dataloader_iter.py 27.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import six
import sys
import time
import signal
20
import numbers
21 22 23 24 25
import logging
import itertools
import threading
import numpy as np
import multiprocessing
26
from collections import namedtuple
27
from paddle.fluid.framework import _set_expected_place, _current_expected_place
28 29

# NOTE: queue has a different name in python2 and python3
T
tianshuo78520a 已提交
30
import queue
31

32 33
import paddle
from .. import core, layers
34
from ..framework import in_dygraph_mode
35
from ..multiprocess_utils import _set_SIGCHLD_handler, MP_STATUS_CHECK_INTERVAL, CleanupFuncRegistrar
36
from .fetcher import _IterableDatasetFetcher, _MapDatasetFetcher
37
from .batch_sampler import _InfiniteIterableSampler
38 39
from .collate import default_collate_fn, default_convert_fn
from .worker import ParentWatchDog, get_worker_info, _worker_loop, \
K
Kaipeng Deng 已提交
40 41
        _DatasetKind, _IterableDatasetStopIteration, _WorkerException, \
        _ResumeIteration
42
from .flat import _flatten_batch, _restore_batch
43 44

__all__ = ['get_worker_info']
45

46

47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
class _DataLoaderIterBase(object):
    """
    Iterator implement of DataLoader, will load and feed mini-batch
    data by setting in given dataloader.

    Args:
        loader(instance of DataLoader): instance of `fluid.io.DataLoader`
    """

    def __init__(self, loader):
        self._dataset = loader.dataset
        self._feed_list = loader.feed_list or []
        self._places = loader.places
        self._return_list = loader.return_list
        self._batch_sampler = loader.batch_sampler
62
        self._auto_collate_batch = loader.auto_collate_batch
63 64 65
        self._num_workers = loader.num_workers
        self._use_buffer_reader = loader.use_buffer_reader
        self._use_shared_memory = loader.use_shared_memory
66
        self._timeout = loader.timeout if loader.timeout > 0 else MP_STATUS_CHECK_INTERVAL
67
        self._worker_init_fn = loader.worker_init_fn
68
        self._dataset_kind = loader.dataset_kind
69
        self._pin_memory = loader.pin_memory
70

K
Kaipeng Deng 已提交
71
        self._sampler_iter = iter(self._index_sampler)
72 73 74
        if self._auto_collate_batch:
            self._collate_fn = loader.collate_fn or default_collate_fn
        else:
75
            self._collate_fn = loader.collate_fn or default_convert_fn
76

77 78 79 80 81 82 83 84 85
        # LoDTensorBlockingQueue instance for create_py_reader and a thread
        # to put mini-batch data to self._blocking_queue, mini-batch data
        # will be get from:
        # 1. multi-process mode: get data from workers' result queue
        # 2. single-process mode: read mini-batch data in main process
        self._blocking_queue = None
        self._thread = None
        self._thread_done_event = threading.Event()

K
Kaipeng Deng 已提交
86 87 88 89 90 91 92 93 94 95
    @property
    def _index_sampler(self):
        if self._auto_collate_batch:
            return self._batch_sampler
        else:
            if self._dataset_kind == _DatasetKind.MAP:
                return list(range(len(self._dataset)))
            else:
                return _InfiniteIterableSampler(self._dataset, 1)

96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
    def __iter__(self):
        return self

    def __len__(self):
        return len(self._batch_sampler)


class _DataLoaderIterSingleProcess(_DataLoaderIterBase):
    """
    Single process implement of DataLoaderIter, loading data from
    loader.data in main process
    """

    def __init__(self, loader):
        super(_DataLoaderIterSingleProcess, self).__init__(loader)

112
        self._dataset_fetcher = _DatasetKind.create_fetcher(
113 114
            self._dataset_kind, self._dataset, self._auto_collate_batch,
            self._collate_fn, True)
115

116 117 118 119 120 121 122 123
        # NOTE: _structrue_infos used to record the data structure of
        # batch to restore batch structure after reading Tensor
        # from blocking_queue in single-process mode. Note that
        # only single process is used in single-process mode, we
        # can record the data structure sequencely in a list without
        # recording the send and recv index
        self._structure_infos = []

124 125 126 127 128 129 130 131 132 133 134 135 136 137
        # NOTE: len(self._places) batch data compose as an output
        # iteration, set blocking_queue can cache 2 iteration datas
        # at most here
        self._blocking_queue_capacity = 2 * len(self._places)

        self._init_thread()

    def _init_thread(self):
        self._var_names = [v.name for v in self._feed_list]
        self._shapes = [v.shape for v in self._feed_list]
        self._dtypes = [v.dtype for v in self._feed_list]
        self._need_check_feed = [
            v.desc.need_check_feed() for v in self._feed_list
        ]
138
        # if only 1 place, do not need to keep order
139
        self._blocking_queue = core.init_lod_tensor_blocking_queue(
140 141
            core.Variable(), self._blocking_queue_capacity,
            len(self._places) > 1)
142 143
        self._reader = core.create_py_reader(
            self._blocking_queue, self._var_names, self._shapes, self._dtypes,
144 145
            self._need_check_feed, self._places, self._use_buffer_reader, True,
            self._pin_memory)
146

147 148
        self._thread = threading.Thread(
            target=self._thread_loop, args=(_current_expected_place(), ))
149 150 151
        self._thread.daemon = True
        self._thread.start()

152
    def _thread_loop(self, legacy_expected_place):
153
        try:
154 155 156 157 158 159 160
            #NOTE(zhiqiu): Set the expected place for new thread as the same as father thread,
            # and it will call platform::SetDeviceId() in c++ internally.
            # If we do not set cudaDeviceId in new thread, the default cudaDeviceId will be 0,
            # Which may cost hundreds of MB of GPU memory on CUDAPlace(0) if calling some cuda 
            # APIs in this thread.
            _set_expected_place(legacy_expected_place)

161 162
            for indices in self._sampler_iter:
                # read data from dataset in mini-batch
163
                batch = self._dataset_fetcher.fetch(indices)
164

165 166 167 168
                # flat batch and record structure infos
                batch, structure = _flatten_batch(batch)
                self._structure_infos.append(structure)

169 170 171
                # pack as LoDTensorArray
                array = core.LoDTensorArray()
                for slot in batch:
K
Kaipeng Deng 已提交
172 173 174
                    if isinstance(slot, paddle.Tensor):
                        slot = slot.value().get_tensor()
                    elif not isinstance(slot, core.LoDTensor):
175 176 177 178 179 180 181 182 183
                        tmp = core.LoDTensor()
                        tmp.set(slot, core.CPUPlace())
                        slot = tmp

                    array.append(slot)

                if not self._blocking_queue.push(array):
                    break

184 185 186
                if self._thread_done_event.is_set():
                    break

187
            self._blocking_queue.close()
188
            self._shutdown_thread()
189 190
        except StopIteration:
            self._blocking_queue.close()
191 192
        except Exception:
            self._blocking_queue.kill()
193
            self._shutdown_thread()
194 195 196 197 198 199
            logging.warning("DataLoader reader thread raised an exception.")
            six.reraise(*sys.exc_info())

    def __next__(self):
        try:
            if in_dygraph_mode():
200 201
                data = self._reader.read_next_var_list()
                data = _restore_batch(data, self._structure_infos.pop(0))
202 203
            else:
                if self._return_list:
204 205 206 207 208 209 210 211
                    data = self._reader.read_next_list()
                    data = [
                        _restore_batch(d, s)
                        for d, s in zip(data, self._structure_infos[:len(
                            self._places)])
                    ]
                    self._structure_infos = self._structure_infos[len(
                        self._places):]
212 213 214 215
                    # static graph organized data on multi-device with list, if
                    # place number is 1, there is only 1 device, extra the data
                    # from list for devices to be compatible with dygraph mode
                    if len(self._places) == 1:
216
                        data = data[0]
217
                else:
218 219 220
                    data = self._reader.read_next()

            return data
221
        except StopIteration:
222
            self._reader.shutdown()
223 224
            six.reraise(*sys.exc_info())

225 226 227 228 229
    def _shutdown_thread(self):
        if self._thread:
            self._thread_done_event.set()
            if self._thread is not threading.current_thread():
                self._thread.join()
230
            self._thread = None
231

232 233 234 235
    # python2 compatibility
    def next(self):
        return self.__next__()

236 237 238 239 240
    def __del__(self):
        # _blocking_queue in keep order mode holds sub-threads
        # need to release thread resources on unexpected exit
        if self._blocking_queue:
            self._blocking_queue.close()
241 242 243 244
        # NOTE: blocking queue should be closed firstly for
        # blocking queue read may hang and _thread_done_event
        # cannot be checked
        self._shutdown_thread()
245

246 247 248 249 250

class _DataLoaderIterMultiProcess(_DataLoaderIterBase):
    def __init__(self, loader):
        super(_DataLoaderIterMultiProcess, self).__init__(loader)

K
Kaipeng Deng 已提交
251 252 253
        self._persistent_workers = loader._persistent_workers
        self._resume_worker_cnt = 0

254 255 256 257 258 259 260 261
        assert self._num_workers > 0,  "Multi-process DataLoader " \
                    "invalid num_workers({})".format(self._num_workers)

        # subprocess wrokers' result queue
        self._data_queue = None

        # data get from _data_queue will be reordered by _rcvd_idx
        # for data order keeping, data index not equal _rcvd_idx 
262
        # will be cached in _task_infos
263 264 265
        self._send_idx = 0
        self._rcvd_idx = 0
        self._batches_outstanding = 0
266
        self._task_infos = {}
267
        self._structure_infos = []
268 269 270 271 272 273 274 275 276 277

        # indices outstand as _outstanding_capacity at first, and
        # blocking_queue capacity is also _outstanding_capacity.
        # _outstanding_capacity here to make sure each indices_queue
        # has at least 2 indices, and outstanding batch cached
        # output data for at least 2 iterations(Note that len(_places)
        # batches will be composed as an iteration output)
        self._outstanding_capacity = 2 * max(self._num_workers,
                                             len(self._places))

278 279 280
        # see _try_put_indices
        self._thread_lock = threading.Lock()

281
        # init workers and indices queues and put 2 indices in each indices queue
282 283 284 285
        self._init_workers()
        for _ in range(self._outstanding_capacity):
            self._try_put_indices()

286 287 288
        self._init_thread()
        self._shutdown = False

289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
    def _init_workers(self):
        # multiprocess worker and indice queue list initial as empty
        self._workers = []
        self._worker_status = []
        self._indices_queues = []
        self._workers_idx_cycle = itertools.cycle(range(self._num_workers))

        # create data_queue for workers
        self._data_queue = multiprocessing.Queue()

        # event for workers and thread, thread event is only need 
        # in multi-processing mode
        self._workers_done_event = multiprocessing.Event()
        self._thread_done_event = threading.Event()

        for i in range(self._num_workers):
            indices_queue = multiprocessing.Queue()
            self._indices_queues.append(indices_queue)
            worker = multiprocessing.Process(
308
                target=_worker_loop,
309 310
                args=(self._dataset, self._dataset_kind, indices_queue,
                      self._data_queue, self._workers_done_event,
311 312 313
                      self._auto_collate_batch, self._collate_fn,
                      self._worker_init_fn, i, self._num_workers,
                      self._use_shared_memory))
314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
            worker.daemon = True
            worker.start()
            self._workers.append(worker)
            self._worker_status.append(True)

        core._set_process_pids(id(self), tuple(w.pid for w in self._workers))
        _set_SIGCHLD_handler()

    def _clear_and_remove_data_queue(self):
        if self._data_queue is not None:
            while True:
                try:
                    self._data_queue.get_nowait()
                except:
                    self._data_queue.cancel_join_thread()
                    self._data_queue.close()
                    break

    def _init_thread(self):
        self._var_names = [v.name for v in self._feed_list]
        self._shapes = [v.shape for v in self._feed_list]
        self._dtypes = [v.dtype for v in self._feed_list]
        self._need_check_feed = [
            v.desc.need_check_feed() for v in self._feed_list
        ]
339
        # if only 1 place, do not need to keep order
340
        self._blocking_queue = core.init_lod_tensor_blocking_queue(
341
            core.Variable(), self._outstanding_capacity, len(self._places) > 1)
342 343
        self._reader = core.create_py_reader(
            self._blocking_queue, self._var_names, self._shapes, self._dtypes,
344 345
            self._need_check_feed, self._places, self._use_buffer_reader, True,
            self._pin_memory)
346 347

        self._thread_done_event = threading.Event()
K
Kaipeng Deng 已提交
348
        # thread event is only need in multi-processing mode
349 350
        self._thread = threading.Thread(
            target=self._thread_loop, args=(_current_expected_place(), ))
351 352 353
        self._thread.daemon = True
        self._thread.start()

K
Kaipeng Deng 已提交
354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
    def _reset(self):
        # resume iteration in following steps
        # 1. Resume workers, clear worker caches
        # put _ResumeIteration to all worker as resume iteration flag
        with self._thread_lock:
            self._resume_worker_cnt = self._num_workers
            for worker_id in range(self._num_workers):
                self._indices_queues[worker_id].put(_ResumeIteration())
                self._batches_outstanding += 1
        # all flag will be check in _thread_loop, simply wait here
        while self._resume_worker_cnt > 0:
            time.sleep(0.5)

        # 2. clear blocking_queue caches
        # in order not to restart the thread, we just clear
        # the blocking_queue cachees instead of recreating one
        while self._blocking_queue.size() >= len(self._places):
            if in_dygraph_mode():
                self._reader.read_next_var_list()
            elif self._return_list:
                self._reader.read_next_list()
            else:
                data = self._reader.read_next()

        # 3. reset all states
        self._send_idx = 0
        self._rcvd_idx = 0
        self._batches_outstanding = 0
        self._task_infos = {}
        self._structure_infos = []

        # set all worker status available
        self._worker_status = [True] * self._num_workers

        # 4. reset _sampler_iter and put prefetch indices to start next epoch
        # init workers and indices queues and put 2 indices in each indices queue
        self._sampler_iter = iter(self._index_sampler)
        for _ in range(self._outstanding_capacity):
            self._try_put_indices()

    def _shutdown_worker(self, worker_id, shutdown=False):
        if self._worker_status[worker_id] or (self._persistent_workers and
                                              shutdown):
397 398 399
            self._indices_queues[worker_id].put(None)
            self._worker_status[worker_id] = False

400
    def _try_shutdown_all(self, timeout=None):
401 402 403 404 405 406 407 408 409 410
        if not self._shutdown:
            try:
                self._exit_thread_expectedly()
                self._clear_and_remove_data_queue()

                # set _workers_done_event should be set before put None
                # to indices_queue, workers wll exit on reading None from
                # indices_queue
                self._workers_done_event.set()
                for i in range(self._num_workers):
K
Kaipeng Deng 已提交
411
                    self._shutdown_worker(i, shutdown=True)
412

413 414 415 416 417 418
                if not self._shutdown:
                    for w in self._workers:
                        w.join(timeout)
                    for q in self._indices_queues:
                        q.cancel_join_thread()
                        q.close()
419 420 421 422 423 424 425 426 427 428 429 430 431
            finally:
                core._erase_process_pids(id(self))
                self._shutdown = True

    def _exit_thread_expectedly(self):
        self._thread_done_event.set()
        self._blocking_queue.close()

    def _exit_thread_unexpectedly(self):
        self._thread_done_event.set()
        self._blocking_queue.kill()
        logging.error("DataLoader reader thread raised an exception!")

432 433 434 435 436 437 438 439
    def _thread_loop(self, legacy_expected_place):
        #NOTE(zhiqiu): Set the expected place for new thread as the same as father thread,
        # and it will call platform::SetDeviceId() in c++ internally.
        # If we do not set cudaDeviceId in new thread, the default cudaDeviceId will be 0,
        # Which may cost hundreds of MB of GPU memory on CUDAPlace(0) if calling some cuda 
        # APIs in this thread.
        _set_expected_place(legacy_expected_place)

440 441 442 443 444 445
        while not self._thread_done_event.is_set():
            batch = self._get_data()
            if not self._thread_done_event.is_set():
                if batch is None:
                    self._exit_thread_expectedly()
                else:
K
Kaipeng Deng 已提交
446 447 448 449
                    if isinstance(batch, _ResumeIteration):
                        assert self._resume_worker_cnt > 0
                        self._resume_worker_cnt -= 1
                        continue
450 451 452 453 454 455 456 457 458 459
                    try:
                        # pack as LoDTensorArray
                        array = core.LoDTensorArray()
                        if self._use_shared_memory:
                            for tensor in batch:
                                array.append(tensor)
                        else:
                            # LoDTensor not in shared memory is not
                            # serializable, cannot be create in workers
                            for slot in batch:
K
Kaipeng Deng 已提交
460 461 462
                                if isinstance(slot, paddle.Tensor):
                                    slot = slot.value().get_tensor()
                                elif not isinstance(slot, core.LoDTensor):
463 464 465 466 467 468 469
                                    tmp = core.LoDTensor()
                                    tmp.set(slot, core.CPUPlace())
                                    slot = tmp
                                array.append(slot)

                        if not self._blocking_queue.push(array):
                            self._blocking_queue.close()
K
Kaipeng Deng 已提交
470
                    except Exception as e:
471 472 473 474 475 476 477
                        self._exit_thread_unexpectedly()
                        six.reraise(*sys.exc_info())
                    finally:
                        self._rcvd_idx += 1

    def _get_data(self):
        while not self._thread_done_event.is_set():
478 479 480 481 482 483
            # For IterableDataset, batch indices is generated infinitely
            # for each worker to raise StopIteration, but a StopIteration
            # raising process will discard a batch indices which is count
            # in _send_idx but will not increase _rcvd_idx, so we check 
            # whether the worker is still alive here to skip the discarded
            # batch indices and increase _rcvd_idx
484 485 486
            if self._dataset_kind == _DatasetKind.ITER:
                while self._rcvd_idx < self._send_idx:
                    info = self._task_infos[self._rcvd_idx]
487
                    if len(info) == 3 or self._worker_status[info[0]]:
488 489 490 491 492
                        break
                    del self._task_infos[self._rcvd_idx]
                    self._rcvd_idx += 1
                    self._batches_outstanding -= 1
                else:
K
Kaipeng Deng 已提交
493 494 495 496 497 498 499 500 501 502
                    # NOTE: in persistent workers mode, do not check data
                    #       drained here, simply let it go to _data_queue
                    #       reading to get _ResumeIteration
                    if not self._persistent_workers:
                        # NOTE: _rcvd_idx and _send_idx only record batches among
                        #       workers, if batches among workers drained, there
                        #       may also be data in blocking queue
                        if self._batches_outstanding < len(self._places):
                            return None
                        continue
503 504

            if self._rcvd_idx in self._task_infos and \
505 506 507 508
                    len(self._task_infos[self._rcvd_idx]) == 3:
                info = self._task_infos.pop(self._rcvd_idx)
                self._structure_infos.append(info[2])
                return info[1]
509

510 511 512
            try:
                # [ avoid hang ]: main process may blocking at _reader.read_next when
                # KeyboardInterrupt, we do following tradeoff:
513
                # 1. get data with timeout, MP_STATUS_CHECK_INTERVAL(5s) as timeout
514 515 516 517 518 519 520
                #    default, if KeyboardInterrupt blocking, failed workers will be
                #    checked and raise RuntimeError to quit DataLoader in timeout
                #    exception handling.
                # 2. if get data timeout and check workers all alive, continue to
                #    get data again
                data = self._data_queue.get(timeout=self._timeout)
            except Exception as e:
521 522 523 524 525
                # check if thread done event set when waiting data
                if self._thread_done_event.is_set():
                    continue

                # check failed workers
526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546
                failed_workers = []
                for i, w in enumerate(self._workers):
                    if self._worker_status[i] and not w.is_alive():
                        failed_workers.append(w)
                        self._shutdown_worker(i)
                if len(failed_workers) > 0:
                    self._exit_thread_unexpectedly()
                    pids = ', '.join(str(w.pid) for w in failed_workers)
                    raise RuntimeError("DataLoader {} workers exit unexpectedly, " \
                                "pids: {}".format(len(failed_workers), pids))

                # get(timeout) will call _poll(timeout) and may raise IOError
                if isinstance(e, queue.Empty) or isinstance(e, IOError):
                    # continue on timeout to keep getting data from queue
                    continue

                self._exit_thread_unexpectedly()
                logging.error("DataLoader reader thread failed({}) to read data from " \
                              "workers' result queue.".format(e))
                six.reraise(*sys.exc_info())
            else:
547 548 549 550 551 552 553
                if self._dataset_kind == _DatasetKind.ITER and isinstance(
                        data, _IterableDatasetStopIteration):
                    # if a worker get StopIteraion, we shutdown this worker,
                    # note that this batch indices to trigger StopIteration
                    # is discard, outstanding batch number should be decrease
                    # and another indices should be put for other workers
                    # may still working.
K
Kaipeng Deng 已提交
554 555 556 557 558
                    if self._persistent_workers:
                        self._worker_status[data.worker_id] = False
                    else:
                        self._shutdown_worker(data.worker_id)
                        self._batches_outstanding -= 1
559 560 561
                    self._try_put_indices()
                    continue

562
                idx, batch, structure = data
K
Kaipeng Deng 已提交
563 564 565 566 567

                if isinstance(idx, _ResumeIteration) and batch is None \
                        and structure is None:
                    return idx

568 569 570 571
                if isinstance(batch, _WorkerException):
                    self._exit_thread_unexpectedly()
                    batch.reraise()

572
                if idx == self._rcvd_idx:
573
                    del self._task_infos[idx]
574
                    self._structure_infos.append(structure)
575 576
                    return batch
                else:
577
                    self._task_infos[idx] += (batch, structure)
578 579 580
                    continue

    def _try_put_indices(self):
581
        assert self._batches_outstanding <= self._outstanding_capacity, \
582
                    "too many indices have been put to queue"
583 584 585 586 587 588 589 590 591 592 593 594 595 596
        # In multi-process mode for IterableDataset, _try_put_indices will
        # be called both in main process(for our implement has blocking queue,
        # and blocking queue read is in main process) and thread, which may
        # cause error following error
        #   1. "ValueError: generator already executing" in next(self._sampler_iter)
        #   2. re-enter in increase _send_idx
        # add a lock for threading save, for _try_put_indices is only a slight
        # function which is not in data reading pipeline, this lock almost no
        # influence on performance
        with self._thread_lock:
            try:
                indices = next(self._sampler_iter)
            except StopIteration:
                return
597

598 599 600 601 602 603
            for i in range(self._num_workers):
                worker_idx = next(self._workers_idx_cycle)
                if self._worker_status[worker_idx]:
                    break
            else:
                return
604

605 606 607 608
            self._indices_queues[worker_idx].put((self._send_idx, indices))
            self._task_infos[self._send_idx] = (worker_idx, )
            self._batches_outstanding += 1
            self._send_idx += 1
609 610 611 612

    def __del__(self):
        self._try_shutdown_all()

613 614 615
    def _shutdown_on_exit(self):
        self._try_shutdown_all(1)

616 617 618 619 620 621 622 623 624 625
    def __next__(self):
        try:
            # _batches_outstanding here record the total batch data number
            # in 'from after _try_put_indices to beforeoutput data', this
            # value should be _outstanding_capacity if data is not drained,
            # if _batches_outstanding is less than _places number, there are
            # no enough data to generate next output, close blocking_queue and
            # set _thread_done_event here, py_reader will raise StopIteration,
            # end workers and indices_queues in StopIteration handling
            if self._batches_outstanding < len(self._places):
K
Kaipeng Deng 已提交
626 627 628 629 630
                if self._persistent_workers:
                    raise StopIteration
                else:
                    self._thread_done_event.set()
                    self._blocking_queue.close()
631 632 633

            if in_dygraph_mode():
                data = self._reader.read_next_var_list()
634
                data = _restore_batch(data, self._structure_infos.pop(0))
635 636 637
            else:
                if self._return_list:
                    data = self._reader.read_next_list()
638 639 640 641 642 643 644
                    data = [
                        _restore_batch(d, s)
                        for d, s in zip(data, self._structure_infos[:len(
                            self._places)])
                    ]
                    self._structure_infos = self._structure_infos[len(
                        self._places):]
645 646 647 648 649 650 651 652 653 654
                    # static graph organized data on multi-device with list, if
                    # place number is 1, there is only 1 device, extra the data
                    # from list for devices to be compatible with dygraph mode
                    if len(self._places) == 1:
                        data = data[0]
                else:
                    data = self._reader.read_next()
            self._on_output_batch()
            return data
        except StopIteration:
K
Kaipeng Deng 已提交
655 656 657
            if not self._persistent_workers:
                self._reader.shutdown()
                self._try_shutdown_all()
658 659 660 661 662 663 664 665 666 667
            six.reraise(*sys.exc_info())

    # python2 compatibility
    def next(self):
        return self.__next__()

    def _on_output_batch(self):
        for _ in range(len(self._places)):
            self._batches_outstanding -= 1
            self._try_put_indices()