ps_gpu_wrapper.cc 38.4 KB
Newer Older
T
Thunderbrook 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

  http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

T
Thunderbrook 已提交
29
#ifdef PADDLE_WITH_HETERPS
Y
yaoxuefeng 已提交
30

T
Thunderbrook 已提交
31
#include <algorithm>
Y
yaoxuefeng 已提交
32 33
#include <deque>

F
Fan Zhang 已提交
34
#include "paddle/fluid/framework/data_set.h"
T
Thunderbrook 已提交
35 36 37 38 39 40
#include "paddle/fluid/framework/fleet/ps_gpu_wrapper.h"
#include "paddle/fluid/platform/timer.h"

namespace paddle {
namespace framework {

T
Thunderbrook 已提交
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
#ifdef PADDLE_WITH_PSLIB
void AfsWrapper::init(const std::string& fs_name, const std::string& fs_user,
                      const std::string& pass_wd, const std::string& conf) {
  int ret = afs_handler_.init(fs_name.c_str(), fs_user.c_str(), pass_wd.c_str(),
                              conf.c_str());
  if (ret != 0) {
    LOG(ERROR) << "AFS Init Error";
  }
}

int AfsWrapper::remove(const std::string& path) {
  return afs_handler_.remove(path);
}

int AfsWrapper::mkdir(const std::string& path) {
  return afs_handler_.mkdir(path);
}

std::vector<std::string> AfsWrapper::list(const std::string& path) {
  return afs_handler_.list(path);
}

int AfsWrapper::exist(const std::string& path) {
  return afs_handler_.exist(path);
}

int AfsWrapper::upload(const std::string& local_file,
                       const std::string& afs_file) {
  return afs_handler_.upload_file(local_file, afs_file);
}

int AfsWrapper::download(const std::string& local_file,
                         const std::string& afs_file) {
  return afs_handler_.download_file(local_file, afs_file);
}
76 77 78 79 80 81 82 83 84 85 86 87

int AfsWrapper::touchz(const std::string& path) {
  return afs_handler_.touchz(path);
}

std::string AfsWrapper::cat(const std::string& path) {
  return afs_handler_.cat(path);
}

int AfsWrapper::mv(const std::string& old_path, const std::string& dest_path) {
  return afs_handler_.mv(old_path, dest_path);
}
T
Thunderbrook 已提交
88 89
#endif

T
Thunderbrook 已提交
90 91
std::shared_ptr<PSGPUWrapper> PSGPUWrapper::s_instance_ = NULL;
bool PSGPUWrapper::is_initialized_ = false;
T
Thunderbrook 已提交
92 93 94 95 96 97 98 99
#ifdef PADDLE_WITH_PSLIB
void PSGPUWrapper::InitAfsApi(const std::string& fs_name,
                              const std::string& fs_user,
                              const std::string& pass_wd,
                              const std::string& conf) {
  int ret = afs_handler_.init(fs_name.c_str(), fs_user.c_str(), pass_wd.c_str(),
                              conf.c_str());
  if (ret != 0) {
100
    VLOG(0) << "AFS Init Error";
T
Thunderbrook 已提交
101 102 103 104
  }
  use_afs_api_ = 1;
}
#endif
105
void PSGPUWrapper::PreBuildTask(std::shared_ptr<HeterContext> gpu_task) {
Y
yaoxuefeng 已提交
106
  VLOG(3) << "PSGPUWrapper::BuildGPUPSTask begin";
T
Thunderbrook 已提交
107 108
  platform::Timer timeline;
  timeline.Start();
109
  int device_num = heter_devices_.size();
110 111 112 113 114
  if (!multi_mf_dim_) {
    gpu_task->init(thread_keys_shard_num_, device_num);
  } else {
    gpu_task->init(thread_keys_shard_num_, device_num, multi_mf_dim_);
  }
Y
yaoxuefeng 已提交
115 116
  auto& local_keys = gpu_task->feature_keys_;
  auto& local_ptr = gpu_task->value_ptr_;
117

Y
yaoxuefeng 已提交
118 119 120
  std::vector<std::thread> threads;

  // data should be in input channel
121 122 123 124 125 126 127 128 129 130 131 132 133
  if (!multi_mf_dim_) {
    thread_keys_.resize(thread_keys_thread_num_);
    for (int i = 0; i < thread_keys_thread_num_; i++) {
      thread_keys_[i].resize(thread_keys_shard_num_);
    }
  } else {
    thread_dim_keys_.resize(thread_keys_thread_num_);
    for (int i = 0; i < thread_keys_thread_num_; i++) {
      thread_dim_keys_[i].resize(thread_keys_shard_num_);
      for (int j = 0; j < thread_keys_shard_num_; j++) {
        thread_dim_keys_[i][j].resize(multi_mf_dim_);
      }
    }
Y
yaoxuefeng 已提交
134
  }
Y
yaoxuefeng 已提交
135 136 137 138

  size_t total_len = 0;
  size_t len_per_thread = 0;
  int remain = 0;
Y
yaoxuefeng 已提交
139
  size_t begin = 0;
Y
yaoxuefeng 已提交
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163

  std::string data_set_name = std::string(typeid(*dataset_).name());

  if (data_set_name.find("SlotRecordDataset") != std::string::npos) {
    VLOG(0) << "ps_gpu_wrapper use SlotRecordDataset";
    SlotRecordDataset* dataset = dynamic_cast<SlotRecordDataset*>(dataset_);
    auto input_channel = dataset->GetInputChannel();
    VLOG(0) << "yxf::buildtask::inputslotchannle size: "
            << input_channel->Size();
    const std::deque<SlotRecord>& vec_data = input_channel->GetData();
    total_len = vec_data.size();
    len_per_thread = total_len / thread_keys_thread_num_;
    remain = total_len % thread_keys_thread_num_;
    VLOG(0) << "total len: " << total_len;
    auto gen_func = [this](const std::deque<SlotRecord>& total_data,
                           int begin_index, int end_index, int i) {
      for (auto iter = total_data.begin() + begin_index;
           iter != total_data.begin() + end_index; iter++) {
        const auto& ins = *iter;
        const auto& feasign_v = ins->slot_uint64_feasigns_.slot_values;
        for (const auto feasign : feasign_v) {
          int shard_id = feasign % thread_keys_shard_num_;
          this->thread_keys_[i][shard_id].insert(feasign);
        }
Y
yaoxuefeng 已提交
164
      }
Y
yaoxuefeng 已提交
165
    };
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
    auto gen_dynamic_mf_func = [this](const std::deque<SlotRecord>& total_data,
                                      int begin_index, int end_index, int i) {
      for (auto iter = total_data.begin() + begin_index;
           iter != total_data.begin() + end_index; iter++) {
        const auto& ins = *iter;
        const auto& feasign_v = ins->slot_uint64_feasigns_.slot_values;
        const auto& slot_offset = ins->slot_uint64_feasigns_.slot_offsets;
        for (size_t slot_idx = 0; slot_idx < slot_offset_vector_.size();
             slot_idx++) {
          for (size_t j = slot_offset[slot_offset_vector_[slot_idx]];
               j < slot_offset[slot_offset_vector_[slot_idx] + 1]; j++) {
            int shard_id = feasign_v[j] % thread_keys_shard_num_;
            int dim_id = slot_index_vec_[slot_idx];
            this->thread_dim_keys_[i][shard_id][dim_id].insert(feasign_v[j]);
          }
        }
      }
      /*
      for (auto iter = total_data.begin() + begin_index;
           iter != total_data.begin() + end_index; iter++) {
        const auto& ins = *iter;
        const auto& feasign_v = ins->slot_uint64_feasigns_.slot_values;
        for (const auto feasign : feasign_v) {
          int shard_id = feasign % thread_keys_shard_num_;
          this->thread_dim_keys_[i][shard_id][0].insert(feasign);
        }
      }
      */
    };
Y
yaoxuefeng 已提交
195
    for (int i = 0; i < thread_keys_thread_num_; i++) {
196 197 198 199 200 201 202 203 204 205 206
      if (!multi_mf_dim_) {
        VLOG(0) << "yxf::psgpu wrapper genfunc";
        threads.push_back(
            std::thread(gen_func, std::ref(vec_data), begin,
                        begin + len_per_thread + (i < remain ? 1 : 0), i));
      } else {
        VLOG(0) << "yxf::psgpu wrapper genfunc with dynamic mf";
        threads.push_back(
            std::thread(gen_dynamic_mf_func, std::ref(vec_data), begin,
                        begin + len_per_thread + (i < remain ? 1 : 0), i));
      }
Y
yaoxuefeng 已提交
207
      begin += len_per_thread + (i < remain ? 1 : 0);
Y
yaoxuefeng 已提交
208
    }
Y
yaoxuefeng 已提交
209 210 211 212
    for (std::thread& t : threads) {
      t.join();
    }
    timeline.Pause();
T
Thunderbrook 已提交
213
    VLOG(0) << "GpuPs build task cost " << timeline.ElapsedSec() << " seconds.";
Y
yaoxuefeng 已提交
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
  } else {
    CHECK(data_set_name.find("MultiSlotDataset") != std::string::npos);
    VLOG(0) << "ps_gpu_wrapper use MultiSlotDataset";
    MultiSlotDataset* dataset = dynamic_cast<MultiSlotDataset*>(dataset_);
    auto input_channel = dataset->GetInputChannel();

    const std::deque<Record>& vec_data = input_channel->GetData();
    total_len = vec_data.size();
    len_per_thread = total_len / thread_keys_thread_num_;
    remain = total_len % thread_keys_thread_num_;
    auto gen_func = [this](const std::deque<Record>& total_data,
                           int begin_index, int end_index, int i) {
      for (auto iter = total_data.begin() + begin_index;
           iter != total_data.begin() + end_index; iter++) {
        const auto& ins = *iter;
        const auto& feasign_v = ins.uint64_feasigns_;
        for (const auto feasign : feasign_v) {
          uint64_t cur_key = feasign.sign().uint64_feasign_;
          int shard_id = cur_key % thread_keys_shard_num_;
          this->thread_keys_[i][shard_id].insert(cur_key);
        }
      }
    };
    for (int i = 0; i < thread_keys_thread_num_; i++) {
      threads.push_back(
          std::thread(gen_func, std::ref(vec_data), begin,
                      begin + len_per_thread + (i < remain ? 1 : 0), i));
      begin += len_per_thread + (i < remain ? 1 : 0);
    }
    for (std::thread& t : threads) {
      t.join();
    }
    timeline.Pause();
T
Thunderbrook 已提交
247
    VLOG(0) << "GpuPs build task cost " << timeline.ElapsedSec() << " seconds.";
Y
yaoxuefeng 已提交
248 249 250 251
  }

  timeline.Start();

252
  threads.clear();
Y
yaoxuefeng 已提交
253
  // merge thread_keys to shard_keys
254 255 256 257
  auto merge_ins_func = [this, gpu_task](int shard_num) {
    for (int i = 0; i < thread_keys_thread_num_; ++i) {
      gpu_task->batch_add_keys(shard_num, thread_keys_[i][shard_num]);
      thread_keys_[i][shard_num].clear();
Y
yaoxuefeng 已提交
258
    }
259
  };
260 261 262 263 264 265 266
  auto merge_ins_dynamic_mf_func = [this, gpu_task](int shard_num, int dim_id) {
    for (int i = 0; i < thread_keys_thread_num_; ++i) {
      gpu_task->batch_add_keys(shard_num, dim_id,
                               thread_dim_keys_[i][shard_num][dim_id]);
      thread_dim_keys_[i][shard_num][dim_id].clear();
    }
  };
267 268 269 270 271 272 273
  // for (size_t i = 0; i < thread_keys_.size(); i++) {
  //  gpu_task->batch_add_keys(thread_keys_[i]);
  //  for (int j = 0; j < thread_keys_thread_num_; j++) {
  //    thread_keys_[i][j].clear();
  //  }
  //}
  for (int i = 0; i < thread_keys_shard_num_; ++i) {
274 275 276 277 278 279 280
    if (!multi_mf_dim_) {
      threads.push_back(std::thread(merge_ins_func, i));
    } else {
      for (int j = 0; j < multi_mf_dim_; j++) {
        threads.push_back(std::thread(merge_ins_dynamic_mf_func, i, j));
      }
    }
281 282 283
  }
  for (auto& t : threads) {
    t.join();
Y
yaoxuefeng 已提交
284 285 286
  }
  timeline.Pause();

287
  VLOG(0) << "GpuPs task add keys cost " << timeline.ElapsedSec()
Y
yaoxuefeng 已提交
288 289 290 291 292
          << " seconds.";
  timeline.Start();
  gpu_task->UniqueKeys();
  timeline.Pause();

293
  VLOG(0) << "GpuPs task unique cost " << timeline.ElapsedSec() << " seconds.";
Y
yaoxuefeng 已提交
294

295 296 297 298 299 300 301 302 303 304 305 306 307 308
  if (!multi_mf_dim_) {
    for (int i = 0; i < thread_keys_shard_num_; i++) {
      VLOG(0) << "GpuPs shard: " << i << " key len: " << local_keys[i].size();
      local_ptr[i].resize(local_keys[i].size());
    }
  } else {
    for (int i = 0; i < thread_keys_shard_num_; i++) {
      for (int j = 0; j < multi_mf_dim_; j++) {
        VLOG(0) << "GpuPs shard: " << i << "mf dim: " << index_dim_vec_[j]
                << " key len: " << gpu_task->feature_dim_keys_[i][j].size();
        gpu_task->value_dim_ptr_[i][j].resize(
            gpu_task->feature_dim_keys_[i][j].size());
      }
    }
Y
yaoxuefeng 已提交
309
  }
310 311 312 313
}

void PSGPUWrapper::BuildPull(std::shared_ptr<HeterContext> gpu_task) {
  platform::Timer timeline;
T
Thunderbrook 已提交
314
  std::vector<std::future<void>> task_futures;
315 316 317 318
  int device_num = heter_devices_.size();
  auto& local_keys = gpu_task->feature_keys_;
  auto& local_ptr = gpu_task->value_ptr_;

319 320 321
  auto& local_dim_keys = gpu_task->feature_dim_keys_;
  auto& local_dim_ptr = gpu_task->value_dim_ptr_;

322 323
  auto& device_keys = gpu_task->device_keys_;
  auto& device_vals = gpu_task->device_values_;
324 325 326 327 328 329 330 331 332
  auto& device_dim_keys = gpu_task->device_dim_keys_;
  auto& device_dim_ptr = gpu_task->device_dim_ptr_;
  auto& device_dim_mutex = gpu_task->dim_mutex_;
  if (multi_mf_dim_) {
    for (size_t dev = 0; dev < device_dim_keys.size(); dev++) {
      device_dim_keys[dev].resize(multi_mf_dim_);
      device_dim_ptr[dev].resize(multi_mf_dim_);
    }
  }
T
Thunderbrook 已提交
333
  // auto& device_mutex = gpu_task->mutex_;
334 335 336 337 338 339

  std::vector<std::thread> threads(thread_keys_shard_num_);
#ifdef PADDLE_WITH_PSLIB
  auto fleet_ptr = FleetWrapper::GetInstance();
#endif
#ifdef PADDLE_WITH_PSCORE
340
  auto fleet_ptr = paddle::distributed::FleetWrapper::GetInstance();
341
#endif
342

343
#if (defined PADDLE_WITH_PSLIB) && (defined PADDLE_WITH_HETERPS)
344 345 346 347 348 349 350 351 352 353 354
  // get day_id: day nums from 1970
  struct std::tm b;
  b.tm_year = year_ - 1900;
  b.tm_mon = month_ - 1;
  b.tm_mday = day_;
  b.tm_min = b.tm_hour = b.tm_sec = 0;
  std::time_t seconds_from_1970 = std::mktime(&b);
  int day_id = seconds_from_1970 / 86400;
  fleet_ptr->pslib_ptr_->_worker_ptr->set_day_id(table_id_, day_id);
#endif

355
  timeline.Start();
356
  auto ptl_func = [this, &local_keys, &local_ptr, &fleet_ptr](int i) {
Y
yaoxuefeng 已提交
357
    size_t key_size = local_keys[i].size();
Y
yaoxuefeng 已提交
358
    int32_t status = -1;
T
Thunderbrook 已提交
359
#ifdef PADDLE_WITH_PSLIB
Y
yaoxuefeng 已提交
360 361 362 363 364 365
    // auto tt = fleet_ptr->pslib_ptr_->_worker_ptr->pull_sparse_ptr(
    //    reinterpret_cast<char**>(local_ptr[i].data()), this->table_id_,
    //    local_keys[i].data(), key_size);
    int32_t cnt = 0;
    while (true) {
      auto tt = fleet_ptr->pslib_ptr_->_worker_ptr->pull_sparse_ptr(
T
Thunderbrook 已提交
366
          i, reinterpret_cast<char**>(local_ptr[i].data()), this->table_id_,
Y
yaoxuefeng 已提交
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
          local_keys[i].data(), key_size);
      bool flag = true;

      tt.wait();

      try {
        status = tt.get();
      } catch (const std::future_error& e) {
        VLOG(0) << "Caught a future_error with code" << e.code()
                << ", Message:" << e.what();
      }
      if (status != 0) {
        VLOG(0) << "fleet pull sparse failed, status[" << status << "]";
        sleep(sleep_seconds_before_fail_exit_);
        flag = false;
        cnt++;
      }
      if (cnt > 3) {
        VLOG(0) << "fleet pull sparse failed, retry 3 times";
        exit(-1);
      }

      if (flag) {
        break;
      }
    }
T
Thunderbrook 已提交
393 394
#endif
#ifdef PADDLE_WITH_PSCORE
Y
yaoxuefeng 已提交
395 396
    int32_t cnt = 0;
    while (true) {
Z
zhaocaibei123 已提交
397
      auto tt = fleet_ptr->worker_ptr_->PullSparsePtr(
Y
yaoxuefeng 已提交
398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
          reinterpret_cast<char**>(local_ptr[i].data()), this->table_id_,
          local_keys[i].data(), key_size);
      bool flag = true;

      tt.wait();

      try {
        status = tt.get();
      } catch (const std::future_error& e) {
        VLOG(0) << "Caught a future_error with code" << e.code()
                << ", Message:" << e.what();
      }
      if (status != 0) {
        VLOG(0) << "fleet pull sparse failed, status[" << status << "]";
        sleep(sleep_seconds_before_fail_exit_);
        flag = false;
        cnt++;
      }
      if (cnt > 3) {
        VLOG(0) << "fleet pull sparse failed, retry 3 times";
        exit(-1);
      }

      if (flag) {
        break;
      }
    }
T
Thunderbrook 已提交
425
#endif
Y
yaoxuefeng 已提交
426 427 428 429 430 431 432 433
    if (status != 0) {
      LOG(ERROR) << "fleet pull sparse failed, status[" << status << "]";
      sleep(300);
      exit(-1);
    } else {
      VLOG(3) << "FleetWrapper Pull sparse to local done with table size: "
              << local_keys[i].size();
    }
434
  };
435 436 437 438 439 440 441 442 443

  auto ptl_dynamic_mf_func = [this, &local_dim_keys, &local_dim_ptr,
                              &fleet_ptr](int i, int j) {
#ifdef PADDLE_WITH_PSLIB
    size_t key_size = local_dim_keys[i][j].size();
    int32_t status = -1;
    int32_t cnt = 0;
    while (true) {
      auto tt = fleet_ptr->pslib_ptr_->_worker_ptr->pull_sparse_ptr(
T
Thunderbrook 已提交
444 445
          i, reinterpret_cast<char**>(local_dim_ptr[i][j].data()),
          this->table_id_, local_dim_keys[i][j].data(), key_size);
446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
      bool flag = true;

      tt.wait();

      try {
        status = tt.get();
      } catch (const std::future_error& e) {
        VLOG(0) << "Caught a future_error with code" << e.code()
                << ", Message:" << e.what();
      }
      if (status != 0) {
        VLOG(0) << "fleet pull sparse failed, status[" << status << "]";
        sleep(sleep_seconds_before_fail_exit_);
        flag = false;
        cnt++;
      }
      if (cnt > 3) {
        VLOG(0) << "fleet pull sparse failed, retry 3 times";
        exit(-1);
      }

      if (flag) {
        break;
      }
    }
    if (status != 0) {
      LOG(ERROR) << "fleet pull sparse failed, status[" << status << "]";
      sleep(300);
      exit(-1);
    } else {
      VLOG(0) << "FleetWrapper Pull sparse to local done with table size: "
              << local_dim_keys[i][j].size();
    }
#endif
  };
  if (!multi_mf_dim_) {
    for (size_t i = 0; i < threads.size(); i++) {
      threads[i] = std::thread(ptl_func, i);
    }
  } else {
    threads.resize(thread_keys_shard_num_ * multi_mf_dim_);
    for (int i = 0; i < thread_keys_shard_num_; i++) {
      for (int j = 0; j < multi_mf_dim_; j++) {
        threads[i * multi_mf_dim_ + j] = std::thread(ptl_dynamic_mf_func, i, j);
      }
    }
492 493 494 495 496
  }
  for (std::thread& t : threads) {
    t.join();
  }
  timeline.Pause();
T
Thunderbrook 已提交
497
  VLOG(0) << "pull sparse from CpuPS into GpuPS cost " << timeline.ElapsedSec()
498
          << " seconds.";
Y
yaoxuefeng 已提交
499 500 501 502 503 504 505 506
  if (multi_node_) {
    auto gloo_wrapper = paddle::framework::GlooWrapper::GetInstance();
    if (!gloo_wrapper->IsInitialized()) {
      VLOG(0) << "GLOO is not inited";
      gloo_wrapper->Init();
    }
    gloo_wrapper->Barrier();
  }
507 508

  timeline.Start();
Y
yaoxuefeng 已提交
509 510 511
  std::vector<std::vector<std::pair<uint64_t, char*>>> pass_values;

  bool record_status = false;
512 513
#ifdef PADDLE_WITH_PSLIB
  uint16_t pass_id = 0;
Y
yaoxuefeng 已提交
514 515 516 517
  if (multi_node_) {
    record_status = fleet_ptr->pslib_ptr_->_worker_ptr->take_sparse_record(
        table_id_, pass_id, pass_values);
  }
518
#endif
T
Thunderbrook 已提交
519 520
  auto& device_task_keys = gpu_task->device_task_keys_;
  auto& device_task_ptrs = gpu_task->device_task_ptr_;
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
  auto build_dynamic_mf_func = [this, device_num, &local_dim_keys,
                                &local_dim_ptr, &device_dim_keys,
                                &device_dim_ptr,
                                &device_dim_mutex](int i, int j) {
#ifdef PADDLE_WITH_PSLIB
    std::vector<std::vector<FeatureKey>> task_keys(device_num);
    std::vector<std::vector<paddle::ps::DownpourFixedFeatureValue*>> task_ptrs(
        device_num);
    for (size_t k = 0; k < local_dim_keys[i][j].size(); k++) {
      int shard = local_dim_keys[i][j][k] % device_num;
      task_keys[shard].push_back(local_dim_keys[i][j][k]);
      task_ptrs[shard].push_back(local_dim_ptr[i][j][k]);
    }
    for (int dev = 0; dev < device_num; dev++) {
      for (int dim = 0; dim < multi_mf_dim_; dim++) {
        device_dim_mutex[dev][dim]->lock();

        int len = task_keys[dev].size();
        int cur = device_dim_keys[dev][dim].size();
        device_dim_keys[dev][dim].resize(device_dim_keys[dev][dim].size() +
                                         len);
        device_dim_ptr[dev][dim].resize(device_dim_ptr[dev][dim].size() + len);
        for (int k = 0; k < len; ++k) {
          device_dim_keys[dev][dim][cur + k] = task_keys[dev][k];
          device_dim_ptr[dev][dim][cur + k] = task_ptrs[dev][k];
        }
        device_dim_mutex[dev][dim]->unlock();
      }
    }
#endif
  };
Y
yaoxuefeng 已提交
552
  auto build_func = [device_num, record_status, &pass_values, &local_keys,
T
Thunderbrook 已提交
553 554
                     &local_ptr, &device_task_keys, &device_task_ptrs](int i) {
    auto& task_keys = device_task_keys[i];
T
Thunderbrook 已提交
555
#ifdef PADDLE_WITH_PSLIB
T
Thunderbrook 已提交
556
    auto& task_ptrs = device_task_ptrs[i];
T
Thunderbrook 已提交
557 558 559
#endif

#ifdef PADDLE_WITH_PSCORE
T
Thunderbrook 已提交
560
    auto& task_ptrs = device_task_ptrs[i];
T
Thunderbrook 已提交
561
#endif
562 563 564 565 566 567

    for (size_t j = 0; j < local_keys[i].size(); j++) {
      int shard = local_keys[i][j] % device_num;
      task_keys[shard].push_back(local_keys[i][j]);
      task_ptrs[shard].push_back(local_ptr[i][j]);
    }
568
#ifdef PADDLE_WITH_PSLIB
Y
yaoxuefeng 已提交
569 570 571 572 573 574 575 576 577 578 579 580 581 582 583
    if (record_status) {
      size_t local_keys_size = local_keys.size();
      size_t pass_values_size = pass_values.size();
      for (size_t j = 0; j < pass_values_size; j += local_keys_size) {
        auto& shard_values = pass_values[j];
        for (size_t pair_idx = 0; pair_idx < pass_values[j].size();
             pair_idx++) {
          auto& cur_pair = shard_values[pair_idx];
          int shard = cur_pair.first % device_num;
          task_keys[shard].push_back(cur_pair.first);
          task_ptrs[shard].push_back(
              (paddle::ps::DownpourFixedFeatureValue*)cur_pair.second);
        }
      }
    }
584
#endif
T
Thunderbrook 已提交
585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
  };
  if (!multi_mf_dim_) {
    for (int i = 0; i < thread_keys_shard_num_; i++) {
      task_futures.emplace_back(hbm_thread_pool_[i]->enqueue(build_func, i));
    }
    for (auto& f : task_futures) {
      f.wait();
    }
    task_futures.clear();
    VLOG(0) << "GpuPs build hbmps done";
  }
  std::vector<std::vector<int>> prefix_sum;
  prefix_sum.resize(device_num);
  for (int i = 0; i < device_num; i++) {
    prefix_sum[i].resize(thread_keys_shard_num_ + 1);
    prefix_sum[i][0] = 0;
  }
  auto calc_prefix_func = [this, &prefix_sum, &device_keys, &device_vals,
                           &device_task_keys](int device_num) {
    for (int j = 0; j < thread_keys_shard_num_; j++) {
      prefix_sum[device_num][j + 1] =
          prefix_sum[device_num][j] + device_task_keys[j][device_num].size();
    }
    device_keys[device_num].resize(
        prefix_sum[device_num][thread_keys_shard_num_]);
    device_vals[device_num].resize(
        prefix_sum[device_num][thread_keys_shard_num_]);
  };
  if (!multi_mf_dim_) {
    for (int i = 0; i < device_num; i++) {
      task_futures.emplace_back(
          hbm_thread_pool_[i]->enqueue(calc_prefix_func, i));
    }
    for (auto& f : task_futures) {
      f.wait();
    }
    task_futures.clear();
  }
  VLOG(0) << "prefix done";
  auto prepare_dev_value_func = [device_num, &prefix_sum, &device_keys,
                                 &device_vals, &device_task_keys,
                                 &device_task_ptrs](int dev, int shard_id) {
    auto& task_keys = device_task_keys[shard_id];
#ifdef PADDLE_WITH_PSLIB
    auto& task_ptrs = device_task_ptrs[shard_id];
#endif

#ifdef PADDLE_WITH_PSCORE
633
    auto& task_ptrs = device_task_ptrs[shard_id];
T
Thunderbrook 已提交
634
#endif
635

T
Thunderbrook 已提交
636 637
    int len = prefix_sum[dev][shard_id + 1] - prefix_sum[dev][shard_id];
    int cur = prefix_sum[dev][shard_id];
T
Thunderbrook 已提交
638
#ifdef PADDLE_WITH_PSLIB
T
Thunderbrook 已提交
639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661
    for (int j = 0; j < len; ++j) {
      device_keys[dev][cur + j] = task_keys[dev][j];
      float* ptr_val = task_ptrs[dev][j]->data();
      FeatureValue& val = device_vals[dev][cur + j];
      size_t dim = task_ptrs[dev][j]->size();

      val.delta_score = ptr_val[1];
      val.show = ptr_val[2];
      val.clk = ptr_val[3];
      val.slot = ptr_val[6];
      val.lr = ptr_val[4];
      val.lr_g2sum = ptr_val[5];
      val.cpu_ptr = (uint64_t)(task_ptrs[dev][j]);

      if (dim > 7) {
        val.mf_size = MF_DIM + 1;
        for (int x = 0; x < val.mf_size; x++) {
          val.mf[x] = ptr_val[x + 7];
        }
      } else {
        val.mf_size = 0;
        for (int x = 0; x < MF_DIM + 1; x++) {
          val.mf[x] = 0;
Y
yaoxuefeng 已提交
662 663
        }
      }
T
Thunderbrook 已提交
664
    }
T
Thunderbrook 已提交
665 666
#endif
#ifdef PADDLE_WITH_PSCORE
T
Thunderbrook 已提交
667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
    for (int j = 0; j < len; ++j) {
      device_keys[dev][cur + j] = task_keys[dev][j];
      float* ptr_val = task_ptrs[dev][j]->data();
      FeatureValue& val = device_vals[dev][cur + j];
      size_t dim = task_ptrs[dev][j]->size();
      val.delta_score = ptr_val[2];
      val.show = ptr_val[3];
      val.clk = ptr_val[4];
      val.slot = ptr_val[0];
      val.lr = ptr_val[5];
      val.lr_g2sum = ptr_val[6];
      val.cpu_ptr = (uint64_t)(task_ptrs[dev][j]);

      if (dim > 7) {
        val.mf_size = MF_DIM + 1;
        for (int x = 0; x < val.mf_size; x++) {
          val.mf[x] = ptr_val[x + 7];
        }
      } else {
        val.mf_size = 0;
        for (int x = 0; x < MF_DIM + 1; x++) {
          val.mf[x] = 0;
T
Thunderbrook 已提交
689 690
        }
      }
T
Thunderbrook 已提交
691
    }
T
Thunderbrook 已提交
692
#endif
T
Thunderbrook 已提交
693
    VLOG(3) << "GpuPs build hbmps done";
Y
yaoxuefeng 已提交
694
  };
695

T
Thunderbrook 已提交
696
  if (multi_mf_dim_) {
697 698 699 700 701 702
    for (int i = 0; i < thread_keys_shard_num_; i++) {
      for (int j = 0; j < multi_mf_dim_; j++) {
        threads[i * multi_mf_dim_ + j] =
            std::thread(build_dynamic_mf_func, i, j);
      }
    }
T
Thunderbrook 已提交
703 704 705 706 707 708 709 710 711 712 713 714 715 716
    for (std::thread& t : threads) {
      t.join();
    }
  } else {
    for (int i = 0; i < thread_keys_shard_num_; i++) {
      for (int j = 0; j < device_num; j++) {
        task_futures.emplace_back(
            hbm_thread_pool_[i]->enqueue(prepare_dev_value_func, j, i));
      }
    }
    for (auto& f : task_futures) {
      f.wait();
    }
    task_futures.clear();
Y
yaoxuefeng 已提交
717 718
  }
  timeline.Pause();
T
Thunderbrook 已提交
719
  VLOG(0) << "GpuPs prepare for build hbm cost " << timeline.ElapsedSec()
720
          << " seconds.";
Y
yaoxuefeng 已提交
721 722
}

723
void PSGPUWrapper::BuildGPUTask(std::shared_ptr<HeterContext> gpu_task) {
724
  int device_num = heter_devices_.size();
Y
yaoxuefeng 已提交
725 726
  platform::Timer timeline;
  timeline.Start();
T
Thunderbrook 已提交
727

728
  std::vector<size_t> feature_keys_count(device_num);
T
Thunderbrook 已提交
729
  size_t size_max = 0;
730 731 732
  if (!multi_mf_dim_) {
    for (int i = 0; i < device_num; i++) {
      feature_keys_count[i] = gpu_task->device_keys_[i].size();
733
      VLOG(0) << i << " card contains feasign nums: " << feature_keys_count[i];
734 735 736 737 738 739 740
      size_max = std::max(size_max, feature_keys_count[i]);
    }
  } else {
    for (int i = 0; i < device_num; i++) {
      for (int j = 0; j < multi_mf_dim_; j++) {
        feature_keys_count[i] += gpu_task->device_dim_ptr_[i][j].size();
      }
741
      VLOG(0) << i << " card with dynamic mf contains feasign nums: "
742 743 744
              << feature_keys_count[i];
      size_max = std::max(size_max, feature_keys_count[i]);
    }
T
Thunderbrook 已提交
745 746
  }
  if (HeterPs_) {
747 748
    delete HeterPs_;
    HeterPs_ = nullptr;
T
Thunderbrook 已提交
749
  }
750
  if (size_max <= 0) {
751
    VLOG(0) << "Skip build gpu ps cause feasign nums = " << size_max;
752 753
    return;
  }
754
  std::vector<std::thread> threads(device_num);
T
Thunderbrook 已提交
755
  HeterPs_ = HeterPsBase::get_instance(size_max, resource_);
F
Fan Zhang 已提交
756
#ifdef PADDLE_WITH_CUDA
757
  HeterPs_->set_nccl_comm_and_size(inner_comms_, inter_comms_, node_size_);
F
Fan Zhang 已提交
758
#endif
Y
yaoxuefeng 已提交
759
  auto build_func = [this, &gpu_task, &feature_keys_count](int i) {
760
    VLOG(3) << "building table: " << i;
761 762 763
    this->HeterPs_->build_ps(i, gpu_task->device_keys_[i].data(),
                             gpu_task->device_values_[i].data(),
                             feature_keys_count[i], 500000, 2);
764 765 766
    // if (feature_keys_count[i] > 0) {
    //   HeterPs_->show_one_table(i);
    // }
Y
yaoxuefeng 已提交
767 768 769 770 771 772
  };
  for (size_t i = 0; i < threads.size(); i++) {
    threads[i] = std::thread(build_func, i);
  }
  for (std::thread& t : threads) {
    t.join();
T
Thunderbrook 已提交
773 774
  }
  timeline.Pause();
775
  VLOG(0) << "GpuPs build table total costs: " << timeline.ElapsedSec()
T
Thunderbrook 已提交
776
          << " s.";
777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799
}

void PSGPUWrapper::LoadIntoMemory(bool is_shuffle) {
  platform::Timer timer;
  VLOG(3) << "Begin LoadIntoMemory(), dataset[" << dataset_ << "]";
  timer.Start();
  dataset_->LoadIntoMemory();
  timer.Pause();
  VLOG(0) << "LoadIntoMemory cost: " << timer.ElapsedSec() << "s";

  // local shuffle
  if (is_shuffle) {
    dataset_->LocalShuffle();
  }

  std::shared_ptr<HeterContext> gpu_task = gpu_task_pool_.Get();
  gpu_task->Reset();
  data_ready_channel_->Put(gpu_task);
  VLOG(3) << "End LoadIntoMemory(), dataset[" << dataset_ << "]";
}

void PSGPUWrapper::start_build_thread() {
  running_ = true;
800
  VLOG(3) << "start build CPU ps thread.";
801
  pre_build_threads_ = std::thread([this] { pre_build_thread(); });
802 803
}

804 805
void PSGPUWrapper::pre_build_thread() {
  // prebuild: process load_data
806 807 808 809 810
  while (running_) {
    std::shared_ptr<HeterContext> gpu_task = nullptr;
    if (!data_ready_channel_->Get(gpu_task)) {
      continue;
    }
811
    VLOG(3) << "thread PreBuildTask start.";
812 813 814
    platform::Timer timer;
    timer.Start();
    // build cpu ps data process
815
    PreBuildTask(gpu_task);
816
    timer.Pause();
817
    VLOG(0) << "thread PreBuildTask end, cost time: " << timer.ElapsedSec()
T
Thunderbrook 已提交
818
            << " s";
819 820 821 822 823
    buildcpu_ready_channel_->Put(gpu_task);
  }
  VLOG(3) << "build cpu thread end";
}

824 825 826 827 828 829 830 831 832 833
void PSGPUWrapper::build_task() {
  // build_task: build_pull + build_gputask
  std::shared_ptr<HeterContext> gpu_task = nullptr;
  // train end, gpu free
  if (!gpu_free_channel_->Get(gpu_task)) {
    return;
  }
  // ins and pre_build end
  if (!buildcpu_ready_channel_->Get(gpu_task)) {
    return;
834
  }
835

836
  VLOG(0) << "BuildPull start.";
837 838 839 840 841
  platform::Timer timer;
  timer.Start();
  BuildPull(gpu_task);
  BuildGPUTask(gpu_task);
  timer.Pause();
842
  VLOG(0) << "BuildPull + BuildGPUTask end, cost time: " << timer.ElapsedSec()
843 844 845
          << "s";

  current_task_ = gpu_task;
846 847 848 849 850 851 852 853 854
}

void PSGPUWrapper::BeginPass() {
  platform::Timer timer;
  timer.Start();
  if (current_task_) {
    PADDLE_THROW(
        platform::errors::Fatal("[BeginPass] current task is not ended."));
  }
855 856

  build_task();
857
  timer.Pause();
858 859 860 861 862 863

  if (current_task_ == nullptr) {
    PADDLE_THROW(platform::errors::Fatal(
        "[BeginPass] after build_task, current task is not null."));
  }

T
Thunderbrook 已提交
864
  VLOG(0) << "BeginPass end, cost time: " << timer.ElapsedSec() << "s";
865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881
}

void PSGPUWrapper::EndPass() {
  if (!current_task_) {
    PADDLE_THROW(
        platform::errors::Fatal("[EndPass] current task has been ended."));
  }
  platform::Timer timer;
  timer.Start();
  size_t keysize_max = 0;
  // in case of feasign_num = 0, skip dump_to_cpu
  for (size_t i = 0; i < heter_devices_.size(); i++) {
    keysize_max = std::max(keysize_max, current_task_->device_keys_[i].size());
  }
  if (keysize_max != 0) {
    HeterPs_->end_pass();
  }
882 883

  gpu_task_pool_.Push(current_task_);
884 885 886
  current_task_ = nullptr;
  gpu_free_channel_->Put(current_task_);
  timer.Pause();
T
Thunderbrook 已提交
887
  VLOG(0) << "EndPass end, cost time: " << timer.ElapsedSec() << "s";
T
Thunderbrook 已提交
888 889 890 891 892 893 894 895 896 897 898 899 900
}

void PSGPUWrapper::PullSparse(const paddle::platform::Place& place,
                              const int table_id,
                              const std::vector<const uint64_t*>& keys,
                              const std::vector<float*>& values,
                              const std::vector<int64_t>& slot_lengths,
                              const int hidden_size) {
  platform::Timer all_timer;
  platform::Timer pull_gpups_timer;
  all_timer.Start();
  int64_t total_length =
      std::accumulate(slot_lengths.begin(), slot_lengths.end(), 0UL);
F
Fan Zhang 已提交
901 902
#ifdef PADDLE_WITH_CUDA
  VLOG(3) << "Begine Gpu Ps PullSparse";
903
  auto buf = memory::Alloc(place, total_length * sizeof(FeatureValue));
T
Thunderbrook 已提交
904
  FeatureValue* total_values_gpu = reinterpret_cast<FeatureValue*>(buf->ptr());
F
Fan Zhang 已提交
905 906 907 908 909 910 911
#endif
#ifdef PADDLE_WITH_XPU_KP
  VLOG(3) << "Begine Xpu Ps PullSparse";
  FeatureValue* total_values_gpu = nullptr;
  xpu_malloc(reinterpret_cast<void**>(&total_values_gpu),
             total_length * sizeof(FeatureValue));
#endif
T
Thunderbrook 已提交
912 913 914 915
  if (platform::is_cpu_place(place)) {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Warning:: CPUPlace is not supported in GpuPs now."));
  } else if (platform::is_gpu_place(place)) {
F
Fan Zhang 已提交
916
#ifdef PADDLE_WITH_CUDA
T
Thunderbrook 已提交
917
    VLOG(3) << "Begin copy keys, key_num[" << total_length << "]";
918
    int device_id = place.GetDeviceId();
T
Thunderbrook 已提交
919 920 921 922 923 924 925 926 927 928
    int devid_2_index = HeterPs_->get_index_by_devid(device_id);
    LoDTensor& total_keys_tensor = keys_tensor[devid_2_index];
    uint64_t* total_keys = reinterpret_cast<uint64_t*>(
        total_keys_tensor.mutable_data<int64_t>({total_length, 1}, place));

    // construct slot_level lod info
    auto slot_lengths_lod = slot_lengths;
    for (size_t i = 1; i < slot_lengths_lod.size(); i++) {
      slot_lengths_lod[i] += slot_lengths_lod[i - 1];
    }
929
    auto buf_key = memory::Alloc(place, keys.size() * sizeof(uint64_t*));
T
Thunderbrook 已提交
930
    auto buf_length =
931
        memory::Alloc(place, slot_lengths.size() * sizeof(int64_t));
T
Thunderbrook 已提交
932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955
    uint64_t** gpu_keys = reinterpret_cast<uint64_t**>(buf_key->ptr());
    int64_t* gpu_len = reinterpret_cast<int64_t*>(buf_length->ptr());
    cudaMemcpy(gpu_keys, keys.data(), keys.size() * sizeof(uint64_t*),
               cudaMemcpyHostToDevice);
    cudaMemcpy(gpu_len, slot_lengths_lod.data(),
               slot_lengths.size() * sizeof(int64_t), cudaMemcpyHostToDevice);

    this->CopyKeys(place, gpu_keys, total_keys, gpu_len,
                   static_cast<int>(slot_lengths.size()),
                   static_cast<int>(total_length));
    VLOG(3) << "Begin call PullSparseGPU in GPUPS, dev: " << devid_2_index
            << " len: " << total_length;
    pull_gpups_timer.Start();
    HeterPs_->pull_sparse(devid_2_index, total_keys, total_values_gpu,
                          static_cast<int>(total_length));
    // PADDLE_ENFORCE_EQ(ret, 0, platform::errors::PreconditionNotMet(
    //                              "PullSparseGPU failed in GPUPS."));
    pull_gpups_timer.Pause();

    VLOG(3) << "Begin Copy result to tensor, total_length[" << total_length
            << "]";
    this->CopyForPull(place, gpu_keys, values, total_values_gpu, gpu_len,
                      static_cast<int>(slot_lengths.size()), hidden_size,
                      total_length);
F
Fan Zhang 已提交
956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
#endif
  } else if (platform::is_xpu_place(place)) {
#ifdef PADDLE_WITH_XPU_KP
    VLOG(3) << "Begin copy keys, key_num[" << total_length << "]";
    int device_id = place.GetDeviceId();
    int devid_2_index = HeterPs_->get_index_by_devid(device_id);
    LoDTensor& total_keys_tensor = keys_tensor[devid_2_index];
    uint64_t* total_keys = reinterpret_cast<uint64_t*>(
        total_keys_tensor.mutable_data<int64_t>({total_length, 1}, place));

    // construct slot_level lod info
    auto slot_lengths_lod = slot_lengths;
    for (size_t i = 1; i < slot_lengths_lod.size(); i++) {
      slot_lengths_lod[i] += slot_lengths_lod[i - 1];
    }

    uint64_t* buf_key = nullptr;
    int64_t* buf_length = nullptr;
    PADDLE_ENFORCE_EQ(xpu_malloc(reinterpret_cast<void**>(&buf_key),
                                 keys.size() * sizeof(uint64_t*)),
                      XPU_SUCCESS, platform::errors::ResourceExhausted(
                                       "XPU has no enough memory"));
    PADDLE_ENFORCE_EQ(xpu_malloc(reinterpret_cast<void**>(&buf_length),
                                 slot_lengths.size() * sizeof(int64_t)),
                      XPU_SUCCESS, platform::errors::ResourceExhausted(
                                       "XPU has no enough memory"));

    uint64_t** xpu_keys = reinterpret_cast<uint64_t**>(&buf_key);
    int64_t* xpu_len = reinterpret_cast<int64_t*>(buf_length);
    PADDLE_ENFORCE_XPU_SUCCESS(xpu_memcpy(xpu_keys, keys.data(),
                                          keys.size() * sizeof(uint64_t*),
                                          XPU_HOST_TO_DEVICE));
    PADDLE_ENFORCE_XPU_SUCCESS(xpu_memcpy(xpu_len, slot_lengths_lod.data(),
                                          slot_lengths.size() * sizeof(int64_t),
                                          XPU_HOST_TO_DEVICE));

    this->CopyKeys(place, xpu_keys, total_keys, xpu_len,
                   static_cast<int>(slot_lengths.size()),
                   static_cast<int>(total_length));
    VLOG(3) << "Begin call PullSparseGPU in GPUPS, dev: " << devid_2_index
            << " len: " << total_length;
    pull_gpups_timer.Start();
    HeterPs_->pull_sparse(devid_2_index, total_keys, total_values_gpu,
                          static_cast<int>(total_length));
    // PADDLE_ENFORCE_EQ(ret, 0, platform::errors::PreconditionNotMet(
    //                              "PullSparseGPU failed in GPUPS."));
    pull_gpups_timer.Pause();

    VLOG(3) << "Begin Copy result to tensor, total_length[" << total_length
            << "]";
    this->CopyForPull(place, xpu_keys, values, total_values_gpu, xpu_len,
                      static_cast<int>(slot_lengths.size()), hidden_size,
                      total_length);
#endif
T
Thunderbrook 已提交
1010 1011
  } else {
    PADDLE_THROW(platform::errors::PreconditionNotMet(
F
Fan Zhang 已提交
1012
        "GpuPs/XpuPs: PullSparse Only Support CUDAPlace or XPUPlace Now."));
T
Thunderbrook 已提交
1013 1014
  }
  all_timer.Pause();
1015
  VLOG(3) << "GpuPs PullSparse total costs: " << all_timer.ElapsedSec()
T
Thunderbrook 已提交
1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
          << " s, of which GPUPS costs: " << pull_gpups_timer.ElapsedSec()
          << " s";
  VLOG(3) << "End PullSparse";
}

void PSGPUWrapper::PushSparseGrad(const paddle::platform::Place& place,
                                  const int table_id,
                                  const std::vector<const uint64_t*>& keys,
                                  const std::vector<const float*>& grad_values,
                                  const std::vector<int64_t>& slot_lengths,
                                  const int hidden_size, const int batch_size) {
  platform::Timer all_timer;
  platform::Timer push_gpups_timer;
  all_timer.Start();
  int64_t total_length =
      std::accumulate(slot_lengths.begin(), slot_lengths.end(), 0UL);
F
Fan Zhang 已提交
1032 1033
#ifdef PADDLE_WITH_CUDA
  VLOG(3) << "Begin GPUPS PushSparseGrad";
1034
  auto buf = memory::Alloc(place, total_length * sizeof(FeaturePushValue));
T
Thunderbrook 已提交
1035 1036
  FeaturePushValue* total_grad_values_gpu =
      reinterpret_cast<FeaturePushValue*>(buf->ptr());
F
Fan Zhang 已提交
1037 1038 1039 1040 1041 1042 1043
#endif
#ifdef PADDLE_WITH_XPU_KP
  VLOG(3) << "Begine Xpu Ps PushSparseGrad";
  FeaturePushValue* total_grad_values_gpu = nullptr;
  xpu_malloc(reinterpret_cast<void**>(&total_grad_values_gpu),
             total_length * sizeof(FeaturePushValue));
#endif
T
Thunderbrook 已提交
1044 1045 1046 1047
  if (platform::is_cpu_place(place)) {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Warning:: CPUPlace is not supported in GPUPS now."));
  } else if (platform::is_gpu_place(place)) {
1048
    int device_id = place.GetDeviceId();
T
Thunderbrook 已提交
1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
    int devid_2_index = HeterPs_->get_index_by_devid(device_id);
    LoDTensor& cached_total_keys_tensor = keys_tensor[devid_2_index];
    uint64_t* total_keys =
        reinterpret_cast<uint64_t*>(cached_total_keys_tensor.data<int64_t>());
    VLOG(3) << "Begin copy grad tensor to gpups struct";
    this->CopyForPush(place, grad_values, total_grad_values_gpu, slot_lengths,
                      hidden_size, total_length, batch_size);

    VLOG(3) << "Begin call PushSparseGPU in GPUPS, dev: " << devid_2_index
            << " len: " << total_length;
    push_gpups_timer.Start();
    HeterPs_->push_sparse(devid_2_index, total_keys, total_grad_values_gpu,
                          static_cast<int>(total_length));
    push_gpups_timer.Pause();
F
Fan Zhang 已提交
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
  } else if (platform::is_xpu_place(place)) {
    int device_id = place.GetDeviceId();
    int devid_2_index = HeterPs_->get_index_by_devid(device_id);
    LoDTensor& cached_total_keys_tensor = keys_tensor[devid_2_index];
    uint64_t* total_keys =
        reinterpret_cast<uint64_t*>(cached_total_keys_tensor.data<int64_t>());
    VLOG(3) << "Begin copy grad tensor to xpups struct";
    this->CopyForPush(place, grad_values, total_grad_values_gpu, slot_lengths,
                      hidden_size, total_length, batch_size);

    VLOG(3) << "Begin call PushSparseXPU in XPUPS, dev: " << devid_2_index
            << " len: " << total_length;
    push_gpups_timer.Start();
    HeterPs_->push_sparse(devid_2_index, total_keys, total_grad_values_gpu,
                          static_cast<int>(total_length));
    push_gpups_timer.Pause();
T
Thunderbrook 已提交
1079 1080 1081 1082 1083
  } else {
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "GPUPS: PushSparseGrad Only Support CUDAPlace Now."));
  }
  all_timer.Pause();
1084
  VLOG(3) << "PushSparseGrad total cost: " << all_timer.ElapsedSec()
T
Thunderbrook 已提交
1085 1086 1087 1088 1089 1090 1091 1092
          << " s, of which GPUPS cost: " << push_gpups_timer.ElapsedSec()
          << " s";
  VLOG(3) << "End PushSparseGrad";
}

}  // end namespace framework
}  // end namespace paddle
#endif