dataloader_iter.py 23.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import six
import sys
import time
import signal
20
import numbers
21 22 23 24 25
import logging
import itertools
import threading
import numpy as np
import multiprocessing
26
from collections import namedtuple
27
from paddle.fluid.framework import _set_expected_place, _current_expected_place
28 29 30 31 32 33 34

# NOTE: queue has a different name in python2 and python3
if six.PY2:
    import Queue as queue
else:
    import queue

35 36
import paddle
from .. import core, layers
37
from ..framework import in_dygraph_mode
38
from ..multiprocess_utils import _set_SIGCHLD_handler, MP_STATUS_CHECK_INTERVAL
39
from .fetcher import _IterableDatasetFetcher, _MapDatasetFetcher
40
from .batch_sampler import _InfiniteIterableSampler
41 42 43 44
from .collate import default_collate_fn, default_convert_fn
from .worker import ParentWatchDog, get_worker_info, _worker_loop, \
        _DatasetKind, _IterableDatasetStopIteration, _WorkerException
from .flat import _flatten_batch, _restore_batch
45 46

__all__ = ['get_worker_info']
47

48

49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
class _DataLoaderIterBase(object):
    """
    Iterator implement of DataLoader, will load and feed mini-batch
    data by setting in given dataloader.

    Args:
        loader(instance of DataLoader): instance of `fluid.io.DataLoader`
    """

    def __init__(self, loader):
        self._dataset = loader.dataset
        self._feed_list = loader.feed_list or []
        self._places = loader.places
        self._return_list = loader.return_list
        self._batch_sampler = loader.batch_sampler
64
        self._auto_collate_batch = loader.auto_collate_batch
65 66 67
        self._num_workers = loader.num_workers
        self._use_buffer_reader = loader.use_buffer_reader
        self._use_shared_memory = loader.use_shared_memory
68
        self._timeout = loader.timeout if loader.timeout > 0 else MP_STATUS_CHECK_INTERVAL
69
        self._worker_init_fn = loader.worker_init_fn
70
        self._dataset_kind = loader.dataset_kind
71
        self._pin_memory = loader.pin_memory
72

73 74 75 76 77 78 79
        if self._auto_collate_batch:
            self._sampler_iter = iter(loader.batch_sampler)
            self._collate_fn = loader.collate_fn or default_collate_fn
        else:
            if self._dataset_kind == _DatasetKind.MAP:
                self._sampler_iter = iter(list(range(len(self._dataset))))
            else:
80 81
                self._sampler_iter = iter(
                    _InfiniteIterableSampler(self._dataset, 1))
82
            self._collate_fn = loader.collate_fn or default_convert_fn
83

84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
        # LoDTensorBlockingQueue instance for create_py_reader and a thread
        # to put mini-batch data to self._blocking_queue, mini-batch data
        # will be get from:
        # 1. multi-process mode: get data from workers' result queue
        # 2. single-process mode: read mini-batch data in main process
        self._blocking_queue = None
        self._thread = None
        self._thread_done_event = threading.Event()

    def __iter__(self):
        return self

    def __len__(self):
        return len(self._batch_sampler)


class _DataLoaderIterSingleProcess(_DataLoaderIterBase):
    """
    Single process implement of DataLoaderIter, loading data from
    loader.data in main process
    """

    def __init__(self, loader):
        super(_DataLoaderIterSingleProcess, self).__init__(loader)

109
        self._dataset_fetcher = _DatasetKind.create_fetcher(
110 111
            self._dataset_kind, self._dataset, self._auto_collate_batch,
            self._collate_fn, True)
112

113 114 115 116 117 118 119 120
        # NOTE: _structrue_infos used to record the data structure of
        # batch to restore batch structure after reading Tensor
        # from blocking_queue in single-process mode. Note that
        # only single process is used in single-process mode, we
        # can record the data structure sequencely in a list without
        # recording the send and recv index
        self._structure_infos = []

121 122 123 124 125 126 127 128 129 130 131 132 133 134
        # NOTE: len(self._places) batch data compose as an output
        # iteration, set blocking_queue can cache 2 iteration datas
        # at most here
        self._blocking_queue_capacity = 2 * len(self._places)

        self._init_thread()

    def _init_thread(self):
        self._var_names = [v.name for v in self._feed_list]
        self._shapes = [v.shape for v in self._feed_list]
        self._dtypes = [v.dtype for v in self._feed_list]
        self._need_check_feed = [
            v.desc.need_check_feed() for v in self._feed_list
        ]
135
        # if only 1 place, do not need to keep order
136
        self._blocking_queue = core.init_lod_tensor_blocking_queue(
137 138
            core.Variable(), self._blocking_queue_capacity,
            len(self._places) > 1)
139 140
        self._reader = core.create_py_reader(
            self._blocking_queue, self._var_names, self._shapes, self._dtypes,
141 142
            self._need_check_feed, self._places, self._use_buffer_reader, True,
            self._pin_memory)
143

144 145
        self._thread = threading.Thread(
            target=self._thread_loop, args=(_current_expected_place(), ))
146 147 148
        self._thread.daemon = True
        self._thread.start()

149
    def _thread_loop(self, legacy_expected_place):
150
        try:
151 152 153 154 155 156 157
            #NOTE(zhiqiu): Set the expected place for new thread as the same as father thread,
            # and it will call platform::SetDeviceId() in c++ internally.
            # If we do not set cudaDeviceId in new thread, the default cudaDeviceId will be 0,
            # Which may cost hundreds of MB of GPU memory on CUDAPlace(0) if calling some cuda 
            # APIs in this thread.
            _set_expected_place(legacy_expected_place)

158 159
            for indices in self._sampler_iter:
                # read data from dataset in mini-batch
160
                batch = self._dataset_fetcher.fetch(indices)
161

162 163 164 165
                # flat batch and record structure infos
                batch, structure = _flatten_batch(batch)
                self._structure_infos.append(structure)

166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
                # pack as LoDTensorArray
                array = core.LoDTensorArray()
                for slot in batch:
                    if not isinstance(slot, core.LoDTensor):
                        tmp = core.LoDTensor()
                        tmp.set(slot, core.CPUPlace())
                        slot = tmp

                    array.append(slot)

                if not self._blocking_queue.push(array):
                    break

            self._blocking_queue.close()
            self._thread = None
181 182
        except StopIteration:
            self._blocking_queue.close()
183 184 185 186 187 188 189 190 191
        except Exception:
            self._blocking_queue.kill()
            self._thread = None
            logging.warning("DataLoader reader thread raised an exception.")
            six.reraise(*sys.exc_info())

    def __next__(self):
        try:
            if in_dygraph_mode():
192 193
                data = self._reader.read_next_var_list()
                data = _restore_batch(data, self._structure_infos.pop(0))
194 195
            else:
                if self._return_list:
196 197 198 199 200 201 202 203
                    data = self._reader.read_next_list()
                    data = [
                        _restore_batch(d, s)
                        for d, s in zip(data, self._structure_infos[:len(
                            self._places)])
                    ]
                    self._structure_infos = self._structure_infos[len(
                        self._places):]
204 205 206 207
                    # static graph organized data on multi-device with list, if
                    # place number is 1, there is only 1 device, extra the data
                    # from list for devices to be compatible with dygraph mode
                    if len(self._places) == 1:
208
                        data = data[0]
209
                else:
210 211 212
                    data = self._reader.read_next()

            return data
213
        except StopIteration:
214
            self._reader.shutdown()
215 216 217 218 219 220
            six.reraise(*sys.exc_info())

    # python2 compatibility
    def next(self):
        return self.__next__()

221 222 223 224 225 226
    def __del__(self):
        # _blocking_queue in keep order mode holds sub-threads
        # need to release thread resources on unexpected exit
        if self._blocking_queue:
            self._blocking_queue.close()

227 228 229 230 231 232 233 234 235 236 237 238 239

class _DataLoaderIterMultiProcess(_DataLoaderIterBase):
    def __init__(self, loader):
        super(_DataLoaderIterMultiProcess, self).__init__(loader)

        assert self._num_workers > 0,  "Multi-process DataLoader " \
                    "invalid num_workers({})".format(self._num_workers)

        # subprocess wrokers' result queue
        self._data_queue = None

        # data get from _data_queue will be reordered by _rcvd_idx
        # for data order keeping, data index not equal _rcvd_idx 
240
        # will be cached in _task_infos
241 242 243
        self._send_idx = 0
        self._rcvd_idx = 0
        self._batches_outstanding = 0
244
        self._task_infos = {}
245
        self._structure_infos = []
246 247 248 249 250 251 252 253 254 255

        # indices outstand as _outstanding_capacity at first, and
        # blocking_queue capacity is also _outstanding_capacity.
        # _outstanding_capacity here to make sure each indices_queue
        # has at least 2 indices, and outstanding batch cached
        # output data for at least 2 iterations(Note that len(_places)
        # batches will be composed as an iteration output)
        self._outstanding_capacity = 2 * max(self._num_workers,
                                             len(self._places))

256 257 258
        # see _try_put_indices
        self._thread_lock = threading.Lock()

259
        # init workers and indices queues and put 2 indices in each indices queue
260 261 262 263
        self._init_workers()
        for _ in range(self._outstanding_capacity):
            self._try_put_indices()

264 265 266
        self._init_thread()
        self._shutdown = False

267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
    def _init_workers(self):
        # multiprocess worker and indice queue list initial as empty
        self._workers = []
        self._worker_status = []
        self._indices_queues = []
        self._workers_idx_cycle = itertools.cycle(range(self._num_workers))

        # create data_queue for workers
        self._data_queue = multiprocessing.Queue()

        # event for workers and thread, thread event is only need 
        # in multi-processing mode
        self._workers_done_event = multiprocessing.Event()
        self._thread_done_event = threading.Event()

        for i in range(self._num_workers):
            indices_queue = multiprocessing.Queue()
            self._indices_queues.append(indices_queue)
            worker = multiprocessing.Process(
286
                target=_worker_loop,
287 288
                args=(self._dataset, self._dataset_kind, indices_queue,
                      self._data_queue, self._workers_done_event,
289 290 291
                      self._auto_collate_batch, self._collate_fn,
                      self._worker_init_fn, i, self._num_workers,
                      self._use_shared_memory))
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
            worker.daemon = True
            worker.start()
            self._workers.append(worker)
            self._worker_status.append(True)

        core._set_process_pids(id(self), tuple(w.pid for w in self._workers))
        _set_SIGCHLD_handler()

    def _clear_and_remove_data_queue(self):
        if self._data_queue is not None:
            while True:
                try:
                    self._data_queue.get_nowait()
                except:
                    self._data_queue.cancel_join_thread()
                    self._data_queue.close()
                    break

    def _init_thread(self):
        self._var_names = [v.name for v in self._feed_list]
        self._shapes = [v.shape for v in self._feed_list]
        self._dtypes = [v.dtype for v in self._feed_list]
        self._need_check_feed = [
            v.desc.need_check_feed() for v in self._feed_list
        ]
317
        # if only 1 place, do not need to keep order
318
        self._blocking_queue = core.init_lod_tensor_blocking_queue(
319
            core.Variable(), self._outstanding_capacity, len(self._places) > 1)
320 321
        self._reader = core.create_py_reader(
            self._blocking_queue, self._var_names, self._shapes, self._dtypes,
322 323
            self._need_check_feed, self._places, self._use_buffer_reader, True,
            self._pin_memory)
324 325

        self._thread_done_event = threading.Event()
326 327
        self._thread = threading.Thread(
            target=self._thread_loop, args=(_current_expected_place(), ))
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
        self._thread.daemon = True
        self._thread.start()

    def _shutdown_worker(self, worker_id):
        if self._worker_status[worker_id]:
            self._indices_queues[worker_id].put(None)
            self._worker_status[worker_id] = False

    def _try_shutdown_all(self):
        if not self._shutdown:
            try:
                self._exit_thread_expectedly()
                self._clear_and_remove_data_queue()

                # set _workers_done_event should be set before put None
                # to indices_queue, workers wll exit on reading None from
                # indices_queue
                self._workers_done_event.set()
                for i in range(self._num_workers):
                    self._shutdown_worker(i)

                for w in self._workers:
                    w.join()
                for q in self._indices_queues:
                    q.cancel_join_thread()
                    q.close()
            finally:
                core._erase_process_pids(id(self))
                self._shutdown = True

    def _exit_thread_expectedly(self):
        self._thread_done_event.set()
        self._blocking_queue.close()

    def _exit_thread_unexpectedly(self):
        self._thread_done_event.set()
        self._blocking_queue.kill()
        logging.error("DataLoader reader thread raised an exception!")

367 368 369 370 371 372 373 374
    def _thread_loop(self, legacy_expected_place):
        #NOTE(zhiqiu): Set the expected place for new thread as the same as father thread,
        # and it will call platform::SetDeviceId() in c++ internally.
        # If we do not set cudaDeviceId in new thread, the default cudaDeviceId will be 0,
        # Which may cost hundreds of MB of GPU memory on CUDAPlace(0) if calling some cuda 
        # APIs in this thread.
        _set_expected_place(legacy_expected_place)

375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
        while not self._thread_done_event.is_set():
            batch = self._get_data()
            if not self._thread_done_event.is_set():
                if batch is None:
                    self._exit_thread_expectedly()
                else:
                    try:
                        # pack as LoDTensorArray
                        array = core.LoDTensorArray()
                        if self._use_shared_memory:
                            for tensor in batch:
                                array.append(tensor)
                        else:
                            # LoDTensor not in shared memory is not
                            # serializable, cannot be create in workers
                            for slot in batch:
                                if not isinstance(slot, core.LoDTensor):
                                    tmp = core.LoDTensor()
                                    tmp.set(slot, core.CPUPlace())
                                    slot = tmp
                                array.append(slot)

                        if not self._blocking_queue.push(array):
                            self._blocking_queue.close()
                    except:
                        self._exit_thread_unexpectedly()
                        six.reraise(*sys.exc_info())
                    finally:
                        self._rcvd_idx += 1

    def _get_data(self):
        while not self._thread_done_event.is_set():
407 408 409 410 411 412
            # For IterableDataset, batch indices is generated infinitely
            # for each worker to raise StopIteration, but a StopIteration
            # raising process will discard a batch indices which is count
            # in _send_idx but will not increase _rcvd_idx, so we check 
            # whether the worker is still alive here to skip the discarded
            # batch indices and increase _rcvd_idx
413 414
            if self._dataset_kind == _DatasetKind.ITER:
                while self._rcvd_idx < self._send_idx:
415
                    sys.stdout.flush()
416
                    info = self._task_infos[self._rcvd_idx]
417
                    if len(info) == 3 or self._worker_status[info[0]]:
418 419 420 421 422 423 424 425 426 427 428 429 430
                        break
                    del self._task_infos[self._rcvd_idx]
                    self._rcvd_idx += 1
                    self._batches_outstanding -= 1
                else:
                    # NOTE: _rcvd_idx and _send_idx only record batches among
                    #       workers, if batches among workers drained, there
                    #       may also be data in blocking queue
                    if self._batches_outstanding < len(self._places):
                        return None
                    continue

            if self._rcvd_idx in self._task_infos and \
431 432 433 434
                    len(self._task_infos[self._rcvd_idx]) == 3:
                info = self._task_infos.pop(self._rcvd_idx)
                self._structure_infos.append(info[2])
                return info[1]
435

436 437 438
            try:
                # [ avoid hang ]: main process may blocking at _reader.read_next when
                # KeyboardInterrupt, we do following tradeoff:
439
                # 1. get data with timeout, MP_STATUS_CHECK_INTERVAL(5s) as timeout
440 441 442 443 444 445 446
                #    default, if KeyboardInterrupt blocking, failed workers will be
                #    checked and raise RuntimeError to quit DataLoader in timeout
                #    exception handling.
                # 2. if get data timeout and check workers all alive, continue to
                #    get data again
                data = self._data_queue.get(timeout=self._timeout)
            except Exception as e:
447 448 449 450 451
                # check if thread done event set when waiting data
                if self._thread_done_event.is_set():
                    continue

                # check failed workers
452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
                failed_workers = []
                for i, w in enumerate(self._workers):
                    if self._worker_status[i] and not w.is_alive():
                        failed_workers.append(w)
                        self._shutdown_worker(i)
                if len(failed_workers) > 0:
                    self._exit_thread_unexpectedly()
                    pids = ', '.join(str(w.pid) for w in failed_workers)
                    raise RuntimeError("DataLoader {} workers exit unexpectedly, " \
                                "pids: {}".format(len(failed_workers), pids))

                # get(timeout) will call _poll(timeout) and may raise IOError
                if isinstance(e, queue.Empty) or isinstance(e, IOError):
                    # continue on timeout to keep getting data from queue
                    continue

                self._exit_thread_unexpectedly()
                logging.error("DataLoader reader thread failed({}) to read data from " \
                              "workers' result queue.".format(e))
                six.reraise(*sys.exc_info())
            else:
473 474 475 476 477 478 479 480 481 482 483 484
                if self._dataset_kind == _DatasetKind.ITER and isinstance(
                        data, _IterableDatasetStopIteration):
                    # if a worker get StopIteraion, we shutdown this worker,
                    # note that this batch indices to trigger StopIteration
                    # is discard, outstanding batch number should be decrease
                    # and another indices should be put for other workers
                    # may still working.
                    self._shutdown_worker(data.worker_id)
                    self._batches_outstanding -= 1
                    self._try_put_indices()
                    continue

485 486 487 488 489
                idx, batch, structure = data
                if isinstance(batch, _WorkerException):
                    self._exit_thread_unexpectedly()
                    batch.reraise()

490
                if idx == self._rcvd_idx:
491
                    del self._task_infos[idx]
492
                    self._structure_infos.append(structure)
493 494
                    return batch
                else:
495
                    self._task_infos[idx] += (batch, structure)
496 497 498
                    continue

    def _try_put_indices(self):
499
        assert self._batches_outstanding <= self._outstanding_capacity, \
500
                    "too many indices have been put to queue"
501 502 503 504 505 506 507 508 509 510 511 512 513 514
        # In multi-process mode for IterableDataset, _try_put_indices will
        # be called both in main process(for our implement has blocking queue,
        # and blocking queue read is in main process) and thread, which may
        # cause error following error
        #   1. "ValueError: generator already executing" in next(self._sampler_iter)
        #   2. re-enter in increase _send_idx
        # add a lock for threading save, for _try_put_indices is only a slight
        # function which is not in data reading pipeline, this lock almost no
        # influence on performance
        with self._thread_lock:
            try:
                indices = next(self._sampler_iter)
            except StopIteration:
                return
515

516 517 518 519 520 521
            for i in range(self._num_workers):
                worker_idx = next(self._workers_idx_cycle)
                if self._worker_status[worker_idx]:
                    break
            else:
                return
522

523 524 525 526
            self._indices_queues[worker_idx].put((self._send_idx, indices))
            self._task_infos[self._send_idx] = (worker_idx, )
            self._batches_outstanding += 1
            self._send_idx += 1
527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545

    def __del__(self):
        self._try_shutdown_all()

    def __next__(self):
        try:
            # _batches_outstanding here record the total batch data number
            # in 'from after _try_put_indices to beforeoutput data', this
            # value should be _outstanding_capacity if data is not drained,
            # if _batches_outstanding is less than _places number, there are
            # no enough data to generate next output, close blocking_queue and
            # set _thread_done_event here, py_reader will raise StopIteration,
            # end workers and indices_queues in StopIteration handling
            if self._batches_outstanding < len(self._places):
                self._thread_done_event.set()
                self._blocking_queue.close()

            if in_dygraph_mode():
                data = self._reader.read_next_var_list()
546
                data = _restore_batch(data, self._structure_infos.pop(0))
547 548 549
            else:
                if self._return_list:
                    data = self._reader.read_next_list()
550 551 552 553 554 555 556
                    data = [
                        _restore_batch(d, s)
                        for d, s in zip(data, self._structure_infos[:len(
                            self._places)])
                    ]
                    self._structure_infos = self._structure_infos[len(
                        self._places):]
557 558 559 560 561 562 563 564 565 566
                    # static graph organized data on multi-device with list, if
                    # place number is 1, there is only 1 device, extra the data
                    # from list for devices to be compatible with dygraph mode
                    if len(self._places) == 1:
                        data = data[0]
                else:
                    data = self._reader.read_next()
            self._on_output_batch()
            return data
        except StopIteration:
567
            self._reader.shutdown()
568 569 570 571 572 573 574 575 576 577 578
            self._try_shutdown_all()
            six.reraise(*sys.exc_info())

    # python2 compatibility
    def next(self):
        return self.__next__()

    def _on_output_batch(self):
        for _ in range(len(self._places)):
            self._batches_outstanding -= 1
            self._try_put_indices()