tensor.py 23.1 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
Y
yuyang18 已提交
9
# Unlessf required by applicable law or agreed to in writing, software
D
dzhwinter 已提交
10 11 12 13 14
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
from ..layer_helper import LayerHelper
18
from ..param_attr import ParamAttr
X
xuwei06 已提交
19 20
from ..framework import convert_np_dtype_to_dtype_
from ..framework import Variable
21
from ..initializer import Constant, force_init_on_cpu
22
from ..core import VarDesc
23
from .layer_function_generator import templatedoc
X
xuwei06 已提交
24
import numpy
Y
Yu Yang 已提交
25 26

__all__ = [
L
li099 已提交
27 28 29 30
    'create_tensor', 'create_parameter', 'create_global_var', 'cast',
    'tensor_array_to_tensor', 'concat', 'sums', 'assign',
    'fill_constant_batch_size_like', 'fill_constant', 'argmin', 'argmax',
    'argsort', 'ones', 'zeros', 'reverse', 'has_inf', 'has_nan', 'isfinite'
Y
Yu Yang 已提交
31 32 33
]


X
xuwei06 已提交
34
def create_tensor(dtype, name=None, persistable=False):
35
    """
Q
update  
qiaolongfei 已提交
36
    Create an variable, which will hold a LoDTensor with data type dtype.
37 38

    Args:
Q
update  
qiaolongfei 已提交
39
        dtype(string): 'float32'|'int32'|..., the data type of the
40
            created tensor.
Q
update  
qiaolongfei 已提交
41
        name(string): The name of the created tensor, if not set,
42
            the name will be a random unique one.
Q
update  
qiaolongfei 已提交
43
        persistable(bool): Set the persistable flag of the create tensor.
44 45 46 47 48 49 50 51 52

    Returns:
        Variable: The tensor variable storing the created tensor.

    Examples:
        .. code-block:: python

          tensor = fluid.layers.create_tensor(dtype='float32')
    """
Y
Yu Yang 已提交
53
    helper = LayerHelper("create_tensor", **locals())
X
xuwei06 已提交
54 55
    return helper.create_variable(
        name=helper.name, dtype=dtype, persistable=persistable)
Y
Yu Yang 已提交
56 57


58 59
def create_parameter(shape,
                     dtype,
X
xuwei06 已提交
60
                     name=None,
61 62 63 64
                     attr=None,
                     is_bias=False,
                     default_initializer=None):
    """
Y
yuyang18 已提交
65 66 67 68 69 70
    Create a parameter. The parameter is a learnable variable, which can have
    gradient, and can be optimized.

    NOTE: this is a very low-level API. This API is useful when you create
    operator by your self. instead of using layers.

71 72 73 74 75 76 77 78 79 80 81
    Args:
        shape(list[int]): shape of the parameter
        dtype(string): element type of the parameter
        attr(ParamAttr): attributes of the parameter
        is_bias(bool): This can affect which default initializer is chosen
                       when default_initializer is None. If is_bias,
                       initializer.Constant(0.0) will be used. Otherwise,
                       Xavier() will be used.
        default_initializer(Initializer): initializer for the parameter

    Returns:
Y
yuyang18 已提交
82 83 84 85 86 87
        the created parameter.

    Examples:
        >>> W = fluid.layers.create_parameter(shape=[784, 200], dtype='float32')
        >>> data = fluid.layers.data(name="img", shape=[64, 784], append_batch_size=False)
        >>> hidden = fluid.layers.matmul(x=data, y=W)
88
    """
Q
Qiao Longfei 已提交
89
    helper = LayerHelper("create_parameter", **locals())
90
    if attr is None:
X
xuwei06 已提交
91
        attr = ParamAttr(name=name)
92 93 94 95
    return helper.create_parameter(attr, shape, dtype, is_bias,
                                   default_initializer)


96 97 98 99 100 101 102
def create_global_var(shape,
                      value,
                      dtype,
                      persistable=False,
                      force_cpu=False,
                      name=None):
    """
X
Xin Pan 已提交
103
    Create a new tensor variable with value in the global block(block 0).
F
fengjiayi 已提交
104

105 106
    Args:
        shape(list[int]): shape of the variable
F
fengjiayi 已提交
107 108 109 110 111 112 113 114 115 116
        value(float): the value of the variable. The new created 
                      variable will be filled with it.
        dtype(string): data type of the variable
        persistable(bool): if this variable is persistable. 
                           Default: False
        force_cpu(bool): force this variable to be on CPU. 
                         Default: False
        name(str|None): The name of the variable. If set to None the variable 
                        name will be generated automatically. 
                        Default: None
117 118 119

    Returns:
        Variable: the created Variable
F
fengjiayi 已提交
120 121 122 123 124 125

    Examples:
        .. code-block:: python

            var = fluid.create_global_var(shape=[2,3], value=1.0, dtype='float32', 
                                 persistable=True, force_cpu=True, name='new_var')
126
    """
Q
Qiao Longfei 已提交
127 128 129 130
    helper = LayerHelper("global_var", **locals())
    var = helper.create_global_variable(
        dtype=dtype, shape=shape, persistable=persistable, name=name)
    helper.set_variable_initializer(
131 132
        var, initializer=Constant(
            value=float(value), force_cpu=force_cpu))
Q
Qiao Longfei 已提交
133 134 135
    return var


136
def cast(x, dtype):
Y
Yu Yang 已提交
137
    """
Y
Yibing Liu 已提交
138 139 140 141 142 143 144 145 146 147 148 149
    This layer takes in the Variable :attr:`x` with :attr:`x.dtype` and casts 
    it to the output with :attr:`dtype`.

    Args:
        x (Variable): The input Variable for casting.
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of the output Variable.

    Returns:
        Variable: The output Variable after casting.

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
150

Y
Yibing Liu 已提交
151 152
            data = fluid.layers.data(name='x', shape=[13], dtype='float32')
            result = fluid.layers.cast(x=data, dtype='float64')
Y
Yu Yang 已提交
153 154
    """
    helper = LayerHelper('cast', **locals())
X
Xin Pan 已提交
155
    out = helper.create_variable_for_type_inference(dtype=dtype)
Y
Yu Yang 已提交
156 157 158 159 160 161 162 163 164
    helper.append_op(
        type='cast',
        inputs={'X': [x]},
        outputs={'Out': [out]},
        attrs={'in_dtype': x.dtype,
               'out_dtype': out.dtype})
    return out


165
def concat(input, axis=0, name=None):
Y
Yu Yang 已提交
166
    """
167 168 169
    **Concat**

    This function concatenates the input along the axis mentioned
Y
Yu Yang 已提交
170
    and returns that as the output.
171 172 173 174

    Args:
        input(list): List of tensors to be concatenated
        axis(int): Integer axis along which the tensors will be concatenated
175 176
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
177 178 179 180 181 182

    Returns:
        Variable: Output variable of the concatenation

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
183

F
fengjiayi 已提交
184
           out = fluid.layers.concat(input=[Efirst, Esecond, Ethird, Efourth])
Y
Yu Yang 已提交
185 186
    """
    helper = LayerHelper('concat', **locals())
X
Xin Pan 已提交
187
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
Y
Yu Yang 已提交
188 189 190 191 192 193 194 195
    helper.append_op(
        type='concat',
        inputs={'X': input},
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


L
li099 已提交
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
def tensor_array_to_tensor(input, axis=1, name=None):
    """
    This function concatenates the input LodTensorArray along the axis mentioned
    and returns that as the output.

    A simple example as below:
    
    .. code-block:: text
    
        Given:

        input.data = {[[0.6, 0.1, 0.3],
                       [0.5, 0.3, 0.2]],
                      [[1.3],
                       [1.8]],
                      [[2.3, 2.1],
                       [2.5, 2.4]]}
        
        axis = 1
    
        Then:

        output.data = [[0.6, 0.1, 0.3, 1.3, 2.3, 2.1],
                       [0.5, 0.3, 0.2, 1.8, 2.5, 2.4]]

        output_index.data = [3, 1, 2]

    Args:
        input(list): Input LodTensorArray
        axis(int): Integer axis along which the tensors will be concatenated
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation
        Variable: The input LodTensorArray items' dims along the axis

    Examples:
        .. code-block:: python

           output, output_index = fluid.layers.tensor_array_to_tensor(input=tensor_array)
    """
L
li099 已提交
238
    helper = LayerHelper('tensor_array_to_tensor', **locals())
L
li099 已提交
239 240 241
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    out_index = helper.create_variable_for_type_inference(dtype="int32")
    helper.append_op(
L
li099 已提交
242
        type='tensor_array_to_tensor',
L
li099 已提交
243 244 245 246 247 248 249
        inputs={'X': input},
        outputs={'Out': [out],
                 'OutIndex': [out_index]},
        attrs={'axis': axis})
    return out, out_index


250
def sums(input, out=None):
F
fengjiayi 已提交
251 252
    """
    This function performs the sum operation on the input and returns the
K
kavyasrinet 已提交
253 254 255 256 257
    result as the output.

    Args:
        input (Variable|list): The input tensor that has the elements
                               that need to be summed up.
F
fengjiayi 已提交
258
        out (Variable|None): Output parameter. The sum result.
F
fengjiayi 已提交
259
                             Default: None
K
kavyasrinet 已提交
260 261

    Returns:
F
fengjiayi 已提交
262
        Variable: the sum of input. The same as the argument 'out'
K
kavyasrinet 已提交
263 264

    Examples:
F
fengjiayi 已提交
265
        .. code-block:: python
K
kavyasrinet 已提交
266 267 268 269 270 271

          tmp = fluid.layers.zeros(shape=[10], dtype='int32')
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
          a0 = layers.array_read(array=tmp, i=i)
          i = layers.increment(x=i)
          a1 = layers.array_read(array=tmp, i=i)
Y
Yu Yang 已提交
272 273
          mean_a0 = layers.mean(a0)
          mean_a1 = layers.mean(a1)
K
kavyasrinet 已提交
274
          a_sum = layers.sums(input=[mean_a0, mean_a1])
Y
Yu Yang 已提交
275 276 277
    """
    helper = LayerHelper('sum', **locals())
    if out is None:
X
Xin Pan 已提交
278 279
        out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())
T
tensor-tang 已提交
280 281 282 283 284
    helper.append_op(
        type='sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'use_mkldnn': False})
Y
Yu Yang 已提交
285 286 287
    return out


F
fengjiayi 已提交
288
def assign(input, output=None):
289 290 291 292 293 294
    """
    **Assign**

    This function copies the *input* Variable to the *output* Variable.

    Args:
X
xuwei06 已提交
295
        input(Variable|numpy.ndarray): The source variable
F
fengjiayi 已提交
296
        output(Variable|None): The destination variable
297 298 299 300 301 302

    Returns:
        Variable: The destination variable that was supplied as the *output*.

    Examples:
        .. code-block:: python
303

304 305 306 307
          out = fluid.layers.create_tensor(dtype='float32')
          hidden = fluid.layers.fc(input=data, size=10)
          fluid.layers.assign(hidden, out)
    """
Y
Yu Yang 已提交
308
    helper = LayerHelper('assign', **locals())
F
fengjiayi 已提交
309
    if output is None:
X
Xin Pan 已提交
310
        output = helper.create_variable_for_type_inference(dtype=input.dtype)
X
xuwei06 已提交
311 312
    if isinstance(input, Variable):
        helper.append_op(
R
robot 已提交
313
            type='assign', inputs={'X': [input]}, outputs={'Out': [output]})
X
xuwei06 已提交
314 315
    elif isinstance(input, numpy.ndarray):
        dtype = convert_np_dtype_to_dtype_(input.dtype)
316
        if dtype == VarDesc.VarType.FP32:
X
xuwei06 已提交
317
            value_name = "fp32_values"
318
            values = [float(v) for v in input.flat]
319
        elif dtype == VarDesc.VarType.INT32:
X
xuwei06 已提交
320
            value_name = "int32_values"
321
            values = [int(v) for v in input.flat]
X
xuwei06 已提交
322 323
        else:
            raise ValueError("Unsupported dtype %s", input.dtype)
324 325 326
        if input.size > 1024 * 1024:
            raise ValueError("The size of input is too big. Please consider "
                             "saving it to file and 'load_op' to load it")
X
xuwei06 已提交
327 328 329 330 331 332 333

        helper.append_op(
            type='assign_value',
            outputs={'Out': [output]},
            attrs={
                'dtype': dtype,
                'shape': list(input.shape),
334
                value_name: values
X
xuwei06 已提交
335 336 337 338
            })
    else:
        raise ValueError("Wrong type for assign input: %s" % type(input))

Y
Yu Yang 已提交
339 340 341
    return output


Q
QI JUN 已提交
342
def fill_constant(shape, dtype, value, force_cpu=False, out=None):
Y
Yu Yang 已提交
343
    """
344 345
    **fill_constant**

346 347
    This function creates a tensor with specified `shape` and `dtype`, and
    initializes it with a constant specifed by `value`.
K
kavyasrinet 已提交
348

349
    The attribute `stop_gradient` of the created tensor is set to True.
350 351

    Args:
352
        shape(tuple|list|None): Shape of the output tensor.
353
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of the output tensor.
354 355
        value(float): The constant value used to initialize the output tensor.
        out(Variable): The output tensor.
356
        force_cpu(True|False): data should be on CPU if set true.
357 358

    Returns:
359
        Variable: The tensor variable storing the output.
360 361 362 363 364

    Examples:
        .. code-block:: python

          data = fluid.layers.fill_constant(shape=[1], value=0, dtype='int64')
Y
Yu Yang 已提交
365
    """
366

Y
Yu Yang 已提交
367 368
    helper = LayerHelper("fill_constant", **locals())
    if out is None:
X
Xin Pan 已提交
369
        out = helper.create_variable_for_type_inference(dtype=dtype)
Y
Yu Yang 已提交
370 371 372 373
    helper.append_op(
        type='fill_constant',
        inputs={},
        outputs={'Out': [out]},
Q
QI JUN 已提交
374 375 376 377
        attrs={
            'shape': shape,
            'dtype': out.dtype,
            'value': float(value),
378
            'force_cpu': force_cpu or force_init_on_cpu()
Q
QI JUN 已提交
379
        })
Y
Yu Yang 已提交
380 381 382 383
    out.stop_gradient = True
    return out


Y
yuyang18 已提交
384
@templatedoc()
Y
Yu Yang 已提交
385 386 387 388 389
def fill_constant_batch_size_like(input,
                                  shape,
                                  dtype,
                                  value,
                                  input_dim_idx=0,
390
                                  output_dim_idx=0):
391
    """
Y
yuyang18 已提交
392
    ${comment}
393 394 395 396

    It also sets *stop_gradient* to True.

    Args:
Y
yuyang18 已提交
397
        input(${input_type}): ${input_comment}.
398

Y
yuyang18 已提交
399
        shape(${shape_type}): ${shape_comment}.
400

Y
yuyang18 已提交
401 402 403
        dtype(${dtype_type}): ${dtype_comment}.

        value(${value_type}): ${value_comment}.
404

Y
yuyang18 已提交
405 406 407 408 409
        input_dim_idx(${input_dim_idx_type}): ${input_dim_idx_comment}.

        output_dim_idx(${output_dim_idx_type}): ${output_dim_idx_comment}.

    Returns:
Y
yuyang18 已提交
410
        ${out_comment}.
H
haowang101779990 已提交
411 412 413 414 415 416 417 418

    Examples:

        .. code-block:: python

             data = fluid.layers.fill_constant_batch_size_like(
                         input=like, shape=[1], value=0, dtype='int64')

419
    """
Y
Yu Yang 已提交
420
    helper = LayerHelper("fill_constant_batch_size_like", **locals())
X
Xin Pan 已提交
421
    out = helper.create_variable_for_type_inference(dtype=dtype)
Y
Yu Yang 已提交
422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
    helper.append_op(
        type='fill_constant_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': [out]},
        attrs={
            'shape': shape,
            'dtype': out.dtype,
            'value': float(value),
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx
        })
    out.stop_gradient = True
    return out


S
sneaxiy 已提交
437 438 439 440
def argmin(x, axis=0):
    """
    **argmin**

441
    This function computes the indices of the min elements
S
sneaxiy 已提交
442 443 444 445 446 447
    of the input tensor's element along the provided axis.

    Args:
        x(Variable): The input to compute the indices of
                     the min elements.
        axis(int): Axis to compute indices along.
F
fengjiayi 已提交
448

S
sneaxiy 已提交
449 450
    Returns:
        Variable: The tensor variable storing the output
F
fengjiayi 已提交
451

S
sneaxiy 已提交
452 453
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
454

S
sneaxiy 已提交
455
          out = fluid.layers.argmin(x=in, axis=0)
456
          out = fluid.layers.argmin(x=in, axis=-1)
S
sneaxiy 已提交
457 458
    """
    helper = LayerHelper("arg_min", **locals())
X
Xin Pan 已提交
459
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
S
sneaxiy 已提交
460 461 462 463 464 465 466 467 468 469 470 471
    helper.append_op(
        type='arg_min',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


def argmax(x, axis=0):
    """
    **argmax**

472
    This function computes the indices of the max elements
S
sneaxiy 已提交
473 474 475 476 477 478
    of the input tensor's element along the provided axis.

    Args:
        x(Variable): The input to compute the indices of
                     the max elements.
        axis(int): Axis to compute indices along.
F
fengjiayi 已提交
479

S
sneaxiy 已提交
480 481
    Returns:
        Variable: The tensor variable storing the output
F
fengjiayi 已提交
482

S
sneaxiy 已提交
483 484
    Examples:
        .. code-block:: python
F
fengjiayi 已提交
485

S
sneaxiy 已提交
486
          out = fluid.layers.argmax(x=in, axis=0)
487
          out = fluid.layers.argmax(x=in, axis=-1)
S
sneaxiy 已提交
488 489
    """
    helper = LayerHelper("arg_max", **locals())
X
Xin Pan 已提交
490
    out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
S
sneaxiy 已提交
491 492 493 494 495 496 497 498
    helper.append_op(
        type='arg_max',
        inputs={'X': x},
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


499
def argsort(input, axis=-1, name=None):
Y
Yibing Liu 已提交
500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
    """
    Performs sorting on the input Variable along the given axis, and outputs 
    sorted data Varibale and its corresponding index Variable with the same 
    shape as :attr:`input`.

    .. code-block:: text
    
        For example, the given axis is -1 and the input Variable

            input = [[0.15849551, 0.45865775, 0.8563702 ],
                     [0.12070083, 0.28766365, 0.18776911]],

        after argsort, the sorted Vairable becomes

            out = [[0.15849551, 0.45865775, 0.8563702 ],
                   [0.12070083, 0.18776911, 0.28766365]],

        and the sorted indices along the given axis turn outs to be

            indices = [[0, 1, 2], 
                       [0, 2, 1]]

    Args:
        input(Variable): The input Variable for sorting.
        axis(int): The axis along which to sort the input Variable. When 
                   :attr:`axis` < 0, the actual axis will be :attr:`axis` + 
                   rank(:attr:`input`). Default -1, the last dimension.
527 528
        name(str|None): (optional) A name for this layer. If set None, the 
                   layer will be named automatically.
Y
Yibing Liu 已提交
529 530 531 532 533 534 535 536 537 538 539

    Returns:
        tuple: A tuple of sorted data Variable and the sorted indices.

    Examples:
        .. code-block:: python

            input = fluid.layers.data(data=[2, 3])
            out, indices = fluid.layers.argsort(input, axis=0)
    """
    helper = LayerHelper("argsort", **locals())
X
Xin Pan 已提交
540 541 542 543
    out = helper.create_variable_for_type_inference(
        dtype=input.dtype, stop_gradient=True)
    ids = helper.create_variable_for_type_inference(
        VarDesc.VarType.INT64, stop_gradient=True)
Y
Yibing Liu 已提交
544 545 546 547
    helper.append_op(
        type='argsort',
        inputs={'X': input},
        outputs={'Out': out,
548 549
                 'Indices': ids},
        attrs={'axis': axis})
Y
Yibing Liu 已提交
550 551 552
    return out, ids


Y
Yang Yu 已提交
553
def ones(shape, dtype, force_cpu=False):
Y
Yu Yang 已提交
554
    """
555 556 557 558 559 560 561 562 563
    **ones**

    This function creates a tensor of specified *shape* and
    *dtype*, and initializes this with 1.

    It also sets *stop_gradient* to True.

    Args:
        shape(tuple|list|None): Shape of output tensor
564
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of output tensor
565 566 567 568 569 570 571 572

    Returns:
        Variable: The tensor variable storing the output

    Examples:
        .. code-block:: python

          data = fluid.layers.ones(shape=[1], dtype='int64')
Y
Yu Yang 已提交
573 574 575 576
    """
    return fill_constant(value=1.0, **locals())


Y
Yang Yu 已提交
577
def zeros(shape, dtype, force_cpu=False):
Y
Yu Yang 已提交
578
    """
579 580 581 582 583 584 585 586
    **zeros**

    This function creates a tensor of specified *shape* and
    *dtype*, and initializes this with 0.

    It also sets *stop_gradient* to True.

    Args:
W
wanghaoshuang 已提交
587 588 589
        shape(tuple|list|None): Shape of output tensor.
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of output tensor.
        force_cpu(bool, default False): Whether to make output stay on CPU.
590 591

    Returns:
W
wanghaoshuang 已提交
592
        Variable: The tensor variable storing the output.
593 594 595 596 597

    Examples:
        .. code-block:: python

          data = fluid.layers.zeros(shape=[1], dtype='int64')
Y
Yu Yang 已提交
598 599
    """
    return fill_constant(value=0.0, **locals())
600 601


F
fengjiayi 已提交
602 603 604 605 606 607 608 609
def reverse(x, axis):
    """
    **reverse**

    This function reverse the input 'x' along given axises.

    Args:
        x(Vairbale): the input to be reversed.
610 611 612
        axis(int|tuple|list): Axis that along which order of elements
                    is reversed. If it is a tuple or a list, reversing
                    will be apply on each axis in the tuple or list.
F
fengjiayi 已提交
613 614 615 616 617 618 619 620 621 622 623 624 625 626

    Returns:
        Variable: The reversed tensor.

    Examples:
        .. code-block:: python

          out = fluid.layers.reverse(x=in, axis=0)
          # or:
          out = fluid.layers.reverse(x=in, axis=[0,1])
    """
    if isinstance(axis, int):
        axis = [axis]
    helper = LayerHelper("reverse", **locals())
X
Xin Pan 已提交
627
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
F
fengjiayi 已提交
628 629
    helper.append_op(
        type='reverse',
W
Wu Yi 已提交
630
        inputs={'X': x},
F
fengjiayi 已提交
631 632 633 634 635
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


636 637 638 639 640 641 642
def save(x, file_path, overwrite=True):
    """
    Saves a variable as a file.

    Args:
        x(variable): The Tensor/LoDTensor to be saved.
        file_path(str): The file path where the variable will be saved.
643 644 645
        overwrite(bool): Whether or not cover the given file when it has already
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
646 647 648 649 650 651 652 653 654 655 656 657 658 659 660
    """
    helper = LayerHelper("save", **locals())
    helper.append_op(
        type="save",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def save_combine(x, file_path, overwrite=True):
    """
    Saves a list of variables into a single file.

    Args:
661 662
        x(list): A list of Tensor/LoDTensor variables to be saved together in
                 a single file.
663
        file_path(str): The file path where variables will be saved.
664
        overwrite(bool): Whether or not cover the given file when it has already
665 666
            existed. If it's set 'False' and the file is existed, a runtime
            error will be thrown.
667 668 669 670 671 672 673 674 675 676 677 678 679 680 681

    Returns:
        There is no return value.

    Examples:

        .. code-block:: python

            v1 = fluid.layers.data(name="data",
                                   shape=(4, 6),
                                   dtype="float32")
            v2 = fluid.layers.data(name="data",
                                   shape=(6, 8, 4),
                                   dtype="float32")
            normed = fluid.layers.save_combine([v1, v2], file_path="output")
682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705
    """
    helper = LayerHelper("save_combine", **locals())
    helper.append_op(
        type="save_combine",
        inputs={"input": x},
        outputs={},
        args={"file_path": file_path,
              "overwrite": overwrite})


def load_combine(out, file_path):
    """
    Loads a list of vairables from a single file.

    Args:
        out(list): The list of variables to be read from the disk file.
        file_path(str): The path of the disk file.
    """
    helper = LayerHelper("load_combine", **locals())
    helper.append_op(
        type="load_combine",
        inputs={},
        output={"Out": out},
        args={"file_path": file_path})
706 707 708 709 710 711 712 713 714 715 716 717 718


def has_inf(x):
    """
    Test if any of x contains an infinity number

    Args:
       x(variable): The Tensor/LoDTensor to be checked.

    Returns:
        Variable: The tensor variable storing the output, only a bool value.
    """
    helper = LayerHelper("isinf", **locals())
X
Xin Pan 已提交
719
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
720 721 722 723 724 725 726 727 728 729 730 731 732 733 734
    helper.append_op(type="isinf", inputs={"X": x}, outputs={"Out": out})
    return out


def has_nan(x):
    """
    Test if any of x contains a NAN

    Args:
       x(variable): The Tensor/LoDTensor to be checked.

    Returns:
        Variable: The tensor variable storing the output, only a bool value.
    """
    helper = LayerHelper("isnan", **locals())
X
Xin Pan 已提交
735
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751
    helper.append_op(type="isnan", inputs={"X": x}, outputs={"Out": out})
    return out


def isfinite(x):
    """
    Test if any of x contains an infinity/NAN number. If all the elements are finite,
    returns true, else false.

    Args:
       x(variable): The Tensor/LoDTensor to be checked.

    Returns:
        Variable: The tensor variable storing the output, contains a bool value.
    """
    helper = LayerHelper("isfinite", **locals())
X
Xin Pan 已提交
752
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
753 754
    helper.append_op(type="isfinite", inputs={"X": x}, outputs={"Out": out})
    return out