ps_gpu_wrapper.cc 30.9 KB
Newer Older
T
Thunderbrook 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

  http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

T
Thunderbrook 已提交
29
#ifdef PADDLE_WITH_HETERPS
Y
yaoxuefeng 已提交
30

T
Thunderbrook 已提交
31
#include <algorithm>
Y
yaoxuefeng 已提交
32 33
#include <deque>

T
Thunderbrook 已提交
34 35 36 37 38 39 40 41 42
#include "paddle/fluid/framework/fleet/ps_gpu_wrapper.h"
#include "paddle/fluid/platform/timer.h"

namespace paddle {
namespace framework {

std::shared_ptr<PSGPUWrapper> PSGPUWrapper::s_instance_ = NULL;
bool PSGPUWrapper::is_initialized_ = false;

43
void PSGPUWrapper::PreBuildTask(std::shared_ptr<HeterContext> gpu_task) {
Y
yaoxuefeng 已提交
44
  VLOG(3) << "PSGPUWrapper::BuildGPUPSTask begin";
T
Thunderbrook 已提交
45 46
  platform::Timer timeline;
  timeline.Start();
47
  int device_num = heter_devices_.size();
48 49 50 51 52
  if (!multi_mf_dim_) {
    gpu_task->init(thread_keys_shard_num_, device_num);
  } else {
    gpu_task->init(thread_keys_shard_num_, device_num, multi_mf_dim_);
  }
Y
yaoxuefeng 已提交
53 54
  auto& local_keys = gpu_task->feature_keys_;
  auto& local_ptr = gpu_task->value_ptr_;
55

Y
yaoxuefeng 已提交
56 57 58
  std::vector<std::thread> threads;

  // data should be in input channel
59 60 61 62 63 64 65 66 67 68 69 70 71
  if (!multi_mf_dim_) {
    thread_keys_.resize(thread_keys_thread_num_);
    for (int i = 0; i < thread_keys_thread_num_; i++) {
      thread_keys_[i].resize(thread_keys_shard_num_);
    }
  } else {
    thread_dim_keys_.resize(thread_keys_thread_num_);
    for (int i = 0; i < thread_keys_thread_num_; i++) {
      thread_dim_keys_[i].resize(thread_keys_shard_num_);
      for (int j = 0; j < thread_keys_shard_num_; j++) {
        thread_dim_keys_[i][j].resize(multi_mf_dim_);
      }
    }
Y
yaoxuefeng 已提交
72
  }
Y
yaoxuefeng 已提交
73 74 75 76

  size_t total_len = 0;
  size_t len_per_thread = 0;
  int remain = 0;
Y
yaoxuefeng 已提交
77
  size_t begin = 0;
Y
yaoxuefeng 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101

  std::string data_set_name = std::string(typeid(*dataset_).name());

  if (data_set_name.find("SlotRecordDataset") != std::string::npos) {
    VLOG(0) << "ps_gpu_wrapper use SlotRecordDataset";
    SlotRecordDataset* dataset = dynamic_cast<SlotRecordDataset*>(dataset_);
    auto input_channel = dataset->GetInputChannel();
    VLOG(0) << "yxf::buildtask::inputslotchannle size: "
            << input_channel->Size();
    const std::deque<SlotRecord>& vec_data = input_channel->GetData();
    total_len = vec_data.size();
    len_per_thread = total_len / thread_keys_thread_num_;
    remain = total_len % thread_keys_thread_num_;
    VLOG(0) << "total len: " << total_len;
    auto gen_func = [this](const std::deque<SlotRecord>& total_data,
                           int begin_index, int end_index, int i) {
      for (auto iter = total_data.begin() + begin_index;
           iter != total_data.begin() + end_index; iter++) {
        const auto& ins = *iter;
        const auto& feasign_v = ins->slot_uint64_feasigns_.slot_values;
        for (const auto feasign : feasign_v) {
          int shard_id = feasign % thread_keys_shard_num_;
          this->thread_keys_[i][shard_id].insert(feasign);
        }
Y
yaoxuefeng 已提交
102
      }
Y
yaoxuefeng 已提交
103
    };
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
    auto gen_dynamic_mf_func = [this](const std::deque<SlotRecord>& total_data,
                                      int begin_index, int end_index, int i) {
      for (auto iter = total_data.begin() + begin_index;
           iter != total_data.begin() + end_index; iter++) {
        const auto& ins = *iter;
        const auto& feasign_v = ins->slot_uint64_feasigns_.slot_values;
        const auto& slot_offset = ins->slot_uint64_feasigns_.slot_offsets;
        for (size_t slot_idx = 0; slot_idx < slot_offset_vector_.size();
             slot_idx++) {
          for (size_t j = slot_offset[slot_offset_vector_[slot_idx]];
               j < slot_offset[slot_offset_vector_[slot_idx] + 1]; j++) {
            int shard_id = feasign_v[j] % thread_keys_shard_num_;
            int dim_id = slot_index_vec_[slot_idx];
            this->thread_dim_keys_[i][shard_id][dim_id].insert(feasign_v[j]);
          }
        }
      }
      /*
      for (auto iter = total_data.begin() + begin_index;
           iter != total_data.begin() + end_index; iter++) {
        const auto& ins = *iter;
        const auto& feasign_v = ins->slot_uint64_feasigns_.slot_values;
        for (const auto feasign : feasign_v) {
          int shard_id = feasign % thread_keys_shard_num_;
          this->thread_dim_keys_[i][shard_id][0].insert(feasign);
        }
      }
      */
    };
Y
yaoxuefeng 已提交
133
    for (int i = 0; i < thread_keys_thread_num_; i++) {
134 135 136 137 138 139 140 141 142 143 144
      if (!multi_mf_dim_) {
        VLOG(0) << "yxf::psgpu wrapper genfunc";
        threads.push_back(
            std::thread(gen_func, std::ref(vec_data), begin,
                        begin + len_per_thread + (i < remain ? 1 : 0), i));
      } else {
        VLOG(0) << "yxf::psgpu wrapper genfunc with dynamic mf";
        threads.push_back(
            std::thread(gen_dynamic_mf_func, std::ref(vec_data), begin,
                        begin + len_per_thread + (i < remain ? 1 : 0), i));
      }
Y
yaoxuefeng 已提交
145
      begin += len_per_thread + (i < remain ? 1 : 0);
Y
yaoxuefeng 已提交
146
    }
Y
yaoxuefeng 已提交
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
    for (std::thread& t : threads) {
      t.join();
    }
    timeline.Pause();
    VLOG(1) << "GpuPs build task cost " << timeline.ElapsedSec() << " seconds.";
  } else {
    CHECK(data_set_name.find("MultiSlotDataset") != std::string::npos);
    VLOG(0) << "ps_gpu_wrapper use MultiSlotDataset";
    MultiSlotDataset* dataset = dynamic_cast<MultiSlotDataset*>(dataset_);
    auto input_channel = dataset->GetInputChannel();

    const std::deque<Record>& vec_data = input_channel->GetData();
    total_len = vec_data.size();
    len_per_thread = total_len / thread_keys_thread_num_;
    remain = total_len % thread_keys_thread_num_;
    auto gen_func = [this](const std::deque<Record>& total_data,
                           int begin_index, int end_index, int i) {
      for (auto iter = total_data.begin() + begin_index;
           iter != total_data.begin() + end_index; iter++) {
        const auto& ins = *iter;
        const auto& feasign_v = ins.uint64_feasigns_;
        for (const auto feasign : feasign_v) {
          uint64_t cur_key = feasign.sign().uint64_feasign_;
          int shard_id = cur_key % thread_keys_shard_num_;
          this->thread_keys_[i][shard_id].insert(cur_key);
        }
      }
    };
    for (int i = 0; i < thread_keys_thread_num_; i++) {
      threads.push_back(
          std::thread(gen_func, std::ref(vec_data), begin,
                      begin + len_per_thread + (i < remain ? 1 : 0), i));
      begin += len_per_thread + (i < remain ? 1 : 0);
    }
    for (std::thread& t : threads) {
      t.join();
    }
    timeline.Pause();
    VLOG(1) << "GpuPs build task cost " << timeline.ElapsedSec() << " seconds.";
Y
yaoxuefeng 已提交
186 187 188 189
  }

  timeline.Start();

190
  threads.clear();
Y
yaoxuefeng 已提交
191
  // merge thread_keys to shard_keys
192 193 194 195
  auto merge_ins_func = [this, gpu_task](int shard_num) {
    for (int i = 0; i < thread_keys_thread_num_; ++i) {
      gpu_task->batch_add_keys(shard_num, thread_keys_[i][shard_num]);
      thread_keys_[i][shard_num].clear();
Y
yaoxuefeng 已提交
196
    }
197
  };
198 199 200 201 202 203 204
  auto merge_ins_dynamic_mf_func = [this, gpu_task](int shard_num, int dim_id) {
    for (int i = 0; i < thread_keys_thread_num_; ++i) {
      gpu_task->batch_add_keys(shard_num, dim_id,
                               thread_dim_keys_[i][shard_num][dim_id]);
      thread_dim_keys_[i][shard_num][dim_id].clear();
    }
  };
205 206 207 208 209 210 211
  // for (size_t i = 0; i < thread_keys_.size(); i++) {
  //  gpu_task->batch_add_keys(thread_keys_[i]);
  //  for (int j = 0; j < thread_keys_thread_num_; j++) {
  //    thread_keys_[i][j].clear();
  //  }
  //}
  for (int i = 0; i < thread_keys_shard_num_; ++i) {
212 213 214 215 216 217 218
    if (!multi_mf_dim_) {
      threads.push_back(std::thread(merge_ins_func, i));
    } else {
      for (int j = 0; j < multi_mf_dim_; j++) {
        threads.push_back(std::thread(merge_ins_dynamic_mf_func, i, j));
      }
    }
219 220 221
  }
  for (auto& t : threads) {
    t.join();
Y
yaoxuefeng 已提交
222 223 224
  }
  timeline.Pause();

Y
yaoxuefeng 已提交
225
  VLOG(1) << "GpuPs task add keys cost " << timeline.ElapsedSec()
Y
yaoxuefeng 已提交
226 227 228 229 230
          << " seconds.";
  timeline.Start();
  gpu_task->UniqueKeys();
  timeline.Pause();

231
  VLOG(1) << "GpuPs task unique cost " << timeline.ElapsedSec() << " seconds.";
Y
yaoxuefeng 已提交
232

233 234 235 236 237 238 239 240 241 242 243 244 245 246
  if (!multi_mf_dim_) {
    for (int i = 0; i < thread_keys_shard_num_; i++) {
      VLOG(0) << "GpuPs shard: " << i << " key len: " << local_keys[i].size();
      local_ptr[i].resize(local_keys[i].size());
    }
  } else {
    for (int i = 0; i < thread_keys_shard_num_; i++) {
      for (int j = 0; j < multi_mf_dim_; j++) {
        VLOG(0) << "GpuPs shard: " << i << "mf dim: " << index_dim_vec_[j]
                << " key len: " << gpu_task->feature_dim_keys_[i][j].size();
        gpu_task->value_dim_ptr_[i][j].resize(
            gpu_task->feature_dim_keys_[i][j].size());
      }
    }
Y
yaoxuefeng 已提交
247
  }
248 249 250 251 252 253 254 255
}

void PSGPUWrapper::BuildPull(std::shared_ptr<HeterContext> gpu_task) {
  platform::Timer timeline;
  int device_num = heter_devices_.size();
  auto& local_keys = gpu_task->feature_keys_;
  auto& local_ptr = gpu_task->value_ptr_;

256 257 258
  auto& local_dim_keys = gpu_task->feature_dim_keys_;
  auto& local_dim_ptr = gpu_task->value_dim_ptr_;

259 260
  auto& device_keys = gpu_task->device_keys_;
  auto& device_vals = gpu_task->device_values_;
261 262 263 264 265 266 267 268 269
  auto& device_dim_keys = gpu_task->device_dim_keys_;
  auto& device_dim_ptr = gpu_task->device_dim_ptr_;
  auto& device_dim_mutex = gpu_task->dim_mutex_;
  if (multi_mf_dim_) {
    for (size_t dev = 0; dev < device_dim_keys.size(); dev++) {
      device_dim_keys[dev].resize(multi_mf_dim_);
      device_dim_ptr[dev].resize(multi_mf_dim_);
    }
  }
270 271 272 273 274 275 276 277 278
  auto& device_mutex = gpu_task->mutex_;

  std::vector<std::thread> threads(thread_keys_shard_num_);
#ifdef PADDLE_WITH_PSLIB
  auto fleet_ptr = FleetWrapper::GetInstance();
#endif
#ifdef PADDLE_WITH_PSCORE
  auto fleet_ptr = paddle::distributed::Communicator::GetInstance();
#endif
279

280
#if (defined PADDLE_WITH_PSLIB) && (defined PADDLE_WITH_HETERPS)
281 282 283 284 285 286 287 288 289 290 291
  // get day_id: day nums from 1970
  struct std::tm b;
  b.tm_year = year_ - 1900;
  b.tm_mon = month_ - 1;
  b.tm_mday = day_;
  b.tm_min = b.tm_hour = b.tm_sec = 0;
  std::time_t seconds_from_1970 = std::mktime(&b);
  int day_id = seconds_from_1970 / 86400;
  fleet_ptr->pslib_ptr_->_worker_ptr->set_day_id(table_id_, day_id);
#endif

292
  timeline.Start();
293
  auto ptl_func = [this, &local_keys, &local_ptr, &fleet_ptr](int i) {
Y
yaoxuefeng 已提交
294
    size_t key_size = local_keys[i].size();
Y
yaoxuefeng 已提交
295
    int32_t status = -1;
T
Thunderbrook 已提交
296
#ifdef PADDLE_WITH_PSLIB
Y
yaoxuefeng 已提交
297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
    // auto tt = fleet_ptr->pslib_ptr_->_worker_ptr->pull_sparse_ptr(
    //    reinterpret_cast<char**>(local_ptr[i].data()), this->table_id_,
    //    local_keys[i].data(), key_size);
    int32_t cnt = 0;
    while (true) {
      auto tt = fleet_ptr->pslib_ptr_->_worker_ptr->pull_sparse_ptr(
          reinterpret_cast<char**>(local_ptr[i].data()), this->table_id_,
          local_keys[i].data(), key_size);
      bool flag = true;

      tt.wait();

      try {
        status = tt.get();
      } catch (const std::future_error& e) {
        VLOG(0) << "Caught a future_error with code" << e.code()
                << ", Message:" << e.what();
      }
      if (status != 0) {
        VLOG(0) << "fleet pull sparse failed, status[" << status << "]";
        sleep(sleep_seconds_before_fail_exit_);
        flag = false;
        cnt++;
      }
      if (cnt > 3) {
        VLOG(0) << "fleet pull sparse failed, retry 3 times";
        exit(-1);
      }

      if (flag) {
        break;
      }
    }
T
Thunderbrook 已提交
330 331
#endif
#ifdef PADDLE_WITH_PSCORE
Y
yaoxuefeng 已提交
332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
    int32_t cnt = 0;
    while (true) {
      auto tt = fleet_ptr->_worker_ptr->pull_sparse_ptr(
          reinterpret_cast<char**>(local_ptr[i].data()), this->table_id_,
          local_keys[i].data(), key_size);
      bool flag = true;

      tt.wait();

      try {
        status = tt.get();
      } catch (const std::future_error& e) {
        VLOG(0) << "Caught a future_error with code" << e.code()
                << ", Message:" << e.what();
      }
      if (status != 0) {
        VLOG(0) << "fleet pull sparse failed, status[" << status << "]";
        sleep(sleep_seconds_before_fail_exit_);
        flag = false;
        cnt++;
      }
      if (cnt > 3) {
        VLOG(0) << "fleet pull sparse failed, retry 3 times";
        exit(-1);
      }

      if (flag) {
        break;
      }
    }
T
Thunderbrook 已提交
362
#endif
Y
yaoxuefeng 已提交
363 364 365 366 367 368 369 370
    if (status != 0) {
      LOG(ERROR) << "fleet pull sparse failed, status[" << status << "]";
      sleep(300);
      exit(-1);
    } else {
      VLOG(3) << "FleetWrapper Pull sparse to local done with table size: "
              << local_keys[i].size();
    }
371
  };
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428

  auto ptl_dynamic_mf_func = [this, &local_dim_keys, &local_dim_ptr,
                              &fleet_ptr](int i, int j) {
#ifdef PADDLE_WITH_PSLIB
    size_t key_size = local_dim_keys[i][j].size();
    int32_t status = -1;
    int32_t cnt = 0;
    while (true) {
      auto tt = fleet_ptr->pslib_ptr_->_worker_ptr->pull_sparse_ptr(
          reinterpret_cast<char**>(local_dim_ptr[i][j].data()), this->table_id_,
          local_dim_keys[i][j].data(), key_size);
      bool flag = true;

      tt.wait();

      try {
        status = tt.get();
      } catch (const std::future_error& e) {
        VLOG(0) << "Caught a future_error with code" << e.code()
                << ", Message:" << e.what();
      }
      if (status != 0) {
        VLOG(0) << "fleet pull sparse failed, status[" << status << "]";
        sleep(sleep_seconds_before_fail_exit_);
        flag = false;
        cnt++;
      }
      if (cnt > 3) {
        VLOG(0) << "fleet pull sparse failed, retry 3 times";
        exit(-1);
      }

      if (flag) {
        break;
      }
    }
    if (status != 0) {
      LOG(ERROR) << "fleet pull sparse failed, status[" << status << "]";
      sleep(300);
      exit(-1);
    } else {
      VLOG(0) << "FleetWrapper Pull sparse to local done with table size: "
              << local_dim_keys[i][j].size();
    }
#endif
  };
  if (!multi_mf_dim_) {
    for (size_t i = 0; i < threads.size(); i++) {
      threads[i] = std::thread(ptl_func, i);
    }
  } else {
    threads.resize(thread_keys_shard_num_ * multi_mf_dim_);
    for (int i = 0; i < thread_keys_shard_num_; i++) {
      for (int j = 0; j < multi_mf_dim_; j++) {
        threads[i * multi_mf_dim_ + j] = std::thread(ptl_dynamic_mf_func, i, j);
      }
    }
429 430 431 432 433
  }
  for (std::thread& t : threads) {
    t.join();
  }
  timeline.Pause();
434 435
  VLOG(1) << "pull sparse from CpuPS into GpuPS cost " << timeline.ElapsedSec()
          << " seconds.";
Y
yaoxuefeng 已提交
436 437 438 439 440 441 442 443
  if (multi_node_) {
    auto gloo_wrapper = paddle::framework::GlooWrapper::GetInstance();
    if (!gloo_wrapper->IsInitialized()) {
      VLOG(0) << "GLOO is not inited";
      gloo_wrapper->Init();
    }
    gloo_wrapper->Barrier();
  }
444 445

  timeline.Start();
Y
yaoxuefeng 已提交
446 447 448
  std::vector<std::vector<std::pair<uint64_t, char*>>> pass_values;

  bool record_status = false;
449 450
#ifdef PADDLE_WITH_PSLIB
  uint16_t pass_id = 0;
Y
yaoxuefeng 已提交
451 452 453 454
  if (multi_node_) {
    record_status = fleet_ptr->pslib_ptr_->_worker_ptr->take_sparse_record(
        table_id_, pass_id, pass_values);
  }
455
#endif
456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
  auto build_dynamic_mf_func = [this, device_num, &local_dim_keys,
                                &local_dim_ptr, &device_dim_keys,
                                &device_dim_ptr,
                                &device_dim_mutex](int i, int j) {
#ifdef PADDLE_WITH_PSLIB
    std::vector<std::vector<FeatureKey>> task_keys(device_num);
    std::vector<std::vector<paddle::ps::DownpourFixedFeatureValue*>> task_ptrs(
        device_num);
    for (size_t k = 0; k < local_dim_keys[i][j].size(); k++) {
      int shard = local_dim_keys[i][j][k] % device_num;
      task_keys[shard].push_back(local_dim_keys[i][j][k]);
      task_ptrs[shard].push_back(local_dim_ptr[i][j][k]);
    }
    for (int dev = 0; dev < device_num; dev++) {
      for (int dim = 0; dim < multi_mf_dim_; dim++) {
        device_dim_mutex[dev][dim]->lock();

        int len = task_keys[dev].size();
        int cur = device_dim_keys[dev][dim].size();
        device_dim_keys[dev][dim].resize(device_dim_keys[dev][dim].size() +
                                         len);
        device_dim_ptr[dev][dim].resize(device_dim_ptr[dev][dim].size() + len);
        for (int k = 0; k < len; ++k) {
          device_dim_keys[dev][dim][cur + k] = task_keys[dev][k];
          device_dim_ptr[dev][dim][cur + k] = task_ptrs[dev][k];
        }
        device_dim_mutex[dev][dim]->unlock();
      }
    }
#endif
  };
Y
yaoxuefeng 已提交
487 488 489
  auto build_func = [device_num, record_status, &pass_values, &local_keys,
                     &local_ptr, &device_keys, &device_vals,
                     &device_mutex](int i) {
490
    std::vector<std::vector<FeatureKey>> task_keys(device_num);
T
Thunderbrook 已提交
491
#ifdef PADDLE_WITH_PSLIB
492 493
    std::vector<std::vector<paddle::ps::DownpourFixedFeatureValue*>> task_ptrs(
        device_num);
T
Thunderbrook 已提交
494 495 496 497 498
#endif

#ifdef PADDLE_WITH_PSCORE
    std::vector<std::vector<paddle::distributed::VALUE*>> task_ptrs(device_num);
#endif
499 500 501 502 503 504

    for (size_t j = 0; j < local_keys[i].size(); j++) {
      int shard = local_keys[i][j] % device_num;
      task_keys[shard].push_back(local_keys[i][j]);
      task_ptrs[shard].push_back(local_ptr[i][j]);
    }
505
#ifdef PADDLE_WITH_PSLIB
Y
yaoxuefeng 已提交
506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
    if (record_status) {
      size_t local_keys_size = local_keys.size();
      size_t pass_values_size = pass_values.size();
      for (size_t j = 0; j < pass_values_size; j += local_keys_size) {
        auto& shard_values = pass_values[j];
        for (size_t pair_idx = 0; pair_idx < pass_values[j].size();
             pair_idx++) {
          auto& cur_pair = shard_values[pair_idx];
          int shard = cur_pair.first % device_num;
          task_keys[shard].push_back(cur_pair.first);
          task_ptrs[shard].push_back(
              (paddle::ps::DownpourFixedFeatureValue*)cur_pair.second);
        }
      }
    }
521
#endif
522 523 524 525 526 527 528
    for (int dev = 0; dev < device_num; dev++) {
      device_mutex[dev]->lock();

      int len = task_keys[dev].size();
      int cur = device_keys[dev].size();
      device_keys[dev].resize(device_keys[dev].size() + len);
      device_vals[dev].resize(device_vals[dev].size() + len);
T
Thunderbrook 已提交
529
#ifdef PADDLE_WITH_PSLIB
530 531 532 533 534 535 536 537 538 539 540 541
      for (int j = 0; j < len; ++j) {
        device_keys[dev][cur + j] = task_keys[dev][j];
        float* ptr_val = task_ptrs[dev][j]->data();
        FeatureValue& val = device_vals[dev][cur + j];
        size_t dim = task_ptrs[dev][j]->size();

        val.delta_score = ptr_val[1];
        val.show = ptr_val[2];
        val.clk = ptr_val[3];
        val.slot = ptr_val[6];
        val.lr = ptr_val[4];
        val.lr_g2sum = ptr_val[5];
T
Thunderbrook 已提交
542
        val.cpu_ptr = (uint64_t)(task_ptrs[dev][j]);
543 544 545 546 547 548 549 550 551 552 553

        if (dim > 7) {
          val.mf_size = MF_DIM + 1;
          for (int x = 0; x < val.mf_size; x++) {
            val.mf[x] = ptr_val[x + 7];
          }
        } else {
          val.mf_size = 0;
          for (int x = 0; x < MF_DIM + 1; x++) {
            val.mf[x] = 0;
          }
Y
yaoxuefeng 已提交
554 555
        }
      }
T
Thunderbrook 已提交
556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583
#endif
#ifdef PADDLE_WITH_PSCORE
      for (int j = 0; j < len; ++j) {
        device_keys[dev][cur + j] = task_keys[dev][j];
        distributed::VALUE* ptr_val = task_ptrs[dev][j];
        FeatureValue& val = device_vals[dev][cur + j];
        bool has_mf = 1;
        val.delta_score = 0;
        val.show = ptr_val->count_;
        val.clk = 0;
        val.slot = 0;
        val.lr = 0;
        val.lr_g2sum = 0;
        val.cpu_ptr = (uint64_t)(task_ptrs[dev][j]);

        if (has_mf) {
          val.mf_size = MF_DIM + 1;
          for (int x = 0; x < val.mf_size; x++) {
            val.mf[x] = ptr_val->data_[x];
          }
        } else {
          val.mf_size = 0;
          for (int x = 0; x < MF_DIM + 1; x++) {
            val.mf[x] = 0;
          }
        }
      }
#endif
584
      VLOG(3) << "GpuPs build hbmps done";
585 586

      device_mutex[dev]->unlock();
Y
yaoxuefeng 已提交
587 588
    }
  };
589

590 591 592 593 594 595 596 597 598 599 600
  if (!multi_mf_dim_) {
    for (size_t i = 0; i < threads.size(); i++) {
      threads[i] = std::thread(build_func, i);
    }
  } else {
    for (int i = 0; i < thread_keys_shard_num_; i++) {
      for (int j = 0; j < multi_mf_dim_; j++) {
        threads[i * multi_mf_dim_ + j] =
            std::thread(build_dynamic_mf_func, i, j);
      }
    }
Y
yaoxuefeng 已提交
601 602 603 604 605
  }
  for (std::thread& t : threads) {
    t.join();
  }
  timeline.Pause();
606 607
  VLOG(1) << "GpuPs prepare for build hbm cost " << timeline.ElapsedSec()
          << " seconds.";
Y
yaoxuefeng 已提交
608 609
}

610
void PSGPUWrapper::BuildGPUTask(std::shared_ptr<HeterContext> gpu_task) {
611
  int device_num = heter_devices_.size();
Y
yaoxuefeng 已提交
612 613
  platform::Timer timeline;
  timeline.Start();
T
Thunderbrook 已提交
614

615
  std::vector<size_t> feature_keys_count(device_num);
T
Thunderbrook 已提交
616
  size_t size_max = 0;
617 618 619 620 621 622 623 624 625 626 627 628 629 630 631
  if (!multi_mf_dim_) {
    for (int i = 0; i < device_num; i++) {
      feature_keys_count[i] = gpu_task->device_keys_[i].size();
      VLOG(1) << i << " card contains feasign nums: " << feature_keys_count[i];
      size_max = std::max(size_max, feature_keys_count[i]);
    }
  } else {
    for (int i = 0; i < device_num; i++) {
      for (int j = 0; j < multi_mf_dim_; j++) {
        feature_keys_count[i] += gpu_task->device_dim_ptr_[i][j].size();
      }
      VLOG(1) << i << " card with dynamic mf contains feasign nums: "
              << feature_keys_count[i];
      size_max = std::max(size_max, feature_keys_count[i]);
    }
T
Thunderbrook 已提交
632 633
  }
  if (HeterPs_) {
634 635
    delete HeterPs_;
    HeterPs_ = nullptr;
T
Thunderbrook 已提交
636
  }
637 638 639 640
  if (size_max <= 0) {
    VLOG(1) << "Skip build gpu ps cause feasign nums = " << size_max;
    return;
  }
641
  std::vector<std::thread> threads(device_num);
T
Thunderbrook 已提交
642
  HeterPs_ = HeterPsBase::get_instance(size_max, resource_);
643
  HeterPs_->set_nccl_comm_and_size(inner_comms_, inter_comms_, node_size_);
Y
yaoxuefeng 已提交
644
  auto build_func = [this, &gpu_task, &feature_keys_count](int i) {
645
    VLOG(3) << "building table: " << i;
646 647 648
    this->HeterPs_->build_ps(i, gpu_task->device_keys_[i].data(),
                             gpu_task->device_values_[i].data(),
                             feature_keys_count[i], 500000, 2);
649 650 651
    // if (feature_keys_count[i] > 0) {
    //   HeterPs_->show_one_table(i);
    // }
Y
yaoxuefeng 已提交
652 653 654 655 656 657
  };
  for (size_t i = 0; i < threads.size(); i++) {
    threads[i] = std::thread(build_func, i);
  }
  for (std::thread& t : threads) {
    t.join();
T
Thunderbrook 已提交
658 659
  }
  timeline.Pause();
660
  VLOG(1) << "GpuPs build table total costs: " << timeline.ElapsedSec()
T
Thunderbrook 已提交
661
          << " s.";
662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684
}

void PSGPUWrapper::LoadIntoMemory(bool is_shuffle) {
  platform::Timer timer;
  VLOG(3) << "Begin LoadIntoMemory(), dataset[" << dataset_ << "]";
  timer.Start();
  dataset_->LoadIntoMemory();
  timer.Pause();
  VLOG(0) << "LoadIntoMemory cost: " << timer.ElapsedSec() << "s";

  // local shuffle
  if (is_shuffle) {
    dataset_->LocalShuffle();
  }

  std::shared_ptr<HeterContext> gpu_task = gpu_task_pool_.Get();
  gpu_task->Reset();
  data_ready_channel_->Put(gpu_task);
  VLOG(3) << "End LoadIntoMemory(), dataset[" << dataset_ << "]";
}

void PSGPUWrapper::start_build_thread() {
  running_ = true;
685
  VLOG(3) << "start build CPU ps thread.";
686
  pre_build_threads_ = std::thread([this] { pre_build_thread(); });
687 688
}

689 690
void PSGPUWrapper::pre_build_thread() {
  // prebuild: process load_data
691 692 693 694 695
  while (running_) {
    std::shared_ptr<HeterContext> gpu_task = nullptr;
    if (!data_ready_channel_->Get(gpu_task)) {
      continue;
    }
696
    VLOG(3) << "thread PreBuildTask start.";
697 698 699
    platform::Timer timer;
    timer.Start();
    // build cpu ps data process
700
    PreBuildTask(gpu_task);
701
    timer.Pause();
702 703
    VLOG(1) << "thread PreBuildTask end, cost time: " << timer.ElapsedSec()
            << "s";
704 705 706 707 708
    buildcpu_ready_channel_->Put(gpu_task);
  }
  VLOG(3) << "build cpu thread end";
}

709 710 711 712 713 714 715 716 717 718
void PSGPUWrapper::build_task() {
  // build_task: build_pull + build_gputask
  std::shared_ptr<HeterContext> gpu_task = nullptr;
  // train end, gpu free
  if (!gpu_free_channel_->Get(gpu_task)) {
    return;
  }
  // ins and pre_build end
  if (!buildcpu_ready_channel_->Get(gpu_task)) {
    return;
719
  }
720 721 722 723 724 725 726 727 728 729 730

  VLOG(1) << "BuildPull start.";
  platform::Timer timer;
  timer.Start();
  BuildPull(gpu_task);
  BuildGPUTask(gpu_task);
  timer.Pause();
  VLOG(1) << "BuildPull + BuildGPUTask end, cost time: " << timer.ElapsedSec()
          << "s";

  current_task_ = gpu_task;
731 732 733 734 735 736 737 738 739
}

void PSGPUWrapper::BeginPass() {
  platform::Timer timer;
  timer.Start();
  if (current_task_) {
    PADDLE_THROW(
        platform::errors::Fatal("[BeginPass] current task is not ended."));
  }
740 741

  build_task();
742
  timer.Pause();
743 744 745 746 747 748

  if (current_task_ == nullptr) {
    PADDLE_THROW(platform::errors::Fatal(
        "[BeginPass] after build_task, current task is not null."));
  }

749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766
  VLOG(1) << "BeginPass end, cost time: " << timer.ElapsedSec() << "s";
}

void PSGPUWrapper::EndPass() {
  if (!current_task_) {
    PADDLE_THROW(
        platform::errors::Fatal("[EndPass] current task has been ended."));
  }
  platform::Timer timer;
  timer.Start();
  size_t keysize_max = 0;
  // in case of feasign_num = 0, skip dump_to_cpu
  for (size_t i = 0; i < heter_devices_.size(); i++) {
    keysize_max = std::max(keysize_max, current_task_->device_keys_[i].size());
  }
  if (keysize_max != 0) {
    HeterPs_->end_pass();
  }
767 768

  gpu_task_pool_.Push(current_task_);
769 770 771 772
  current_task_ = nullptr;
  gpu_free_channel_->Put(current_task_);
  timer.Pause();
  VLOG(1) << "EndPass end, cost time: " << timer.ElapsedSec() << "s";
T
Thunderbrook 已提交
773 774 775 776 777 778 779 780 781 782 783 784 785 786
}

void PSGPUWrapper::PullSparse(const paddle::platform::Place& place,
                              const int table_id,
                              const std::vector<const uint64_t*>& keys,
                              const std::vector<float*>& values,
                              const std::vector<int64_t>& slot_lengths,
                              const int hidden_size) {
  VLOG(3) << "Begine Gpu Ps PullSparse";
  platform::Timer all_timer;
  platform::Timer pull_gpups_timer;
  all_timer.Start();
  int64_t total_length =
      std::accumulate(slot_lengths.begin(), slot_lengths.end(), 0UL);
787
  auto buf = memory::Alloc(place, total_length * sizeof(FeatureValue));
T
Thunderbrook 已提交
788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804
  FeatureValue* total_values_gpu = reinterpret_cast<FeatureValue*>(buf->ptr());
  if (platform::is_cpu_place(place)) {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Warning:: CPUPlace is not supported in GpuPs now."));
  } else if (platform::is_gpu_place(place)) {
    VLOG(3) << "Begin copy keys, key_num[" << total_length << "]";
    int device_id = BOOST_GET_CONST(platform::CUDAPlace, place).GetDeviceId();
    int devid_2_index = HeterPs_->get_index_by_devid(device_id);
    LoDTensor& total_keys_tensor = keys_tensor[devid_2_index];
    uint64_t* total_keys = reinterpret_cast<uint64_t*>(
        total_keys_tensor.mutable_data<int64_t>({total_length, 1}, place));

    // construct slot_level lod info
    auto slot_lengths_lod = slot_lengths;
    for (size_t i = 1; i < slot_lengths_lod.size(); i++) {
      slot_lengths_lod[i] += slot_lengths_lod[i - 1];
    }
805
    auto buf_key = memory::Alloc(place, keys.size() * sizeof(uint64_t*));
T
Thunderbrook 已提交
806
    auto buf_length =
807
        memory::Alloc(place, slot_lengths.size() * sizeof(int64_t));
T
Thunderbrook 已提交
808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836
    uint64_t** gpu_keys = reinterpret_cast<uint64_t**>(buf_key->ptr());
    int64_t* gpu_len = reinterpret_cast<int64_t*>(buf_length->ptr());
    cudaMemcpy(gpu_keys, keys.data(), keys.size() * sizeof(uint64_t*),
               cudaMemcpyHostToDevice);
    cudaMemcpy(gpu_len, slot_lengths_lod.data(),
               slot_lengths.size() * sizeof(int64_t), cudaMemcpyHostToDevice);

    this->CopyKeys(place, gpu_keys, total_keys, gpu_len,
                   static_cast<int>(slot_lengths.size()),
                   static_cast<int>(total_length));
    VLOG(3) << "Begin call PullSparseGPU in GPUPS, dev: " << devid_2_index
            << " len: " << total_length;
    pull_gpups_timer.Start();
    HeterPs_->pull_sparse(devid_2_index, total_keys, total_values_gpu,
                          static_cast<int>(total_length));
    // PADDLE_ENFORCE_EQ(ret, 0, platform::errors::PreconditionNotMet(
    //                              "PullSparseGPU failed in GPUPS."));
    pull_gpups_timer.Pause();

    VLOG(3) << "Begin Copy result to tensor, total_length[" << total_length
            << "]";
    this->CopyForPull(place, gpu_keys, values, total_values_gpu, gpu_len,
                      static_cast<int>(slot_lengths.size()), hidden_size,
                      total_length);
  } else {
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "GpuPs: PullSparse Only Support CUDAPlace Now."));
  }
  all_timer.Pause();
837
  VLOG(3) << "GpuPs PullSparse total costs: " << all_timer.ElapsedSec()
T
Thunderbrook 已提交
838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854
          << " s, of which GPUPS costs: " << pull_gpups_timer.ElapsedSec()
          << " s";
  VLOG(3) << "End PullSparse";
}

void PSGPUWrapper::PushSparseGrad(const paddle::platform::Place& place,
                                  const int table_id,
                                  const std::vector<const uint64_t*>& keys,
                                  const std::vector<const float*>& grad_values,
                                  const std::vector<int64_t>& slot_lengths,
                                  const int hidden_size, const int batch_size) {
  VLOG(3) << "Begin GPUPS PushSparseGrad";
  platform::Timer all_timer;
  platform::Timer push_gpups_timer;
  all_timer.Start();
  int64_t total_length =
      std::accumulate(slot_lengths.begin(), slot_lengths.end(), 0UL);
855
  auto buf = memory::Alloc(place, total_length * sizeof(FeaturePushValue));
T
Thunderbrook 已提交
856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881
  FeaturePushValue* total_grad_values_gpu =
      reinterpret_cast<FeaturePushValue*>(buf->ptr());
  if (platform::is_cpu_place(place)) {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Warning:: CPUPlace is not supported in GPUPS now."));
  } else if (platform::is_gpu_place(place)) {
    int device_id = BOOST_GET_CONST(platform::CUDAPlace, place).GetDeviceId();
    int devid_2_index = HeterPs_->get_index_by_devid(device_id);
    LoDTensor& cached_total_keys_tensor = keys_tensor[devid_2_index];
    uint64_t* total_keys =
        reinterpret_cast<uint64_t*>(cached_total_keys_tensor.data<int64_t>());
    VLOG(3) << "Begin copy grad tensor to gpups struct";
    this->CopyForPush(place, grad_values, total_grad_values_gpu, slot_lengths,
                      hidden_size, total_length, batch_size);

    VLOG(3) << "Begin call PushSparseGPU in GPUPS, dev: " << devid_2_index
            << " len: " << total_length;
    push_gpups_timer.Start();
    HeterPs_->push_sparse(devid_2_index, total_keys, total_grad_values_gpu,
                          static_cast<int>(total_length));
    push_gpups_timer.Pause();
  } else {
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "GPUPS: PushSparseGrad Only Support CUDAPlace Now."));
  }
  all_timer.Pause();
882
  VLOG(3) << "PushSparseGrad total cost: " << all_timer.ElapsedSec()
T
Thunderbrook 已提交
883 884 885 886 887 888 889 890
          << " s, of which GPUPS cost: " << push_gpups_timer.ElapsedSec()
          << " s";
  VLOG(3) << "End PushSparseGrad";
}

}  // end namespace framework
}  // end namespace paddle
#endif