test_elementwise_mod_op.py 6.9 KB
Newer Older
P
phlrain 已提交
1
#  Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import numpy as np
17 18
import paddle
import paddle.fluid as fluid
19 20 21 22 23 24 25 26 27 28 29
from op_test import OpTest

import random


class TestElementwiseModOp(OpTest):
    def init_kernel_type(self):
        self.use_mkldnn = False

    def setUp(self):
        self.op_type = "elementwise_mod"
30
        self.python_api = paddle.remainder
31 32 33 34 35 36 37 38
        self.axis = -1
        self.init_dtype()
        self.init_input_output()
        self.init_kernel_type()
        self.init_axis()

        self.inputs = {
            'X': OpTest.np_dtype_to_fluid_dtype(self.x),
39
            'Y': OpTest.np_dtype_to_fluid_dtype(self.y),
40 41 42 43 44
        }
        self.attrs = {'axis': self.axis, 'use_mkldnn': self.use_mkldnn}
        self.outputs = {'Out': self.out}

    def test_check_output(self):
45 46 47 48
        if self.attrs['axis'] == -1:
            self.check_output(check_eager=True)
        else:
            self.check_output(check_eager=False)
49 50 51 52 53 54 55

    def init_input_output(self):
        self.x = np.random.uniform(0, 10000, [10, 10]).astype(self.dtype)
        self.y = np.random.uniform(0, 1000, [10, 10]).astype(self.dtype)
        self.out = np.mod(self.x, self.y)

    def init_dtype(self):
56
        self.dtype = np.int32
57 58 59 60 61

    def init_axis(self):
        pass


62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
class TestElementwiseModOp_ZeroDim1(TestElementwiseModOp):
    def init_input_output(self):
        self.x = np.random.uniform(0, 10000, []).astype(self.dtype)
        self.y = np.random.uniform(0, 1000, []).astype(self.dtype)
        self.out = np.mod(self.x, self.y)


class TestElementwiseModOp_ZeroDim2(TestElementwiseModOp):
    def init_input_output(self):
        self.x = np.random.uniform(0, 10000, [10, 10]).astype(self.dtype)
        self.y = np.random.uniform(0, 1000, []).astype(self.dtype)
        self.out = np.mod(self.x, self.y)


class TestElementwiseModOp_ZeroDim3(TestElementwiseModOp):
    def init_input_output(self):
        self.x = np.random.uniform(0, 10000, []).astype(self.dtype)
        self.y = np.random.uniform(0, 1000, [10, 10]).astype(self.dtype)
        self.out = np.mod(self.x, self.y)


83 84 85 86 87 88 89 90 91
class TestElementwiseModOp_scalar(TestElementwiseModOp):
    def init_input_output(self):
        scale_x = random.randint(0, 100000000)
        scale_y = random.randint(1, 100000000)
        self.x = (np.random.rand(2, 3, 4) * scale_x).astype(self.dtype)
        self.y = (np.random.rand(1) * scale_y + 1).astype(self.dtype)
        self.out = np.mod(self.x, self.y)


92 93 94 95 96 97 98
class TestElementwiseModOpFloat(TestElementwiseModOp):
    def init_dtype(self):
        self.dtype = np.float32

    def init_input_output(self):
        self.x = np.random.uniform(-1000, 1000, [10, 10]).astype(self.dtype)
        self.y = np.random.uniform(-100, 100, [10, 10]).astype(self.dtype)
99
        self.out = np.fmod(self.y + np.fmod(self.x, self.y), self.y)
100 101

    def test_check_output(self):
102 103 104 105
        if self.attrs['axis'] == -1:
            self.check_output(check_eager=True)
        else:
            self.check_output(check_eager=False)
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121


class TestElementwiseModOpFp16(TestElementwiseModOp):
    def init_dtype(self):
        self.dtype = np.float16

    def init_input_output(self):
        self.x = np.random.uniform(-1000, 1000, [10, 10]).astype(self.dtype)
        self.y = np.random.uniform(-100, 100, [10, 10]).astype(self.dtype)
        self.out = np.mod(self.x, self.y)

    def test_check_output(self):
        if self.attrs['axis'] == -1:
            self.check_output(check_eager=True)
        else:
            self.check_output(check_eager=False)
122 123 124 125 126 127 128


class TestElementwiseModOpDouble(TestElementwiseModOpFloat):
    def init_dtype(self):
        self.dtype = np.float64


S
ShenLiang 已提交
129
class TestRemainderOp(unittest.TestCase):
130 131 132
    def _executed_api(self, x, y, name=None):
        return paddle.remainder(x, y, name)

S
ShenLiang 已提交
133 134 135 136 137
    def test_name(self):
        with fluid.program_guard(fluid.Program()):
            x = fluid.data(name="x", shape=[2, 3], dtype="int64")
            y = fluid.data(name='y', shape=[2, 3], dtype='int64')

138
            y_1 = self._executed_api(x, y, name='div_res')
S
ShenLiang 已提交
139
            self.assertEqual(('div_res' in y_1.name), True)
140 141

    def test_dygraph(self):
S
ShenLiang 已提交
142 143 144 145 146
        with fluid.dygraph.guard():
            np_x = np.array([2, 3, 8, 7]).astype('int64')
            np_y = np.array([1, 5, 3, 3]).astype('int64')
            x = paddle.to_tensor(np_x)
            y = paddle.to_tensor(np_y)
147
            z = self._executed_api(x, y)
S
ShenLiang 已提交
148 149 150 151 152
            np_z = z.numpy()
            z_expected = np.array([0, 3, 2, 1])
            self.assertEqual((np_z == z_expected).all(), True)

            np_x = np.array([-3.3, 11.5, -2, 3.5])
153
            np_y = np.array([-1.2, 2.0, 3.3, -2.3])
S
ShenLiang 已提交
154 155 156 157
            x = paddle.to_tensor(np_x)
            y = paddle.to_tensor(np_y)
            z = x % y
            z_expected = np.array([-0.9, 1.5, 1.3, -1.1])
158
            np.testing.assert_allclose(z_expected, z.numpy(), rtol=1e-05)
S
ShenLiang 已提交
159 160 161 162 163 164 165

            np_x = np.array([-3, 11, -2, 3])
            np_y = np.array([-1, 2, 3, -2])
            x = paddle.to_tensor(np_x, dtype="int64")
            y = paddle.to_tensor(np_y, dtype="int64")
            z = x % y
            z_expected = np.array([0, 1, 1, -1])
166
            np.testing.assert_allclose(z_expected, z.numpy(), rtol=1e-05)
S
ShenLiang 已提交
167

168

169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
class TestRemainderInplaceOp(TestRemainderOp):
    def _executed_api(self, x, y, name=None):
        return x.remainder_(y, name)


class TestRemainderInplaceBroadcastSuccess(unittest.TestCase):
    def init_data(self):
        self.x_numpy = np.random.rand(2, 3, 4).astype('float')
        self.y_numpy = np.random.rand(3, 4).astype('float')

    def test_broadcast_success(self):
        paddle.disable_static()
        self.init_data()
        x = paddle.to_tensor(self.x_numpy)
        y = paddle.to_tensor(self.y_numpy)
        inplace_result = x.remainder_(y)
        numpy_result = self.x_numpy % self.y_numpy
        self.assertEqual((inplace_result.numpy() == numpy_result).all(), True)
        paddle.enable_static()


190 191 192
class TestRemainderInplaceBroadcastSuccess2(
    TestRemainderInplaceBroadcastSuccess
):
193 194 195 196 197
    def init_data(self):
        self.x_numpy = np.random.rand(1, 2, 3, 1).astype('float')
        self.y_numpy = np.random.rand(3, 1).astype('float')


198 199 200
class TestRemainderInplaceBroadcastSuccess3(
    TestRemainderInplaceBroadcastSuccess
):
201 202 203 204 205
    def init_data(self):
        self.x_numpy = np.random.rand(2, 3, 1, 5).astype('float')
        self.y_numpy = np.random.rand(1, 3, 1, 5).astype('float')


206 207
if __name__ == '__main__':
    unittest.main()