test_elementwise_mod_op.py 6.1 KB
Newer Older
P
phlrain 已提交
1
#  Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import numpy as np
17 18
import paddle
import paddle.fluid as fluid
19 20 21 22 23 24 25 26 27 28 29
from op_test import OpTest

import random


class TestElementwiseModOp(OpTest):
    def init_kernel_type(self):
        self.use_mkldnn = False

    def setUp(self):
        self.op_type = "elementwise_mod"
30
        self.python_api = paddle.remainder
31 32 33 34 35 36 37 38
        self.axis = -1
        self.init_dtype()
        self.init_input_output()
        self.init_kernel_type()
        self.init_axis()

        self.inputs = {
            'X': OpTest.np_dtype_to_fluid_dtype(self.x),
39
            'Y': OpTest.np_dtype_to_fluid_dtype(self.y),
40 41 42 43 44
        }
        self.attrs = {'axis': self.axis, 'use_mkldnn': self.use_mkldnn}
        self.outputs = {'Out': self.out}

    def test_check_output(self):
45 46 47 48
        if self.attrs['axis'] == -1:
            self.check_output(check_eager=True)
        else:
            self.check_output(check_eager=False)
49 50 51 52 53 54 55

    def init_input_output(self):
        self.x = np.random.uniform(0, 10000, [10, 10]).astype(self.dtype)
        self.y = np.random.uniform(0, 1000, [10, 10]).astype(self.dtype)
        self.out = np.mod(self.x, self.y)

    def init_dtype(self):
56
        self.dtype = np.int32
57 58 59 60 61 62 63 64 65 66 67 68 69 70

    def init_axis(self):
        pass


class TestElementwiseModOp_scalar(TestElementwiseModOp):
    def init_input_output(self):
        scale_x = random.randint(0, 100000000)
        scale_y = random.randint(1, 100000000)
        self.x = (np.random.rand(2, 3, 4) * scale_x).astype(self.dtype)
        self.y = (np.random.rand(1) * scale_y + 1).astype(self.dtype)
        self.out = np.mod(self.x, self.y)


71 72 73 74 75 76 77
class TestElementwiseModOpFloat(TestElementwiseModOp):
    def init_dtype(self):
        self.dtype = np.float32

    def init_input_output(self):
        self.x = np.random.uniform(-1000, 1000, [10, 10]).astype(self.dtype)
        self.y = np.random.uniform(-100, 100, [10, 10]).astype(self.dtype)
78
        self.out = np.fmod(self.y + np.fmod(self.x, self.y), self.y)
79 80

    def test_check_output(self):
81 82 83 84
        if self.attrs['axis'] == -1:
            self.check_output(check_eager=True)
        else:
            self.check_output(check_eager=False)
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100


class TestElementwiseModOpFp16(TestElementwiseModOp):
    def init_dtype(self):
        self.dtype = np.float16

    def init_input_output(self):
        self.x = np.random.uniform(-1000, 1000, [10, 10]).astype(self.dtype)
        self.y = np.random.uniform(-100, 100, [10, 10]).astype(self.dtype)
        self.out = np.mod(self.x, self.y)

    def test_check_output(self):
        if self.attrs['axis'] == -1:
            self.check_output(check_eager=True)
        else:
            self.check_output(check_eager=False)
101 102 103 104 105 106 107


class TestElementwiseModOpDouble(TestElementwiseModOpFloat):
    def init_dtype(self):
        self.dtype = np.float64


S
ShenLiang 已提交
108
class TestRemainderOp(unittest.TestCase):
109 110 111
    def _executed_api(self, x, y, name=None):
        return paddle.remainder(x, y, name)

S
ShenLiang 已提交
112 113 114 115 116
    def test_name(self):
        with fluid.program_guard(fluid.Program()):
            x = fluid.data(name="x", shape=[2, 3], dtype="int64")
            y = fluid.data(name='y', shape=[2, 3], dtype='int64')

117
            y_1 = self._executed_api(x, y, name='div_res')
S
ShenLiang 已提交
118
            self.assertEqual(('div_res' in y_1.name), True)
119 120

    def test_dygraph(self):
S
ShenLiang 已提交
121 122 123 124 125
        with fluid.dygraph.guard():
            np_x = np.array([2, 3, 8, 7]).astype('int64')
            np_y = np.array([1, 5, 3, 3]).astype('int64')
            x = paddle.to_tensor(np_x)
            y = paddle.to_tensor(np_y)
126
            z = self._executed_api(x, y)
S
ShenLiang 已提交
127 128 129 130 131
            np_z = z.numpy()
            z_expected = np.array([0, 3, 2, 1])
            self.assertEqual((np_z == z_expected).all(), True)

            np_x = np.array([-3.3, 11.5, -2, 3.5])
132
            np_y = np.array([-1.2, 2.0, 3.3, -2.3])
S
ShenLiang 已提交
133 134 135 136
            x = paddle.to_tensor(np_x)
            y = paddle.to_tensor(np_y)
            z = x % y
            z_expected = np.array([-0.9, 1.5, 1.3, -1.1])
137
            np.testing.assert_allclose(z_expected, z.numpy(), rtol=1e-05)
S
ShenLiang 已提交
138 139 140 141 142 143 144

            np_x = np.array([-3, 11, -2, 3])
            np_y = np.array([-1, 2, 3, -2])
            x = paddle.to_tensor(np_x, dtype="int64")
            y = paddle.to_tensor(np_y, dtype="int64")
            z = x % y
            z_expected = np.array([0, 1, 1, -1])
145
            np.testing.assert_allclose(z_expected, z.numpy(), rtol=1e-05)
S
ShenLiang 已提交
146

147

148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
class TestRemainderInplaceOp(TestRemainderOp):
    def _executed_api(self, x, y, name=None):
        return x.remainder_(y, name)


class TestRemainderInplaceBroadcastSuccess(unittest.TestCase):
    def init_data(self):
        self.x_numpy = np.random.rand(2, 3, 4).astype('float')
        self.y_numpy = np.random.rand(3, 4).astype('float')

    def test_broadcast_success(self):
        paddle.disable_static()
        self.init_data()
        x = paddle.to_tensor(self.x_numpy)
        y = paddle.to_tensor(self.y_numpy)
        inplace_result = x.remainder_(y)
        numpy_result = self.x_numpy % self.y_numpy
        self.assertEqual((inplace_result.numpy() == numpy_result).all(), True)
        paddle.enable_static()


169 170 171
class TestRemainderInplaceBroadcastSuccess2(
    TestRemainderInplaceBroadcastSuccess
):
172 173 174 175 176
    def init_data(self):
        self.x_numpy = np.random.rand(1, 2, 3, 1).astype('float')
        self.y_numpy = np.random.rand(3, 1).astype('float')


177 178 179
class TestRemainderInplaceBroadcastSuccess3(
    TestRemainderInplaceBroadcastSuccess
):
180 181 182 183 184
    def init_data(self):
        self.x_numpy = np.random.rand(2, 3, 1, 5).astype('float')
        self.y_numpy = np.random.rand(1, 3, 1, 5).astype('float')


185 186
if __name__ == '__main__':
    unittest.main()