
986 987 988
  for (size_t i = 0; i < hbm_pools_.size(); i++) {
    delete hbm_pools_[i];
  }
989
  gpu_task_pool_.Push(current_task_);
990 991 992
  current_task_ = nullptr;
  gpu_free_channel_->Put(current_task_);
  timer.Pause();
Y
yaoxuefeng 已提交
993
  VLOG(1) << "EndPass end, cost time: " << timer.ElapsedSec() << "s";
T
Thunderbrook 已提交
994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006
}

void PSGPUWrapper::PullSparse(const paddle::platform::Place& place,
                              const int table_id,
                              const std::vector<const uint64_t*>& keys,
                              const std::vector<float*>& values,
                              const std::vector<int64_t>& slot_lengths,
                              const int hidden_size) {
  platform::Timer all_timer;
  platform::Timer pull_gpups_timer;
  all_timer.Start();
  int64_t total_length =
      std::accumulate(slot_lengths.begin(), slot_lengths.end(), 0UL);
F
Fan Zhang 已提交
1007
  VLOG(3) << "Begine Gpu/Xpu Ps PullSparse";
1008
  auto buf = memory::Alloc(place, total_length * sizeof(FeatureValue));
T
Thunderbrook 已提交
1009 1010 1011 1012 1013
  FeatureValue* total_values_gpu = reinterpret_cast<FeatureValue*>(buf->ptr());
  if (platform::is_cpu_place(place)) {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Warning:: CPUPlace is not supported in GpuPs now."));
  } else if (platform::is_gpu_place(place)) {
F
Fan Zhang 已提交
1014
#ifdef PADDLE_WITH_CUDA
T
Thunderbrook 已提交
1015
    VLOG(3) << "Begin copy keys, key_num[" << total_length << "]";
1016
    int device_id = place.GetDeviceId();
T
Thunderbrook 已提交
1017 1018 1019 1020 1021 1022 1023 1024 1025 1026
    int devid_2_index = HeterPs_->get_index_by_devid(device_id);
    LoDTensor& total_keys_tensor = keys_tensor[devid_2_index];
    uint64_t* total_keys = reinterpret_cast<uint64_t*>(
        total_keys_tensor.mutable_data<int64_t>({total_length, 1}, place));

    // construct slot_level lod info
    auto slot_lengths_lod = slot_lengths;
    for (size_t i = 1; i < slot_lengths_lod.size(); i++) {
      slot_lengths_lod[i] += slot_lengths_lod[i - 1];
    }
1027
    auto buf_key = memory::Alloc(place, keys.size() * sizeof(uint64_t*));
T
Thunderbrook 已提交
1028
    auto buf_length =
1029
        memory::Alloc(place, slot_lengths.size() * sizeof(int64_t));
T
Thunderbrook 已提交
1030 1031
    uint64_t** gpu_keys = reinterpret_cast<uint64_t**>(buf_key->ptr());
    int64_t* gpu_len = reinterpret_cast<int64_t*>(buf_length->ptr());
1032 1033 1034 1035 1036 1037 1038
    cudaMemcpy(gpu_keys,
               keys.data(),
               keys.size() * sizeof(uint64_t*),
               cudaMemcpyHostToDevice);
    cudaMemcpy(gpu_len,
               slot_lengths_lod.data(),
               slot_lengths.size() * sizeof(int64_t),
T
Thunderbrook 已提交
1039 1040
               cudaMemcpyHostToDevice);

1041 1042 1043 1044
    this->CopyKeys(place,
                   gpu_keys,
                   total_keys,
                   gpu_len,
T
Thunderbrook 已提交
1045 1046 1047 1048 1049
                   static_cast<int>(slot_lengths.size()),
                   static_cast<int>(total_length));
    VLOG(3) << "Begin call PullSparseGPU in GPUPS, dev: " << devid_2_index
            << " len: " << total_length;
    pull_gpups_timer.Start();
1050 1051 1052
    HeterPs_->pull_sparse(devid_2_index,
                          total_keys,
                          total_values_gpu,
T
Thunderbrook 已提交
1053 1054 1055 1056 1057
                          static_cast<int>(total_length));
    pull_gpups_timer.Pause();

    VLOG(3) << "Begin Copy result to tensor, total_length[" << total_length
            << "]";
1058 1059 1060 1061 1062 1063 1064
    this->CopyForPull(place,
                      gpu_keys,
                      values,
                      total_values_gpu,
                      gpu_len,
                      static_cast<int>(slot_lengths.size()),
                      hidden_size,
T
Thunderbrook 已提交
1065
                      total_length);
Y
yaoxuefeng 已提交
1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127
  } else {
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "GpuPs: PullSparse Only Support CUDAPlace Now."));
  }
  all_timer.Pause();
  VLOG(3) << "GpuPs PullSparse total costs: " << all_timer.ElapsedSec()
          << " s, of which GPUPS costs: " << pull_gpups_timer.ElapsedSec()
          << " s";
  VLOG(3) << "End PullSparse";
}

void PSGPUWrapper::PullSparse(const paddle::platform::Place& place,
                              const int table_id,
                              const std::vector<const uint64_t*>& keys,
                              const std::vector<float*>& values,
                              const std::vector<int64_t>& slot_lengths,
                              const std::vector<int>& slot_dim,
                              const int hidden_size) {
  VLOG(3) << "Begine Gpu Ps PullSparse";
  platform::Timer all_timer;
  platform::Timer pull_gpups_timer;
  all_timer.Start();
  size_t total_length =
      std::accumulate(slot_lengths.begin(), slot_lengths.end(), 0UL);
  size_t feature_value_size = 0;

  feature_value_size = TYPEALIGN(
      8, sizeof(FeatureValue) + sizeof(float) * (index_dim_vec_.back() + 1));

#ifdef PADDLE_WITH_CUDA
  VLOG(3) << "Begine Gpu Ps PullSparse";
  auto buf = memory::Alloc(place, total_length * feature_value_size);
  FeatureValue* total_values_gpu = reinterpret_cast<FeatureValue*>(buf->ptr());
#endif
#ifdef PADDLE_WITH_XPU_KP
  VLOG(3) << "Begine Xpu Ps PullSparse";
  FeatureValue* total_values_gpu = nullptr;
  xpu_malloc(reinterpret_cast<void**>(&total_values_gpu),
             total_length * feature_value_size);
#endif
  if (platform::is_cpu_place(place)) {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Warning:: CPUPlace is not supported in GpuPs now."));
  } else if (platform::is_gpu_place(place)) {
    VLOG(3) << "Begin copy keys, key_num[" << total_length << "]";
    int device_id = place.GetDeviceId();
    int devid_2_index = HeterPs_->get_index_by_devid(device_id);
    LoDTensor& total_keys_tensor = keys_tensor[devid_2_index];
    uint64_t* total_keys =
        reinterpret_cast<uint64_t*>(total_keys_tensor.mutable_data<int64_t>(
            {int64_t(total_length), 1}, place));

    // construct slot_level lod info
    auto slot_lengths_lod = slot_lengths;
    for (size_t i = 1; i < slot_lengths_lod.size(); i++) {
      slot_lengths_lod[i] += slot_lengths_lod[i - 1];
    }
    auto buf_key = memory::Alloc(place, keys.size() * sizeof(uint64_t*));
    auto buf_length =
        memory::Alloc(place, slot_lengths.size() * sizeof(int64_t));
    uint64_t** gpu_keys = reinterpret_cast<uint64_t**>(buf_key->ptr());
    int64_t* gpu_len = reinterpret_cast<int64_t*>(buf_length->ptr());
1128 1129 1130 1131 1132 1133 1134
    cudaMemcpy(gpu_keys,
               keys.data(),
               keys.size() * sizeof(uint64_t*),
               cudaMemcpyHostToDevice);
    cudaMemcpy(gpu_len,
               slot_lengths_lod.data(),
               slot_lengths.size() * sizeof(int64_t),
Y
yaoxuefeng 已提交
1135 1136 1137 1138
               cudaMemcpyHostToDevice);

    auto buf_dim = memory::Alloc(place, slot_dim.size() * sizeof(int));
    int* gpu_dim = reinterpret_cast<int*>(buf_dim->ptr());
1139 1140 1141
    cudaMemcpy(gpu_dim,
               slot_dim.data(),
               slot_dim.size() * sizeof(int),
Y
yaoxuefeng 已提交
1142 1143
               cudaMemcpyHostToDevice);

1144 1145 1146 1147
    this->CopyKeys(place,
                   gpu_keys,
                   total_keys,
                   gpu_len,
Y
yaoxuefeng 已提交
1148 1149 1150 1151 1152 1153
                   static_cast<int>(slot_lengths.size()),
                   static_cast<int>(total_length));
    VLOG(3) << "Begin call PullSparseGPU in GPUPS, dev: " << devid_2_index
            << " len: " << total_length;

    pull_gpups_timer.Start();
1154 1155
    HeterPs_->pull_sparse(
        devid_2_index, total_keys, total_values_gpu, total_length);
Y
yaoxuefeng 已提交
1156 1157 1158 1159

    VLOG(3) << "Begin Copy result to tensor, total_length[" << total_length
            << "]";

1160 1161 1162 1163 1164 1165 1166 1167 1168
    this->CopyForPull(place,
                      gpu_keys,
                      values,
                      total_values_gpu,
                      gpu_len,
                      static_cast<int>(slot_lengths.size()),
                      hidden_size,
                      total_length,
                      gpu_dim);
Y
yaoxuefeng 已提交
1169 1170 1171

    pull_gpups_timer.Pause();

F
Fan Zhang 已提交
1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
#endif
  } else if (platform::is_xpu_place(place)) {
#ifdef PADDLE_WITH_XPU_KP
    VLOG(3) << "Begin copy keys, key_num[" << total_length << "]";
    int device_id = place.GetDeviceId();
    int devid_2_index = HeterPs_->get_index_by_devid(device_id);
    LoDTensor& total_keys_tensor = keys_tensor[devid_2_index];
    uint64_t* total_keys = reinterpret_cast<uint64_t*>(
        total_keys_tensor.mutable_data<int64_t>({total_length, 1}, place));

    // construct slot_level lod info
    auto slot_lengths_lod = slot_lengths;
    for (size_t i = 1; i < slot_lengths_lod.size(); i++) {
      slot_lengths_lod[i] += slot_lengths_lod[i - 1];
    }

F
Fan Zhang 已提交
1188 1189 1190 1191 1192
    auto buf_key = memory::Alloc(place, keys.size() * sizeof(uint64_t*));
    auto buf_length =
        memory::Alloc(place, slot_lengths.size() * sizeof(int64_t));
    uint64_t** xpu_keys = reinterpret_cast<uint64_t**>(buf_key->ptr());
    int64_t* xpu_len = reinterpret_cast<int64_t*>(buf_length->ptr());
1193 1194
    PADDLE_ENFORCE_XPU_SUCCESS(xpu_memcpy(xpu_keys,
                                          keys.data(),
F
Fan Zhang 已提交
1195 1196
                                          keys.size() * sizeof(uint64_t*),
                                          XPU_HOST_TO_DEVICE));
1197 1198
    PADDLE_ENFORCE_XPU_SUCCESS(xpu_memcpy(xpu_len,
                                          slot_lengths_lod.data(),
F
Fan Zhang 已提交
1199 1200 1201
                                          slot_lengths.size() * sizeof(int64_t),
                                          XPU_HOST_TO_DEVICE));

1202 1203 1204 1205
    this->CopyKeys(place,
                   xpu_keys,
                   total_keys,
                   xpu_len,
F
Fan Zhang 已提交
1206 1207 1208 1209 1210
                   static_cast<int>(slot_lengths.size()),
                   static_cast<int>(total_length));
    VLOG(3) << "Begin call PullSparseGPU in GPUPS, dev: " << devid_2_index
            << " len: " << total_length;
    pull_gpups_timer.Start();
1211 1212 1213
    HeterPs_->pull_sparse(devid_2_index,
                          total_keys,
                          total_values_gpu,
F
Fan Zhang 已提交
1214 1215 1216 1217 1218
                          static_cast<int>(total_length));
    pull_gpups_timer.Pause();

    VLOG(3) << "Begin Copy result to tensor, total_length[" << total_length
            << "]";
1219 1220 1221 1222 1223 1224 1225
    this->CopyForPull(place,
                      xpu_keys,
                      values,
                      total_values_gpu,
                      xpu_len,
                      static_cast<int>(slot_lengths.size()),
                      hidden_size,
F
Fan Zhang 已提交
1226 1227
                      total_length);
#endif
T
Thunderbrook 已提交
1228 1229
  } else {
    PADDLE_THROW(platform::errors::PreconditionNotMet(
F
Fan Zhang 已提交
1230
        "GpuPs/XpuPs: PullSparse Only Support CUDAPlace or XPUPlace Now."));
T
Thunderbrook 已提交
1231 1232
  }
  all_timer.Pause();
1233
  VLOG(3) << "GpuPs PullSparse total costs: " << all_timer.ElapsedSec()
T
Thunderbrook 已提交
1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
          << " s, of which GPUPS costs: " << pull_gpups_timer.ElapsedSec()
          << " s";
  VLOG(3) << "End PullSparse";
}

void PSGPUWrapper::PushSparseGrad(const paddle::platform::Place& place,
                                  const int table_id,
                                  const std::vector<const uint64_t*>& keys,
                                  const std::vector<const float*>& grad_values,
                                  const std::vector<int64_t>& slot_lengths,
1244 1245
                                  const int hidden_size,
                                  const int batch_size) {
T
Thunderbrook 已提交
1246 1247 1248 1249 1250
  platform::Timer all_timer;
  platform::Timer push_gpups_timer;
  all_timer.Start();
  int64_t total_length =
      std::accumulate(slot_lengths.begin(), slot_lengths.end(), 0UL);
F
Fan Zhang 已提交
1251
  // #ifdef PADDLE_WITH_CUDA
F
Fan Zhang 已提交
1252
  VLOG(3) << "Begin GPUPS PushSparseGrad";
Y
yaoxuefeng 已提交
1253 1254 1255 1256
  size_t grad_value_size =
      TYPEALIGN(8, sizeof(FeaturePushValue) + (max_mf_dim_ * sizeof(float)));
  auto buf = memory::Alloc(place, total_length * grad_value_size);
  VLOG(3) << "Push Sparse Max mf dimention: " << max_mf_dim_;
T
Thunderbrook 已提交
1257 1258 1259 1260 1261 1262
  FeaturePushValue* total_grad_values_gpu =
      reinterpret_cast<FeaturePushValue*>(buf->ptr());
  if (platform::is_cpu_place(place)) {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Warning:: CPUPlace is not supported in GPUPS now."));
  } else if (platform::is_gpu_place(place)) {
F
Fan Zhang 已提交
1263
#ifdef PADDLE_WITH_CUDA
1264
    int device_id = place.GetDeviceId();
T
Thunderbrook 已提交
1265 1266 1267 1268 1269
    int devid_2_index = HeterPs_->get_index_by_devid(device_id);
    LoDTensor& cached_total_keys_tensor = keys_tensor[devid_2_index];
    uint64_t* total_keys =
        reinterpret_cast<uint64_t*>(cached_total_keys_tensor.data<int64_t>());
    VLOG(3) << "Begin copy grad tensor to gpups struct";
Y
yaoxuefeng 已提交
1270
    if (!multi_mf_dim_) {
1271 1272 1273 1274 1275 1276 1277
      this->CopyForPush(place,
                        grad_values,
                        total_grad_values_gpu,
                        slot_lengths,
                        hidden_size,
                        total_length,
                        batch_size);
Y
yaoxuefeng 已提交
1278
    } else {
1279 1280 1281 1282 1283 1284 1285
      this->CopyForPush(place,
                        grad_values,
                        total_grad_values_gpu,
                        slot_lengths,
                        total_length,
                        batch_size,
                        grad_value_size);
Y
yaoxuefeng 已提交
1286
    }
T
Thunderbrook 已提交
1287 1288 1289 1290

    VLOG(3) << "Begin call PushSparseGPU in GPUPS, dev: " << devid_2_index
            << " len: " << total_length;
    push_gpups_timer.Start();
1291 1292 1293
    HeterPs_->push_sparse(devid_2_index,
                          total_keys,
                          total_grad_values_gpu,
T
Thunderbrook 已提交
1294 1295
                          static_cast<int>(total_length));
    push_gpups_timer.Pause();
F
Fan Zhang 已提交
1296
#endif
F
Fan Zhang 已提交
1297
  } else if (platform::is_xpu_place(place)) {
F
Fan Zhang 已提交
1298
#ifdef PADDLE_WITH_XPU_KP
F
Fan Zhang 已提交
1299 1300 1301 1302 1303 1304
    int device_id = place.GetDeviceId();
    int devid_2_index = HeterPs_->get_index_by_devid(device_id);
    LoDTensor& cached_total_keys_tensor = keys_tensor[devid_2_index];
    uint64_t* total_keys =
        reinterpret_cast<uint64_t*>(cached_total_keys_tensor.data<int64_t>());
    VLOG(3) << "Begin copy grad tensor to xpups struct";
1305 1306 1307 1308 1309 1310 1311
    this->CopyForPush(place,
                      grad_values,
                      total_grad_values_gpu,
                      slot_lengths,
                      hidden_size,
                      total_length,
                      batch_size);
F
Fan Zhang 已提交
1312 1313 1314 1315

    VLOG(3) << "Begin call PushSparseXPU in XPUPS, dev: " << devid_2_index
            << " len: " << total_length;
    push_gpups_timer.Start();
1316 1317 1318
    HeterPs_->push_sparse(devid_2_index,
                          total_keys,
                          total_grad_values_gpu,
F
Fan Zhang 已提交
1319 1320
                          static_cast<int>(total_length));
    push_gpups_timer.Pause();
F
Fan Zhang 已提交
1321
#endif
T
Thunderbrook 已提交
1322 1323 1324 1325 1326
  } else {
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "GPUPS: PushSparseGrad Only Support CUDAPlace Now."));
  }
  all_timer.Pause();
Y
yaoxuefeng 已提交
1327 1328
  time_3 += all_timer.ElapsedSec();
  time_4 += push_gpups_timer.ElapsedSec();
1329
  VLOG(3) << "PushSparseGrad total cost: " << all_timer.ElapsedSec()
T
Thunderbrook 已提交
1330 1331 1332 1333 1334 1335 1336 1337
          << " s, of which GPUPS cost: " << push_gpups_timer.ElapsedSec()
          << " s";
  VLOG(3) << "End PushSparseGrad";
}

}  // end namespace framework
}  // end namespace paddle
#endif