test_elementwise_mod_op.py 6.2 KB
Newer Older
P
phlrain 已提交
1
#  Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import numpy as np
17 18
import paddle
import paddle.fluid as fluid
19 20 21 22 23 24
from op_test import OpTest

import random


class TestElementwiseModOp(OpTest):
25

26 27 28 29 30
    def init_kernel_type(self):
        self.use_mkldnn = False

    def setUp(self):
        self.op_type = "elementwise_mod"
31
        self.python_api = paddle.remainder
32 33 34 35 36 37 38 39 40 41 42 43 44 45
        self.axis = -1
        self.init_dtype()
        self.init_input_output()
        self.init_kernel_type()
        self.init_axis()

        self.inputs = {
            'X': OpTest.np_dtype_to_fluid_dtype(self.x),
            'Y': OpTest.np_dtype_to_fluid_dtype(self.y)
        }
        self.attrs = {'axis': self.axis, 'use_mkldnn': self.use_mkldnn}
        self.outputs = {'Out': self.out}

    def test_check_output(self):
46 47 48 49
        if self.attrs['axis'] == -1:
            self.check_output(check_eager=True)
        else:
            self.check_output(check_eager=False)
50 51 52 53 54 55 56

    def init_input_output(self):
        self.x = np.random.uniform(0, 10000, [10, 10]).astype(self.dtype)
        self.y = np.random.uniform(0, 1000, [10, 10]).astype(self.dtype)
        self.out = np.mod(self.x, self.y)

    def init_dtype(self):
57
        self.dtype = np.int32
58 59 60 61 62 63

    def init_axis(self):
        pass


class TestElementwiseModOp_scalar(TestElementwiseModOp):
64

65 66 67 68 69 70 71 72
    def init_input_output(self):
        scale_x = random.randint(0, 100000000)
        scale_y = random.randint(1, 100000000)
        self.x = (np.random.rand(2, 3, 4) * scale_x).astype(self.dtype)
        self.y = (np.random.rand(1) * scale_y + 1).astype(self.dtype)
        self.out = np.mod(self.x, self.y)


73
class TestElementwiseModOpFloat(TestElementwiseModOp):
74

75 76 77 78 79 80
    def init_dtype(self):
        self.dtype = np.float32

    def init_input_output(self):
        self.x = np.random.uniform(-1000, 1000, [10, 10]).astype(self.dtype)
        self.y = np.random.uniform(-100, 100, [10, 10]).astype(self.dtype)
81
        self.out = np.fmod(self.y + np.fmod(self.x, self.y), self.y)
82 83

    def test_check_output(self):
84 85 86 87
        if self.attrs['axis'] == -1:
            self.check_output(check_eager=True)
        else:
            self.check_output(check_eager=False)
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104


class TestElementwiseModOpFp16(TestElementwiseModOp):

    def init_dtype(self):
        self.dtype = np.float16

    def init_input_output(self):
        self.x = np.random.uniform(-1000, 1000, [10, 10]).astype(self.dtype)
        self.y = np.random.uniform(-100, 100, [10, 10]).astype(self.dtype)
        self.out = np.mod(self.x, self.y)

    def test_check_output(self):
        if self.attrs['axis'] == -1:
            self.check_output(check_eager=True)
        else:
            self.check_output(check_eager=False)
105 106 107


class TestElementwiseModOpDouble(TestElementwiseModOpFloat):
108

109 110 111 112
    def init_dtype(self):
        self.dtype = np.float64


S
ShenLiang 已提交
113
class TestRemainderOp(unittest.TestCase):
114

115 116 117
    def _executed_api(self, x, y, name=None):
        return paddle.remainder(x, y, name)

S
ShenLiang 已提交
118 119 120 121 122
    def test_name(self):
        with fluid.program_guard(fluid.Program()):
            x = fluid.data(name="x", shape=[2, 3], dtype="int64")
            y = fluid.data(name='y', shape=[2, 3], dtype='int64')

123
            y_1 = self._executed_api(x, y, name='div_res')
S
ShenLiang 已提交
124
            self.assertEqual(('div_res' in y_1.name), True)
125 126

    def test_dygraph(self):
S
ShenLiang 已提交
127 128 129 130 131
        with fluid.dygraph.guard():
            np_x = np.array([2, 3, 8, 7]).astype('int64')
            np_y = np.array([1, 5, 3, 3]).astype('int64')
            x = paddle.to_tensor(np_x)
            y = paddle.to_tensor(np_y)
132
            z = self._executed_api(x, y)
S
ShenLiang 已提交
133 134 135 136 137 138 139 140 141 142
            np_z = z.numpy()
            z_expected = np.array([0, 3, 2, 1])
            self.assertEqual((np_z == z_expected).all(), True)

            np_x = np.array([-3.3, 11.5, -2, 3.5])
            np_y = np.array([-1.2, 2., 3.3, -2.3])
            x = paddle.to_tensor(np_x)
            y = paddle.to_tensor(np_y)
            z = x % y
            z_expected = np.array([-0.9, 1.5, 1.3, -1.1])
143
            np.testing.assert_allclose(z_expected, z.numpy(), rtol=1e-05)
S
ShenLiang 已提交
144 145 146 147 148 149 150

            np_x = np.array([-3, 11, -2, 3])
            np_y = np.array([-1, 2, 3, -2])
            x = paddle.to_tensor(np_x, dtype="int64")
            y = paddle.to_tensor(np_y, dtype="int64")
            z = x % y
            z_expected = np.array([0, 1, 1, -1])
151
            np.testing.assert_allclose(z_expected, z.numpy(), rtol=1e-05)
S
ShenLiang 已提交
152

153

154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
class TestRemainderInplaceOp(TestRemainderOp):

    def _executed_api(self, x, y, name=None):
        return x.remainder_(y, name)


class TestRemainderInplaceBroadcastSuccess(unittest.TestCase):

    def init_data(self):
        self.x_numpy = np.random.rand(2, 3, 4).astype('float')
        self.y_numpy = np.random.rand(3, 4).astype('float')

    def test_broadcast_success(self):
        paddle.disable_static()
        self.init_data()
        x = paddle.to_tensor(self.x_numpy)
        y = paddle.to_tensor(self.y_numpy)
        inplace_result = x.remainder_(y)
        numpy_result = self.x_numpy % self.y_numpy
        self.assertEqual((inplace_result.numpy() == numpy_result).all(), True)
        paddle.enable_static()


class TestRemainderInplaceBroadcastSuccess2(TestRemainderInplaceBroadcastSuccess
                                            ):

    def init_data(self):
        self.x_numpy = np.random.rand(1, 2, 3, 1).astype('float')
        self.y_numpy = np.random.rand(3, 1).astype('float')


class TestRemainderInplaceBroadcastSuccess3(TestRemainderInplaceBroadcastSuccess
                                            ):

    def init_data(self):
        self.x_numpy = np.random.rand(2, 3, 1, 5).astype('float')
        self.y_numpy = np.random.rand(1, 3, 1, 5).astype('float')


193 194
if __name__ == '__main__':
    unittest.main()