dataloader_iter.py 32.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import six
import sys
import time
import signal
20
import numbers
21 22 23 24 25
import logging
import itertools
import threading
import numpy as np
import multiprocessing
26
from collections import namedtuple
27
from paddle.fluid.framework import _set_expected_place, _current_expected_place, set_flags
28 29

# NOTE: queue has a different name in python2 and python3
T
tianshuo78520a 已提交
30
import queue
31

32
import paddle
C
chenjian 已提交
33
import paddle.profiler as profiler
34
from paddle.profiler.utils import in_profiler_mode
35
from .. import core, layers
J
Jiabin Yang 已提交
36
from ..framework import _non_static_mode, in_dygraph_mode, _in_legacy_dygraph
37
from ..multiprocess_utils import _set_SIGCHLD_handler, MP_STATUS_CHECK_INTERVAL, CleanupFuncRegistrar
38
from .fetcher import _IterableDatasetFetcher, _MapDatasetFetcher
39
from .batch_sampler import _InfiniteIterableSampler
40 41
from .collate import default_collate_fn, default_convert_fn
from .worker import ParentWatchDog, get_worker_info, _worker_loop, \
K
Kaipeng Deng 已提交
42 43
        _DatasetKind, _IterableDatasetStopIteration, _WorkerException, \
        _ResumeIteration
44
from .flat import _flatten_batch, _restore_batch
Z
Zhang Ting 已提交
45
from paddle.profiler.timer import benchmark
46 47

__all__ = ['get_worker_info']
48

49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
# NOTE: fix `terminate called without an active exception`
# if for loop break and program exit immediately(with no model
# layers processing) after iterate **the first few data** in
# distributed lauch mode, distributed launch will call
# terminate() to kill main process on each devices, but thread
# is still iterating to fullfill blocking queue caches, which
# may cause thread error `terminate called without an active
# exception` for terminate is a strong singal and `__del__`
# of DataLoader may not be called, so we add a global link to
# the last DataLoader instance to call `__del__` to clean up
# resources
# NOTE: cannot simply as `__del__` to CleanupFuncRegistrar,
# for this will remain a link to each DataLoader instance in
# global, and will precludes GC to auto collect DataLoader
# instance and will cause memory leak
_loader = None


def _clear_loader():
    global _loader
    if _loader is not None:
        try:
            _loader.__del__()
            del _loader
        except:
            pass


CleanupFuncRegistrar.register(_clear_loader)

79

80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
class _DataLoaderIterBase(object):
    """
    Iterator implement of DataLoader, will load and feed mini-batch
    data by setting in given dataloader.

    Args:
        loader(instance of DataLoader): instance of `fluid.io.DataLoader`
    """

    def __init__(self, loader):
        self._dataset = loader.dataset
        self._feed_list = loader.feed_list or []
        self._places = loader.places
        self._return_list = loader.return_list
        self._batch_sampler = loader.batch_sampler
95
        self._drop_last = loader.drop_last
96
        self._auto_collate_batch = loader.auto_collate_batch
97 98 99
        self._num_workers = loader.num_workers
        self._use_buffer_reader = loader.use_buffer_reader
        self._use_shared_memory = loader.use_shared_memory
100
        self._timeout = loader.timeout if loader.timeout > 0 else MP_STATUS_CHECK_INTERVAL
101
        self._worker_init_fn = loader.worker_init_fn
102
        self._dataset_kind = loader.dataset_kind
103
        self._pin_memory = loader.pin_memory
104

K
Kaipeng Deng 已提交
105
        self._sampler_iter = iter(self._index_sampler)
106 107 108
        if self._auto_collate_batch:
            self._collate_fn = loader.collate_fn or default_collate_fn
        else:
109
            self._collate_fn = loader.collate_fn or default_convert_fn
110

111 112 113 114 115 116 117 118 119
        # LoDTensorBlockingQueue instance for create_py_reader and a thread
        # to put mini-batch data to self._blocking_queue, mini-batch data
        # will be get from:
        # 1. multi-process mode: get data from workers' result queue
        # 2. single-process mode: read mini-batch data in main process
        self._blocking_queue = None
        self._thread = None
        self._thread_done_event = threading.Event()

K
Kaipeng Deng 已提交
120 121 122 123 124 125 126 127 128 129
    @property
    def _index_sampler(self):
        if self._auto_collate_batch:
            return self._batch_sampler
        else:
            if self._dataset_kind == _DatasetKind.MAP:
                return list(range(len(self._dataset)))
            else:
                return _InfiniteIterableSampler(self._dataset, 1)

130 131 132 133 134 135
    def __iter__(self):
        return self

    def __len__(self):
        return len(self._batch_sampler)

136 137 138 139 140 141 142 143 144 145
    def _exit_thread_expectedly(self):
        self._thread_done_event.set()
        if self._blocking_queue:
            self._blocking_queue.close()

    def _exit_thread_unexpectedly(self):
        self._thread_done_event.set()
        if self._blocking_queue:
            self._blocking_queue.kill()

146 147 148 149 150 151 152 153 154 155

class _DataLoaderIterSingleProcess(_DataLoaderIterBase):
    """
    Single process implement of DataLoaderIter, loading data from
    loader.data in main process
    """

    def __init__(self, loader):
        super(_DataLoaderIterSingleProcess, self).__init__(loader)

156
        self._dataset_fetcher = _DatasetKind.create_fetcher(
157
            self._dataset_kind, self._dataset, self._auto_collate_batch,
158
            self._collate_fn, self._drop_last)
159

160 161 162 163 164 165 166 167
        # NOTE: _structrue_infos used to record the data structure of
        # batch to restore batch structure after reading Tensor
        # from blocking_queue in single-process mode. Note that
        # only single process is used in single-process mode, we
        # can record the data structure sequencely in a list without
        # recording the send and recv index
        self._structure_infos = []

168 169 170
        # NOTE: len(self._places) batch data compose as an output
        # iteration, set blocking_queue can cache 2 iteration datas
        # at most here
171
        self._blocking_queue_capacity = 1 * len(self._places)
172 173

        self._init_thread()
174 175 176 177
        self._shutdown = False

        global _loader
        _loader = self
178 179 180 181 182 183 184 185

    def _init_thread(self):
        self._var_names = [v.name for v in self._feed_list]
        self._shapes = [v.shape for v in self._feed_list]
        self._dtypes = [v.dtype for v in self._feed_list]
        self._need_check_feed = [
            v.desc.need_check_feed() for v in self._feed_list
        ]
186
        # if only 1 place, do not need to keep order
187
        self._blocking_queue = core.init_lod_tensor_blocking_queue(
188 189
            core.Variable(), self._blocking_queue_capacity,
            len(self._places) > 1)
190 191
        self._reader = core.create_py_reader(
            self._blocking_queue, self._var_names, self._shapes, self._dtypes,
192 193
            self._need_check_feed, self._places, self._use_buffer_reader, True,
            self._pin_memory)
194

195 196
        self._thread = threading.Thread(
            target=self._thread_loop, args=(_current_expected_place(), ))
197 198 199
        self._thread.daemon = True
        self._thread.start()

200
    def _thread_loop(self, legacy_expected_place):
201 202 203 204 205 206 207 208 209 210 211 212 213
        #NOTE(zhiqiu): Set the expected place for new thread as the same as father thread,
        # and it will call platform::SetDeviceId() in c++ internally.
        # If we do not set cudaDeviceId in new thread, the default cudaDeviceId will be 0,
        # Which may cost hundreds of MB of GPU memory on CUDAPlace(0) if calling some cuda 
        # APIs in this thread.
        _set_expected_place(legacy_expected_place)

        while not self._thread_done_event.is_set():
            try:
                indices = next(self._sampler_iter)

                # read data from dataset in mini-batch
                # with paddle.fluid.dygraph.guard(place=paddle.CPUPlace()):
214
                # read data from dataset in mini-batch
215 216 217 218 219 220 221 222 223 224 225
                batch = self._dataset_fetcher.fetch(indices,
                                                    self._thread_done_event)
            except StopIteration:
                self._exit_thread_expectedly()
                return

            if batch is None or self._thread_done_event.is_set(): break

            # flat batch and record structure infos
            batch, structure = _flatten_batch(batch)
            self._structure_infos.append(structure)
226

227
            if self._thread_done_event.is_set(): break
228

229
            try:
230 231 232
                # pack as LoDTensorArray
                array = core.LoDTensorArray()
                for slot in batch:
W
wanghuancoder 已提交
233
                    if isinstance(slot, (paddle.Tensor, core.eager.Tensor)):
K
Kaipeng Deng 已提交
234 235
                        slot = slot.value().get_tensor()
                    elif not isinstance(slot, core.LoDTensor):
236 237 238 239 240 241
                        tmp = core.LoDTensor()
                        tmp.set(slot, core.CPUPlace())
                        slot = tmp

                    array.append(slot)

242
                if self._thread_done_event.is_set(): break
243

244 245 246 247
                try:
                    self._blocking_queue.push(array)
                except:
                    self._exit_thread_expectedly()
248

249 250 251 252 253
            except:
                self._exit_thread_unexpectedly()
                six.reraise(*sys.exc_info())

        self._exit_thread_expectedly()
254 255

    def __next__(self):
256 257 258 259 260
        if in_profiler_mode():
            trace_event = profiler.RecordEvent(
                name="_DataLoaderIterSingleProcess",
                event_type=profiler.TracerEventType.Dataloader)
            trace_event.begin()
261
        try:
Z
Zhang Ting 已提交
262 263
            benchmark().check_if_need_record(self)
            benchmark().before_reader()
264
            if in_dygraph_mode():
J
Jiabin Yang 已提交
265 266
                data = core.eager.read_next_tensor_list(
                    self._reader.read_next_list()[0])
267
                data = _restore_batch(data, self._structure_infos.pop(0))
268
            else:
J
Jiabin Yang 已提交
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
                if _in_legacy_dygraph():
                    data = self._reader.read_next_var_list()
                    data = _restore_batch(data, self._structure_infos.pop(0))
                else:  # in static mode
                    if self._return_list:
                        data = self._reader.read_next_list()
                        for i in range(len(data)):
                            data[i] = data[i]._move_to_list()
                        data = [
                            _restore_batch(d, s)
                            for d, s in zip(data, self._structure_infos[:len(
                                self._places)])
                        ]
                        self._structure_infos = self._structure_infos[len(
                            self._places):]
                        # static graph organized data on multi-device with list, if
                        # place number is 1, there is only 1 device, extra the data
                        # from list for devices to be compatible with dygraph mode
                        if len(self._places) == 1:
                            data = data[0]
                    else:
                        data = self._reader.read_next()
Z
Zhang Ting 已提交
291
            benchmark().after_reader()
292 293

            return data
294
        except StopIteration:
295
            self._reader.shutdown()
296
            self._try_shutdown_all()
297
            six.reraise(*sys.exc_info())
C
chenjian 已提交
298
        finally:
299 300
            if in_profiler_mode():
                trace_event.end()
301

302 303 304
    def _shutdown_thread(self):
        if self._thread:
            self._thread_done_event.set()
305 306 307 308 309 310 311 312 313 314 315
            # NOTE: we wait for _thread exit for 3 seconds, if
            #       thread not exit normally, force kill it
            for _ in range(3):
                if self._thread.is_alive():
                    time.sleep(1)
                else:
                    break
            else:
                if self._thread is not threading.current_thread():
                    self._thread.join()

316
            self._thread = None
317

318 319 320 321
    # python2 compatibility
    def next(self):
        return self.__next__()

322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
    def _try_shutdown_all(self):
        if not self._shutdown:
            try:
                # # _blocking_queue in keep order mode holds sub-threads
                # # need to release thread resources on unexpected exit
                if self._blocking_queue:
                    self._blocking_queue.close()
                    self._blocking_queue = None
                # NOTE: blocking queue should be closed firstly for
                # blocking queue read may hang and _thread_done_event
                # cannot be checked
                self._shutdown_thread()
            finally:
                self._shutdown = True

337
    def __del__(self):
338
        self._try_shutdown_all()
339

340 341 342 343 344

class _DataLoaderIterMultiProcess(_DataLoaderIterBase):
    def __init__(self, loader):
        super(_DataLoaderIterMultiProcess, self).__init__(loader)

K
Kaipeng Deng 已提交
345 346 347
        self._persistent_workers = loader._persistent_workers
        self._resume_worker_cnt = 0

348 349 350 351 352 353 354 355
        assert self._num_workers > 0,  "Multi-process DataLoader " \
                    "invalid num_workers({})".format(self._num_workers)

        # subprocess wrokers' result queue
        self._data_queue = None

        # data get from _data_queue will be reordered by _rcvd_idx
        # for data order keeping, data index not equal _rcvd_idx 
356
        # will be cached in _task_infos
357 358 359
        self._send_idx = 0
        self._rcvd_idx = 0
        self._batches_outstanding = 0
360
        self._task_infos = {}
361
        self._structure_infos = []
362 363 364 365 366 367 368 369 370 371

        # indices outstand as _outstanding_capacity at first, and
        # blocking_queue capacity is also _outstanding_capacity.
        # _outstanding_capacity here to make sure each indices_queue
        # has at least 2 indices, and outstanding batch cached
        # output data for at least 2 iterations(Note that len(_places)
        # batches will be composed as an iteration output)
        self._outstanding_capacity = 2 * max(self._num_workers,
                                             len(self._places))

372 373 374
        # see _try_put_indices
        self._thread_lock = threading.Lock()

375
        # init workers and indices queues and put 2 indices in each indices queue
376 377 378 379
        self._init_workers()
        for _ in range(self._outstanding_capacity):
            self._try_put_indices()

380 381 382
        self._init_thread()
        self._shutdown = False

383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
    def _init_workers(self):
        # multiprocess worker and indice queue list initial as empty
        self._workers = []
        self._worker_status = []
        self._indices_queues = []
        self._workers_idx_cycle = itertools.cycle(range(self._num_workers))

        # create data_queue for workers
        self._data_queue = multiprocessing.Queue()

        # event for workers and thread, thread event is only need 
        # in multi-processing mode
        self._workers_done_event = multiprocessing.Event()
        self._thread_done_event = threading.Event()

        for i in range(self._num_workers):
            indices_queue = multiprocessing.Queue()
            self._indices_queues.append(indices_queue)
            worker = multiprocessing.Process(
402
                target=_worker_loop,
403 404
                args=(self._dataset, self._dataset_kind, indices_queue,
                      self._data_queue, self._workers_done_event,
405
                      self._auto_collate_batch, self._collate_fn,
406 407
                      self._drop_last, self._worker_init_fn, i,
                      self._num_workers, self._use_shared_memory))
408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
            worker.daemon = True
            worker.start()
            self._workers.append(worker)
            self._worker_status.append(True)

        core._set_process_pids(id(self), tuple(w.pid for w in self._workers))
        _set_SIGCHLD_handler()

    def _clear_and_remove_data_queue(self):
        if self._data_queue is not None:
            while True:
                try:
                    self._data_queue.get_nowait()
                except:
                    self._data_queue.cancel_join_thread()
                    self._data_queue.close()
                    break

    def _init_thread(self):
        self._var_names = [v.name for v in self._feed_list]
        self._shapes = [v.shape for v in self._feed_list]
        self._dtypes = [v.dtype for v in self._feed_list]
        self._need_check_feed = [
            v.desc.need_check_feed() for v in self._feed_list
        ]
433
        # if only 1 place, do not need to keep order
434
        self._blocking_queue = core.init_lod_tensor_blocking_queue(
435
            core.Variable(), self._outstanding_capacity, len(self._places) > 1)
436 437
        self._reader = core.create_py_reader(
            self._blocking_queue, self._var_names, self._shapes, self._dtypes,
438 439
            self._need_check_feed, self._places, self._use_buffer_reader, True,
            self._pin_memory)
440 441

        self._thread_done_event = threading.Event()
K
Kaipeng Deng 已提交
442
        # thread event is only need in multi-processing mode
443 444
        self._thread = threading.Thread(
            target=self._thread_loop, args=(_current_expected_place(), ))
445 446 447
        self._thread.daemon = True
        self._thread.start()

K
Kaipeng Deng 已提交
448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
    def _reset(self):
        # resume iteration in following steps
        # 1. Resume workers, clear worker caches
        # put _ResumeIteration to all worker as resume iteration flag
        with self._thread_lock:
            self._resume_worker_cnt = self._num_workers
            for worker_id in range(self._num_workers):
                self._indices_queues[worker_id].put(_ResumeIteration())
                self._batches_outstanding += 1
        # all flag will be check in _thread_loop, simply wait here
        while self._resume_worker_cnt > 0:
            time.sleep(0.5)

        # 2. clear blocking_queue caches
        # in order not to restart the thread, we just clear
        # the blocking_queue cachees instead of recreating one
        while self._blocking_queue.size() >= len(self._places):
            if in_dygraph_mode():
J
Jiabin Yang 已提交
466 467
                data = core.eager.read_next_tensor_list(
                    self._reader.read_next_list()[0])
K
Kaipeng Deng 已提交
468
            else:
J
Jiabin Yang 已提交
469 470 471 472 473 474
                if _in_legacy_dygraph():
                    self._reader.read_next_var_list()
                elif self._return_list:
                    self._reader.read_next_list()
                else:
                    data = self._reader.read_next()
K
Kaipeng Deng 已提交
475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494

        # 3. reset all states
        self._send_idx = 0
        self._rcvd_idx = 0
        self._batches_outstanding = 0
        self._task_infos = {}
        self._structure_infos = []

        # set all worker status available
        self._worker_status = [True] * self._num_workers

        # 4. reset _sampler_iter and put prefetch indices to start next epoch
        # init workers and indices queues and put 2 indices in each indices queue
        self._sampler_iter = iter(self._index_sampler)
        for _ in range(self._outstanding_capacity):
            self._try_put_indices()

    def _shutdown_worker(self, worker_id, shutdown=False):
        if self._worker_status[worker_id] or (self._persistent_workers and
                                              shutdown):
495 496 497
            self._indices_queues[worker_id].put(None)
            self._worker_status[worker_id] = False

498
    def _try_shutdown_all(self, timeout=None):
499 500 501 502 503 504 505 506 507 508
        if not self._shutdown:
            try:
                self._exit_thread_expectedly()
                self._clear_and_remove_data_queue()

                # set _workers_done_event should be set before put None
                # to indices_queue, workers wll exit on reading None from
                # indices_queue
                self._workers_done_event.set()
                for i in range(self._num_workers):
K
Kaipeng Deng 已提交
509
                    self._shutdown_worker(i, shutdown=True)
510

511 512 513 514 515 516
                if not self._shutdown:
                    for w in self._workers:
                        w.join(timeout)
                    for q in self._indices_queues:
                        q.cancel_join_thread()
                        q.close()
517 518 519 520
            finally:
                core._erase_process_pids(id(self))
                self._shutdown = True

521 522 523 524 525 526 527 528
    def _thread_loop(self, legacy_expected_place):
        #NOTE(zhiqiu): Set the expected place for new thread as the same as father thread,
        # and it will call platform::SetDeviceId() in c++ internally.
        # If we do not set cudaDeviceId in new thread, the default cudaDeviceId will be 0,
        # Which may cost hundreds of MB of GPU memory on CUDAPlace(0) if calling some cuda 
        # APIs in this thread.
        _set_expected_place(legacy_expected_place)

529 530 531 532 533 534
        while not self._thread_done_event.is_set():
            batch = self._get_data()
            if not self._thread_done_event.is_set():
                if batch is None:
                    self._exit_thread_expectedly()
                else:
K
Kaipeng Deng 已提交
535 536 537 538
                    if isinstance(batch, _ResumeIteration):
                        assert self._resume_worker_cnt > 0
                        self._resume_worker_cnt -= 1
                        continue
539 540 541 542 543 544 545 546 547 548
                    try:
                        # pack as LoDTensorArray
                        array = core.LoDTensorArray()
                        if self._use_shared_memory:
                            for tensor in batch:
                                array.append(tensor)
                        else:
                            # LoDTensor not in shared memory is not
                            # serializable, cannot be create in workers
                            for slot in batch:
W
wanghuancoder 已提交
549 550
                                if isinstance(slot, (paddle.Tensor,
                                                     core.eager.Tensor)):
K
Kaipeng Deng 已提交
551 552
                                    slot = slot.value().get_tensor()
                                elif not isinstance(slot, core.LoDTensor):
553 554 555 556 557 558 559
                                    tmp = core.LoDTensor()
                                    tmp.set(slot, core.CPUPlace())
                                    slot = tmp
                                array.append(slot)

                        if not self._blocking_queue.push(array):
                            self._blocking_queue.close()
K
Kaipeng Deng 已提交
560
                    except Exception as e:
561 562 563 564 565 566 567
                        self._exit_thread_unexpectedly()
                        six.reraise(*sys.exc_info())
                    finally:
                        self._rcvd_idx += 1

    def _get_data(self):
        while not self._thread_done_event.is_set():
568 569 570 571 572 573
            # For IterableDataset, batch indices is generated infinitely
            # for each worker to raise StopIteration, but a StopIteration
            # raising process will discard a batch indices which is count
            # in _send_idx but will not increase _rcvd_idx, so we check 
            # whether the worker is still alive here to skip the discarded
            # batch indices and increase _rcvd_idx
574 575 576
            if self._dataset_kind == _DatasetKind.ITER:
                while self._rcvd_idx < self._send_idx:
                    info = self._task_infos[self._rcvd_idx]
577
                    if len(info) == 3 or self._worker_status[info[0]]:
578 579 580 581 582
                        break
                    del self._task_infos[self._rcvd_idx]
                    self._rcvd_idx += 1
                    self._batches_outstanding -= 1
                else:
583 584 585 586 587 588 589 590
                    # NOTE: when _rcvd_idx catch up _send_idx, which means
                    #       one of following:
                    #       1. all 2 * num_workers batches have been loaded
                    #          and stored in _blocking_queue
                    #       2. all data drained
                    #       we need to let _thread blocking at _data_queue
                    #       get_data to inoccupy CPU, otherwise may occupy
                    #       CPU time for model running
K
Kaipeng Deng 已提交
591 592 593 594 595 596 597 598 599
                    # NOTE: in persistent workers mode, do not check data
                    #       drained here, simply let it go to _data_queue
                    #       reading to get _ResumeIteration
                    if not self._persistent_workers:
                        # NOTE: _rcvd_idx and _send_idx only record batches among
                        #       workers, if batches among workers drained, there
                        #       may also be data in blocking queue
                        if self._batches_outstanding < len(self._places):
                            return None
600 601

            if self._rcvd_idx in self._task_infos and \
602 603 604 605
                    len(self._task_infos[self._rcvd_idx]) == 3:
                info = self._task_infos.pop(self._rcvd_idx)
                self._structure_infos.append(info[2])
                return info[1]
606

607 608 609
            try:
                # [ avoid hang ]: main process may blocking at _reader.read_next when
                # KeyboardInterrupt, we do following tradeoff:
610
                # 1. get data with timeout, MP_STATUS_CHECK_INTERVAL(5s) as timeout
611 612 613 614 615 616 617
                #    default, if KeyboardInterrupt blocking, failed workers will be
                #    checked and raise RuntimeError to quit DataLoader in timeout
                #    exception handling.
                # 2. if get data timeout and check workers all alive, continue to
                #    get data again
                data = self._data_queue.get(timeout=self._timeout)
            except Exception as e:
618 619 620 621 622
                # check if thread done event set when waiting data
                if self._thread_done_event.is_set():
                    continue

                # check failed workers
623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643
                failed_workers = []
                for i, w in enumerate(self._workers):
                    if self._worker_status[i] and not w.is_alive():
                        failed_workers.append(w)
                        self._shutdown_worker(i)
                if len(failed_workers) > 0:
                    self._exit_thread_unexpectedly()
                    pids = ', '.join(str(w.pid) for w in failed_workers)
                    raise RuntimeError("DataLoader {} workers exit unexpectedly, " \
                                "pids: {}".format(len(failed_workers), pids))

                # get(timeout) will call _poll(timeout) and may raise IOError
                if isinstance(e, queue.Empty) or isinstance(e, IOError):
                    # continue on timeout to keep getting data from queue
                    continue

                self._exit_thread_unexpectedly()
                logging.error("DataLoader reader thread failed({}) to read data from " \
                              "workers' result queue.".format(e))
                six.reraise(*sys.exc_info())
            else:
644 645 646 647 648 649 650
                if self._dataset_kind == _DatasetKind.ITER and isinstance(
                        data, _IterableDatasetStopIteration):
                    # if a worker get StopIteraion, we shutdown this worker,
                    # note that this batch indices to trigger StopIteration
                    # is discard, outstanding batch number should be decrease
                    # and another indices should be put for other workers
                    # may still working.
K
Kaipeng Deng 已提交
651 652 653 654 655
                    if self._persistent_workers:
                        self._worker_status[data.worker_id] = False
                    else:
                        self._shutdown_worker(data.worker_id)
                        self._batches_outstanding -= 1
656 657 658
                    self._try_put_indices()
                    continue

659
                idx, batch, structure = data
K
Kaipeng Deng 已提交
660 661 662 663 664

                if isinstance(idx, _ResumeIteration) and batch is None \
                        and structure is None:
                    return idx

665 666 667 668
                if isinstance(batch, _WorkerException):
                    self._exit_thread_unexpectedly()
                    batch.reraise()

669
                if idx == self._rcvd_idx:
670
                    del self._task_infos[idx]
671
                    self._structure_infos.append(structure)
672 673
                    return batch
                else:
674
                    self._task_infos[idx] += (batch, structure)
675 676 677
                    continue

    def _try_put_indices(self):
678
        assert self._batches_outstanding <= self._outstanding_capacity, \
679
                    "too many indices have been put to queue"
680 681 682 683 684 685 686 687 688 689 690 691 692 693
        # In multi-process mode for IterableDataset, _try_put_indices will
        # be called both in main process(for our implement has blocking queue,
        # and blocking queue read is in main process) and thread, which may
        # cause error following error
        #   1. "ValueError: generator already executing" in next(self._sampler_iter)
        #   2. re-enter in increase _send_idx
        # add a lock for threading save, for _try_put_indices is only a slight
        # function which is not in data reading pipeline, this lock almost no
        # influence on performance
        with self._thread_lock:
            try:
                indices = next(self._sampler_iter)
            except StopIteration:
                return
694

695 696 697 698 699 700
            for i in range(self._num_workers):
                worker_idx = next(self._workers_idx_cycle)
                if self._worker_status[worker_idx]:
                    break
            else:
                return
701

702 703 704 705
            self._indices_queues[worker_idx].put((self._send_idx, indices))
            self._task_infos[self._send_idx] = (worker_idx, )
            self._batches_outstanding += 1
            self._send_idx += 1
706 707 708 709

    def __del__(self):
        self._try_shutdown_all()

710 711 712
    def _shutdown_on_exit(self):
        self._try_shutdown_all(1)

713
    def __next__(self):
714 715 716 717 718
        if in_profiler_mode():
            trace_event = profiler.RecordEvent(
                name="_DataLoaderIterMultiProcess",
                event_type=profiler.TracerEventType.Dataloader)
            trace_event.begin()
719
        try:
Z
Zhang Ting 已提交
720 721
            benchmark().check_if_need_record(self)
            benchmark().before_reader()
722 723 724 725 726 727 728 729
            # _batches_outstanding here record the total batch data number
            # in 'from after _try_put_indices to beforeoutput data', this
            # value should be _outstanding_capacity if data is not drained,
            # if _batches_outstanding is less than _places number, there are
            # no enough data to generate next output, close blocking_queue and
            # set _thread_done_event here, py_reader will raise StopIteration,
            # end workers and indices_queues in StopIteration handling
            if self._batches_outstanding < len(self._places):
K
Kaipeng Deng 已提交
730 731 732 733 734
                if self._persistent_workers:
                    raise StopIteration
                else:
                    self._thread_done_event.set()
                    self._blocking_queue.close()
735 736

            if in_dygraph_mode():
J
Jiabin Yang 已提交
737 738
                data = core.eager.read_next_tensor_list(
                    self._reader.read_next_list()[0])
739
                data = _restore_batch(data, self._structure_infos.pop(0))
740
            else:
J
Jiabin Yang 已提交
741 742 743
                if _in_legacy_dygraph():
                    data = self._reader.read_next_var_list()
                    data = _restore_batch(data, self._structure_infos.pop(0))
744
                else:
J
Jiabin Yang 已提交
745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762
                    if self._return_list:
                        data = self._reader.read_next_list()
                        for i in range(len(data)):
                            data[i] = data[i]._move_to_list()
                        data = [
                            _restore_batch(d, s)
                            for d, s in zip(data, self._structure_infos[:len(
                                self._places)])
                        ]
                        self._structure_infos = self._structure_infos[len(
                            self._places):]
                        # static graph organized data on multi-device with list, if
                        # place number is 1, there is only 1 device, extra the data
                        # from list for devices to be compatible with dygraph mode
                        if len(self._places) == 1:
                            data = data[0]
                    else:
                        data = self._reader.read_next()
763
            self._on_output_batch()
Z
Zhang Ting 已提交
764
            benchmark().after_reader()
765 766
            return data
        except StopIteration:
K
Kaipeng Deng 已提交
767 768 769
            if not self._persistent_workers:
                self._reader.shutdown()
                self._try_shutdown_all()
770
            six.reraise(*sys.exc_info())
C
chenjian 已提交
771
        finally:
772 773
            if in_profiler_mode():
                trace_event.end()
774 775 776 777 778 779 780 781 782

    # python2 compatibility
    def next(self):
        return self.__next__()

    def _on_output_batch(self):
        for _ in range(len(self._places)):
            self._batches_outstanding -= 1
            self._try_put_indices()