test_elementwise_mod_op.py 6.9 KB
Newer Older
P
phlrain 已提交
1
#  Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import random
16
import unittest
17

18 19 20
import numpy as np
from op_test import OpTest

21 22
import paddle
import paddle.fluid as fluid
23 24 25 26 27 28 29 30


class TestElementwiseModOp(OpTest):
    def init_kernel_type(self):
        self.use_mkldnn = False

    def setUp(self):
        self.op_type = "elementwise_mod"
31
        self.python_api = paddle.remainder
32 33 34 35 36 37 38 39
        self.axis = -1
        self.init_dtype()
        self.init_input_output()
        self.init_kernel_type()
        self.init_axis()

        self.inputs = {
            'X': OpTest.np_dtype_to_fluid_dtype(self.x),
40
            'Y': OpTest.np_dtype_to_fluid_dtype(self.y),
41 42 43 44 45
        }
        self.attrs = {'axis': self.axis, 'use_mkldnn': self.use_mkldnn}
        self.outputs = {'Out': self.out}

    def test_check_output(self):
46 47 48 49
        if self.attrs['axis'] == -1:
            self.check_output(check_eager=True)
        else:
            self.check_output(check_eager=False)
50 51 52 53 54 55 56

    def init_input_output(self):
        self.x = np.random.uniform(0, 10000, [10, 10]).astype(self.dtype)
        self.y = np.random.uniform(0, 1000, [10, 10]).astype(self.dtype)
        self.out = np.mod(self.x, self.y)

    def init_dtype(self):
57
        self.dtype = np.int32
58 59 60 61 62

    def init_axis(self):
        pass


63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
class TestElementwiseModOp_ZeroDim1(TestElementwiseModOp):
    def init_input_output(self):
        self.x = np.random.uniform(0, 10000, []).astype(self.dtype)
        self.y = np.random.uniform(0, 1000, []).astype(self.dtype)
        self.out = np.mod(self.x, self.y)


class TestElementwiseModOp_ZeroDim2(TestElementwiseModOp):
    def init_input_output(self):
        self.x = np.random.uniform(0, 10000, [10, 10]).astype(self.dtype)
        self.y = np.random.uniform(0, 1000, []).astype(self.dtype)
        self.out = np.mod(self.x, self.y)


class TestElementwiseModOp_ZeroDim3(TestElementwiseModOp):
    def init_input_output(self):
        self.x = np.random.uniform(0, 10000, []).astype(self.dtype)
        self.y = np.random.uniform(0, 1000, [10, 10]).astype(self.dtype)
        self.out = np.mod(self.x, self.y)


84 85 86 87 88 89 90 91 92
class TestElementwiseModOp_scalar(TestElementwiseModOp):
    def init_input_output(self):
        scale_x = random.randint(0, 100000000)
        scale_y = random.randint(1, 100000000)
        self.x = (np.random.rand(2, 3, 4) * scale_x).astype(self.dtype)
        self.y = (np.random.rand(1) * scale_y + 1).astype(self.dtype)
        self.out = np.mod(self.x, self.y)


93 94 95 96 97 98 99
class TestElementwiseModOpFloat(TestElementwiseModOp):
    def init_dtype(self):
        self.dtype = np.float32

    def init_input_output(self):
        self.x = np.random.uniform(-1000, 1000, [10, 10]).astype(self.dtype)
        self.y = np.random.uniform(-100, 100, [10, 10]).astype(self.dtype)
100
        self.out = np.fmod(self.y + np.fmod(self.x, self.y), self.y)
101 102

    def test_check_output(self):
103 104 105 106
        if self.attrs['axis'] == -1:
            self.check_output(check_eager=True)
        else:
            self.check_output(check_eager=False)
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122


class TestElementwiseModOpFp16(TestElementwiseModOp):
    def init_dtype(self):
        self.dtype = np.float16

    def init_input_output(self):
        self.x = np.random.uniform(-1000, 1000, [10, 10]).astype(self.dtype)
        self.y = np.random.uniform(-100, 100, [10, 10]).astype(self.dtype)
        self.out = np.mod(self.x, self.y)

    def test_check_output(self):
        if self.attrs['axis'] == -1:
            self.check_output(check_eager=True)
        else:
            self.check_output(check_eager=False)
123 124 125 126 127 128 129


class TestElementwiseModOpDouble(TestElementwiseModOpFloat):
    def init_dtype(self):
        self.dtype = np.float64


S
ShenLiang 已提交
130
class TestRemainderOp(unittest.TestCase):
131 132 133
    def _executed_api(self, x, y, name=None):
        return paddle.remainder(x, y, name)

S
ShenLiang 已提交
134 135 136 137 138
    def test_name(self):
        with fluid.program_guard(fluid.Program()):
            x = fluid.data(name="x", shape=[2, 3], dtype="int64")
            y = fluid.data(name='y', shape=[2, 3], dtype='int64')

139
            y_1 = self._executed_api(x, y, name='div_res')
S
ShenLiang 已提交
140
            self.assertEqual(('div_res' in y_1.name), True)
141 142

    def test_dygraph(self):
S
ShenLiang 已提交
143 144 145 146 147
        with fluid.dygraph.guard():
            np_x = np.array([2, 3, 8, 7]).astype('int64')
            np_y = np.array([1, 5, 3, 3]).astype('int64')
            x = paddle.to_tensor(np_x)
            y = paddle.to_tensor(np_y)
148
            z = self._executed_api(x, y)
S
ShenLiang 已提交
149 150 151 152 153
            np_z = z.numpy()
            z_expected = np.array([0, 3, 2, 1])
            self.assertEqual((np_z == z_expected).all(), True)

            np_x = np.array([-3.3, 11.5, -2, 3.5])
154
            np_y = np.array([-1.2, 2.0, 3.3, -2.3])
S
ShenLiang 已提交
155 156 157 158
            x = paddle.to_tensor(np_x)
            y = paddle.to_tensor(np_y)
            z = x % y
            z_expected = np.array([-0.9, 1.5, 1.3, -1.1])
159
            np.testing.assert_allclose(z_expected, z.numpy(), rtol=1e-05)
S
ShenLiang 已提交
160 161 162 163 164 165 166

            np_x = np.array([-3, 11, -2, 3])
            np_y = np.array([-1, 2, 3, -2])
            x = paddle.to_tensor(np_x, dtype="int64")
            y = paddle.to_tensor(np_y, dtype="int64")
            z = x % y
            z_expected = np.array([0, 1, 1, -1])
167
            np.testing.assert_allclose(z_expected, z.numpy(), rtol=1e-05)
S
ShenLiang 已提交
168

169

170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
class TestRemainderInplaceOp(TestRemainderOp):
    def _executed_api(self, x, y, name=None):
        return x.remainder_(y, name)


class TestRemainderInplaceBroadcastSuccess(unittest.TestCase):
    def init_data(self):
        self.x_numpy = np.random.rand(2, 3, 4).astype('float')
        self.y_numpy = np.random.rand(3, 4).astype('float')

    def test_broadcast_success(self):
        paddle.disable_static()
        self.init_data()
        x = paddle.to_tensor(self.x_numpy)
        y = paddle.to_tensor(self.y_numpy)
        inplace_result = x.remainder_(y)
        numpy_result = self.x_numpy % self.y_numpy
        self.assertEqual((inplace_result.numpy() == numpy_result).all(), True)
        paddle.enable_static()


191 192 193
class TestRemainderInplaceBroadcastSuccess2(
    TestRemainderInplaceBroadcastSuccess
):
194 195 196 197 198
    def init_data(self):
        self.x_numpy = np.random.rand(1, 2, 3, 1).astype('float')
        self.y_numpy = np.random.rand(3, 1).astype('float')


199 200 201
class TestRemainderInplaceBroadcastSuccess3(
    TestRemainderInplaceBroadcastSuccess
):
202 203 204 205 206
    def init_data(self):
        self.x_numpy = np.random.rand(2, 3, 1, 5).astype('float')
        self.y_numpy = np.random.rand(1, 3, 1, 5).astype('float')


207 208
if __name__ == '__main__':
    unittest.main()