softmax_op.cc 7.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

Q
Qiao Longfei 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

Q
Qiao Longfei 已提交
7 8 9 10 11 12 13
    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14

L
liuwei1031 已提交
15
#include <memory>
16
#include <string>
L
liuwei1031 已提交
17
#include <unordered_map>
18

19
#include "paddle/fluid/framework/infershape_utils.h"
20
#include "paddle/fluid/framework/op_registry.h"
21
#include "paddle/fluid/platform/device/gpu/gpu_dnn.h"
22 23 24 25
#include "paddle/phi/core/infermeta_utils.h"
#include "paddle/phi/infermeta/backward.h"
#include "paddle/phi/infermeta/unary.h"

26 27 28
namespace paddle {
namespace operators {

D
dongzhihong 已提交
29
class SoftmaxOp : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
30 31 32
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

33 34 35 36
 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    // choose cudnn kernel if the runtime supported.
M
mozga-intel 已提交
37
    std::string data_format = ctx.Attr<std::string>("data_format");
38
    phi::DataLayout layout_ = phi::StringToDataLayout(data_format);
39
    auto input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
K
Kexin Zhao 已提交
40
    if (input_data_type == framework::proto::VarType::FP16) {
41 42 43 44
      PADDLE_ENFORCE_EQ(
          platform::is_gpu_place(ctx.GetPlace()) ||
              platform::is_npu_place(ctx.GetPlace()) ||
              platform::is_xpu_place(ctx.GetPlace()) ||
45 46
              platform::is_mlu_place(ctx.GetPlace()) ||
              platform::is_custom_place(ctx.GetPlace()),
47 48
          true,
          platform::errors::InvalidArgument(
49
              "float16 can only be used on GPU/NPU/XPU/MLU and custom place"));
K
Kexin Zhao 已提交
50
    }
H
HongyuJia 已提交
51
    return framework::OpKernelType(input_data_type, ctx.GetPlace(), layout_);
52
  }
53
};
54

D
dongzhihong 已提交
55
class SoftmaxOpMaker : public framework::OpProtoAndCheckerMaker {
56
 public:
Y
Yu Yang 已提交
57
  void Make() override {
58
    AddInput("X",
F
fengjiayi 已提交
59
             "The input tensor of softmax, "
D
dengkaipeng 已提交
60
             "whose dimension :attr:`axis` is the input_feature_dimensions.");
61
    AddOutput("Out", "The normalized values with the same shape as X.");
62
    AddAttr<int>("axis",
D
dengkaipeng 已提交
63
                 "The dimension index of Input(x) to perform softmax,"
64 65
                 "default -1 for last dimension")
        .SetDefault(-1);
66 67 68 69 70 71 72
    AddAttr<std::string>(
        "data_format",
        "(string, default NCHW) Only used in "
        "An optional string from: \"NHWC\", \"NCHW\". "
        "Defaults to \"NHWC\". Specify the data format of the output data, "
        "the input will be transformed automatically. ")
        .SetDefault("AnyLayout");
73 74 75 76 77
    AddAttr<bool>(
        "use_cudnn",
        "(bool, default false) Only used in cudnn kernel, need install cudnn")
        .SetDefault(false)
        .AsExtra();
C
caoying03 已提交
78
    AddComment(R"DOC(
79 80
Softmax Operator.

81
The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
82
has the same shape as the input.
C
caoying03 已提交
83

D
dengkaipeng 已提交
84
The dimension :attr:`axis` of the input tensor will be permuted to the last.
D
dengkaipeng 已提交
85
Then the input tensor will be logically flattened to a 2-D matrix. The matrix's
D
dengkaipeng 已提交
86
second dimension(row length) is as same as the dimension :attr:`axis` of the input
87 88 89
tensor, and the first dimension(column length) is the product of all other
dimensions of the input tensor. For each row of the matrix, the softmax operator
squashes the K-dimensional(K is the width of the matrix, which is also the size
D
dengkaipeng 已提交
90
of the input tensor's dimension :attr:`axis`) vector of arbitrary real values to a
F
fengjiayi 已提交
91
K-dimensional vector of real values in the range [0, 1] that add up to 1.
92 93 94 95 96
It computes the exponential of the given dimension and the sum of exponential
values of all the other dimensions in the K-dimensional vector input.
Then the ratio of the exponential of the given dimension and the sum of
exponential values of all the other dimensions is the output of the softmax
operator.
C
caoying03 已提交
97

F
fengjiayi 已提交
98
For each row $i$ and each column $j$ in the matrix, we have:
F
fengjiayi 已提交
99
    $$Out[i, j] = \frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}$$
C
caoying03 已提交
100 101

)DOC");
102 103 104
  }
};

C
chengduo 已提交
105 106
class SoftmaxOpInferVarType : public framework::PassInDtypeAndVarTypeToOutput {
 protected:
107
  std::unordered_map<std::string, std::string>& GetInputOutputWithSameType()
C
chengduo 已提交
108
      const override {
109 110
    static std::unordered_map<std::string, std::string> m{{"X", /*->*/ "Out"}};
    return m;
C
chengduo 已提交
111 112 113
  }
};

D
dongzhihong 已提交
114
class SoftmaxOpGrad : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
115 116 117
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

118 119 120 121
 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    // choose cudnn kernel if the runtime supported.
J
Jacek Czaja 已提交
122
    std::string data_format = ctx.Attr<std::string>("data_format");
123
    phi::DataLayout layout_ = phi::StringToDataLayout(data_format);
124 125
    auto input_data_type = OperatorWithKernel::IndicateVarDataType(
        ctx, framework::GradVarName("Out"));
J
Jacek Czaja 已提交
126
    if (input_data_type == framework::proto::VarType::FP16) {
127
      if (!(platform::is_gpu_place(ctx.GetPlace()) ||
128
            platform::is_npu_place(ctx.GetPlace()) ||
129
            platform::is_xpu_place(ctx.GetPlace()) ||
130 131
            platform::is_mlu_place(ctx.GetPlace()) ||
            platform::is_custom_place(ctx.GetPlace())))
132
        PADDLE_THROW(platform::errors::InvalidArgument(
133
            "float16 can only be used on GPU/NPU/XPU/MLU and custom place"));
J
Jacek Czaja 已提交
134
    }
H
HongyuJia 已提交
135
    return framework::OpKernelType(input_data_type, ctx.GetPlace(), layout_);
136
  }
D
dongzhihong 已提交
137 138
};

H
hong 已提交
139 140
template <typename T>
class SoftmaxOpGradMaker : public framework::SingleGradOpMaker<T> {
141
 public:
H
hong 已提交
142
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
143 144

 protected:
145
  void Apply(GradOpPtr<T> op) const override {
146 147
    op->SetType("softmax_grad");

H
hong 已提交
148 149
    op->SetInput("Out", this->Output("Out"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
150

H
hong 已提交
151
    op->SetAttrMap(this->Attrs());
152

H
hong 已提交
153
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
154 155
  }
};
D
dzhwinter 已提交
156

157 158
DECLARE_INPLACE_OP_INFERER(SoftmaxInplaceInferer, {"X", "Out"});

159 160 161
}  // namespace operators
}  // namespace paddle

D
dongzhihong 已提交
162
namespace ops = paddle::operators;
D
dongzhihong 已提交
163

164 165
DECLARE_INFER_SHAPE_FUNCTOR(softmax,
                            SoftmaxInferShapeFunctor,
166
                            PD_INFER_META(phi::SoftmaxInferMeta));
167 168 169
REGISTER_OPERATOR(softmax,
                  ops::SoftmaxOp,
                  ops::SoftmaxOpMaker,
H
hong 已提交
170 171 172
                  ops::SoftmaxOpInferVarType,
                  ops::SoftmaxOpGradMaker<paddle::framework::OpDesc>,
                  ops::SoftmaxOpGradMaker<paddle::imperative::OpBase>,
173 174 175 176
                  ops::SoftmaxInplaceInferer,
                  SoftmaxInferShapeFunctor);
DECLARE_INFER_SHAPE_FUNCTOR(softmax_grad,
                            SoftmaxGradInferShapeFunctor,
177
                            PD_INFER_META(phi::GeneralUnaryGradInferMeta));
178 179
REGISTER_OPERATOR(softmax_grad,
                  ops::SoftmaxOpGrad,
C
Chen Weihang 已提交
180
                  SoftmaxGradInferShapeFunctor);