softmax_op.cc 8.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

Q
Qiao Longfei 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

Q
Qiao Longfei 已提交
7 8 9 10 11 12 13
    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14

L
liuwei1031 已提交
15
#include <memory>
16
#include <string>
L
liuwei1031 已提交
17
#include <unordered_map>
18

19
#include "paddle/fluid/framework/infershape_utils.h"
20
#include "paddle/fluid/framework/op_registry.h"
21
#include "paddle/fluid/platform/device/gpu/gpu_dnn.h"
22

23 24 25
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
26

27 28 29 30
#include "paddle/phi/core/infermeta_utils.h"
#include "paddle/phi/infermeta/backward.h"
#include "paddle/phi/infermeta/unary.h"

31 32 33
namespace paddle {
namespace operators {

D
dongzhihong 已提交
34
class SoftmaxOp : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
35 36 37
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

38 39 40 41
 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    // choose cudnn kernel if the runtime supported.
K
Kexin Zhao 已提交
42
    framework::LibraryType library_{framework::LibraryType::kPlain};
M
mozga-intel 已提交
43 44
    std::string data_format = ctx.Attr<std::string>("data_format");
    framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
45
    auto input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
M
mozga-intel 已提交
46

47
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
K
Kexin Zhao 已提交
48
    if (platform::CanCUDNNBeUsed(ctx)) {
K
Kexin Zhao 已提交
49
      library_ = framework::LibraryType::kCUDNN;
50 51
    }
#endif
52 53
#ifdef PADDLE_WITH_MKLDNN
    if (library_ == framework::LibraryType::kPlain &&
54
        this->CanMKLDNNBeUsed(ctx, input_data_type)) {
55
      library_ = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
56
      layout_ = framework::DataLayout::kMKLDNN;
57 58
    }
#endif
K
Kexin Zhao 已提交
59

60
#ifndef PADDLE_WITH_ASCEND_CL
K
Kexin Zhao 已提交
61
    if (input_data_type == framework::proto::VarType::FP16) {
62 63 64 65
      PADDLE_ENFORCE_EQ(platform::is_gpu_place(ctx.GetPlace()) ||
                            platform::is_xpu_place(ctx.GetPlace()),
                        true, platform::errors::InvalidArgument(
                                  "float16 can only be used on GPU/XPU place"));
K
Kexin Zhao 已提交
66
    }
67
#endif
K
Kexin Zhao 已提交
68

M
mozga-intel 已提交
69
    return framework::OpKernelType(input_data_type, ctx.GetPlace(), layout_,
K
Kexin Zhao 已提交
70
                                   library_);
71
  }
72
};
73

D
dongzhihong 已提交
74
class SoftmaxOpMaker : public framework::OpProtoAndCheckerMaker {
75
 public:
Y
Yu Yang 已提交
76
  void Make() override {
77
    AddInput("X",
F
fengjiayi 已提交
78
             "The input tensor of softmax, "
D
dengkaipeng 已提交
79
             "whose dimension :attr:`axis` is the input_feature_dimensions.");
80
    AddOutput("Out", "The normalized values with the same shape as X.");
81
    AddAttr<int>("axis",
D
dengkaipeng 已提交
82
                 "The dimension index of Input(x) to perform softmax,"
83 84
                 "default -1 for last dimension")
        .SetDefault(-1);
85 86 87
    AddAttr<bool>(
        "use_cudnn",
        "(bool, default false) Only used in cudnn kernel, need install cudnn")
88 89
        .SetDefault(false)
        .AsExtra();
90 91 92 93 94 95 96
    AddAttr<std::string>(
        "data_format",
        "(string, default NCHW) Only used in "
        "An optional string from: \"NHWC\", \"NCHW\". "
        "Defaults to \"NHWC\". Specify the data format of the output data, "
        "the input will be transformed automatically. ")
        .SetDefault("AnyLayout");
97 98
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
99 100
        .SetDefault(false)
        .AsExtra();
101 102 103 104
    AddAttr<std::string>(
        "mkldnn_data_type",
        "(string, default \"float32\"). Data type of mkldnn kernel")
        .SetDefault("float32")
105 106
        .InEnum({"float32", "bfloat16"})
        .AsExtra();
J
Jacek Czaja 已提交
107
    AddAttr<bool>("is_test",
108 109
                  "(bool, default false) Set to true for inference only, false "
                  "for training. Some layers may run faster when this is true.")
110 111
        .SetDefault(false)
        .AsExtra();
C
caoying03 已提交
112
    AddComment(R"DOC(
113 114
Softmax Operator.

115
The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
116
has the same shape as the input.
C
caoying03 已提交
117

D
dengkaipeng 已提交
118
The dimension :attr:`axis` of the input tensor will be permuted to the last.
D
dengkaipeng 已提交
119
Then the input tensor will be logically flattened to a 2-D matrix. The matrix's
D
dengkaipeng 已提交
120
second dimension(row length) is as same as the dimension :attr:`axis` of the input
121 122 123
tensor, and the first dimension(column length) is the product of all other
dimensions of the input tensor. For each row of the matrix, the softmax operator
squashes the K-dimensional(K is the width of the matrix, which is also the size
D
dengkaipeng 已提交
124
of the input tensor's dimension :attr:`axis`) vector of arbitrary real values to a
F
fengjiayi 已提交
125
K-dimensional vector of real values in the range [0, 1] that add up to 1.
126 127 128 129 130
It computes the exponential of the given dimension and the sum of exponential
values of all the other dimensions in the K-dimensional vector input.
Then the ratio of the exponential of the given dimension and the sum of
exponential values of all the other dimensions is the output of the softmax
operator.
C
caoying03 已提交
131

F
fengjiayi 已提交
132
For each row $i$ and each column $j$ in the matrix, we have:
F
fengjiayi 已提交
133
    $$Out[i, j] = \frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}$$
C
caoying03 已提交
134 135

)DOC");
136 137 138
  }
};

C
chengduo 已提交
139 140
class SoftmaxOpInferVarType : public framework::PassInDtypeAndVarTypeToOutput {
 protected:
141
  std::unordered_map<std::string, std::string>& GetInputOutputWithSameType()
C
chengduo 已提交
142
      const override {
143 144
    static std::unordered_map<std::string, std::string> m{{"X", /*->*/ "Out"}};
    return m;
C
chengduo 已提交
145 146 147
  }
};

D
dongzhihong 已提交
148
class SoftmaxOpGrad : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
149 150 151
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

152 153 154 155
 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    // choose cudnn kernel if the runtime supported.
K
Kexin Zhao 已提交
156
    framework::LibraryType library_{framework::LibraryType::kPlain};
J
Jacek Czaja 已提交
157 158
    std::string data_format = ctx.Attr<std::string>("data_format");
    framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
159 160
    auto input_data_type = OperatorWithKernel::IndicateVarDataType(
        ctx, framework::GradVarName("Out"));
161
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
K
Kexin Zhao 已提交
162
    if (platform::CanCUDNNBeUsed(ctx)) {
K
Kexin Zhao 已提交
163
      library_ = framework::LibraryType::kCUDNN;
164 165
    }
#endif
J
Jacek Czaja 已提交
166 167
#ifdef PADDLE_WITH_MKLDNN
    if (library_ == framework::LibraryType::kPlain &&
168
        this->CanMKLDNNBeUsed(ctx, input_data_type)) {
J
Jacek Czaja 已提交
169 170 171 172 173
      library_ = framework::LibraryType::kMKLDNN;
      layout_ = framework::DataLayout::kMKLDNN;
    }
#endif
    if (input_data_type == framework::proto::VarType::FP16) {
174
      if (!(platform::is_gpu_place(ctx.GetPlace()) ||
175 176
            platform::is_npu_place(ctx.GetPlace()) ||
            platform::is_xpu_place(ctx.GetPlace())))
177
        PADDLE_THROW(platform::errors::InvalidArgument(
178
            "float16 can only be used on GPU/NPU/XPU place"));
J
Jacek Czaja 已提交
179 180 181 182
    }

    return framework::OpKernelType(input_data_type, ctx.GetPlace(), layout_,
                                   library_);
183
  }
D
dongzhihong 已提交
184 185
};

H
hong 已提交
186 187
template <typename T>
class SoftmaxOpGradMaker : public framework::SingleGradOpMaker<T> {
188
 public:
H
hong 已提交
189
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
190 191

 protected:
192
  void Apply(GradOpPtr<T> op) const override {
193 194
    op->SetType("softmax_grad");

H
hong 已提交
195 196
    op->SetInput("Out", this->Output("Out"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
197

H
hong 已提交
198
    op->SetAttrMap(this->Attrs());
199

H
hong 已提交
200
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
201 202
  }
};
D
dzhwinter 已提交
203

204 205
DECLARE_INPLACE_OP_INFERER(SoftmaxInplaceInferer, {"X", "Out"});

206 207 208
}  // namespace operators
}  // namespace paddle

D
dongzhihong 已提交
209
namespace ops = paddle::operators;
D
dongzhihong 已提交
210

211 212
DECLARE_INFER_SHAPE_FUNCTOR(softmax, SoftmaxInferShapeFunctor,
                            PD_INFER_META(phi::SoftmaxInferMeta));
Y
Yang Yang 已提交
213
REGISTER_OPERATOR(softmax, ops::SoftmaxOp, ops::SoftmaxOpMaker,
H
hong 已提交
214 215 216
                  ops::SoftmaxOpInferVarType,
                  ops::SoftmaxOpGradMaker<paddle::framework::OpDesc>,
                  ops::SoftmaxOpGradMaker<paddle::imperative::OpBase>,
217 218 219 220 221
                  ops::SoftmaxInplaceInferer, SoftmaxInferShapeFunctor);
DECLARE_INFER_SHAPE_FUNCTOR(softmax_grad, SoftmaxGradnferShapeFunctor,
                            PD_INFER_META(phi::GeneralUnaryGradInferMeta));
REGISTER_OPERATOR(softmax_grad, ops::SoftmaxOpGrad,
                  SoftmaxGradnferShapeFunctor);