softmax_op.cc 8.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

Q
Qiao Longfei 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

Q
Qiao Longfei 已提交
7 8 9 10 11 12 13
    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14

L
liuwei1031 已提交
15
#include <memory>
16
#include <string>
L
liuwei1031 已提交
17
#include <unordered_map>
18

19
#include "paddle/fluid/framework/infershape_utils.h"
20
#include "paddle/fluid/framework/op_registry.h"
21
#include "paddle/fluid/platform/device/gpu/gpu_dnn.h"
22

23 24 25
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
26

27 28 29 30
#include "paddle/phi/core/infermeta_utils.h"
#include "paddle/phi/infermeta/backward.h"
#include "paddle/phi/infermeta/unary.h"

31 32 33
namespace paddle {
namespace operators {

D
dongzhihong 已提交
34
class SoftmaxOp : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
35 36 37
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

38 39 40 41
 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    // choose cudnn kernel if the runtime supported.
K
Kexin Zhao 已提交
42
    framework::LibraryType library_{framework::LibraryType::kPlain};
M
mozga-intel 已提交
43 44
    std::string data_format = ctx.Attr<std::string>("data_format");
    framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
45
    auto input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
M
mozga-intel 已提交
46

47
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
K
Kexin Zhao 已提交
48
    if (platform::CanCUDNNBeUsed(ctx)) {
K
Kexin Zhao 已提交
49
      library_ = framework::LibraryType::kCUDNN;
50 51
    }
#endif
52 53
#ifdef PADDLE_WITH_MKLDNN
    if (library_ == framework::LibraryType::kPlain &&
54
        this->CanMKLDNNBeUsed(ctx, input_data_type)) {
55
      library_ = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
56
      layout_ = framework::DataLayout::kMKLDNN;
57 58
    }
#endif
K
Kexin Zhao 已提交
59

60
#ifndef PADDLE_WITH_ASCEND_CL
K
Kexin Zhao 已提交
61
    if (input_data_type == framework::proto::VarType::FP16) {
62 63
      PADDLE_ENFORCE_EQ(platform::is_gpu_place(ctx.GetPlace()) ||
                            platform::is_xpu_place(ctx.GetPlace()),
64 65 66
                        true,
                        platform::errors::InvalidArgument(
                            "float16 can only be used on GPU/XPU place"));
K
Kexin Zhao 已提交
67
    }
68
#endif
K
Kexin Zhao 已提交
69

M
mozga-intel 已提交
70
    return framework::OpKernelType(input_data_type, ctx.GetPlace(), layout_,
K
Kexin Zhao 已提交
71
                                   library_);
72
  }
73
};
74

D
dongzhihong 已提交
75
class SoftmaxOpMaker : public framework::OpProtoAndCheckerMaker {
76
 public:
Y
Yu Yang 已提交
77
  void Make() override {
78
    AddInput("X",
F
fengjiayi 已提交
79
             "The input tensor of softmax, "
D
dengkaipeng 已提交
80
             "whose dimension :attr:`axis` is the input_feature_dimensions.");
81
    AddOutput("Out", "The normalized values with the same shape as X.");
82
    AddAttr<int>("axis",
D
dengkaipeng 已提交
83
                 "The dimension index of Input(x) to perform softmax,"
84 85
                 "default -1 for last dimension")
        .SetDefault(-1);
86 87 88
    AddAttr<bool>(
        "use_cudnn",
        "(bool, default false) Only used in cudnn kernel, need install cudnn")
89 90
        .SetDefault(false)
        .AsExtra();
91 92 93 94 95 96 97
    AddAttr<std::string>(
        "data_format",
        "(string, default NCHW) Only used in "
        "An optional string from: \"NHWC\", \"NCHW\". "
        "Defaults to \"NHWC\". Specify the data format of the output data, "
        "the input will be transformed automatically. ")
        .SetDefault("AnyLayout");
98 99
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
100 101
        .SetDefault(false)
        .AsExtra();
102 103 104 105
    AddAttr<std::string>(
        "mkldnn_data_type",
        "(string, default \"float32\"). Data type of mkldnn kernel")
        .SetDefault("float32")
106 107
        .InEnum({"float32", "bfloat16"})
        .AsExtra();
J
Jacek Czaja 已提交
108
    AddAttr<bool>("is_test",
109 110
                  "(bool, default false) Set to true for inference only, false "
                  "for training. Some layers may run faster when this is true.")
111 112
        .SetDefault(false)
        .AsExtra();
C
caoying03 已提交
113
    AddComment(R"DOC(
114 115
Softmax Operator.

116
The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
117
has the same shape as the input.
C
caoying03 已提交
118

D
dengkaipeng 已提交
119
The dimension :attr:`axis` of the input tensor will be permuted to the last.
D
dengkaipeng 已提交
120
Then the input tensor will be logically flattened to a 2-D matrix. The matrix's
D
dengkaipeng 已提交
121
second dimension(row length) is as same as the dimension :attr:`axis` of the input
122 123 124
tensor, and the first dimension(column length) is the product of all other
dimensions of the input tensor. For each row of the matrix, the softmax operator
squashes the K-dimensional(K is the width of the matrix, which is also the size
D
dengkaipeng 已提交
125
of the input tensor's dimension :attr:`axis`) vector of arbitrary real values to a
F
fengjiayi 已提交
126
K-dimensional vector of real values in the range [0, 1] that add up to 1.
127 128 129 130 131
It computes the exponential of the given dimension and the sum of exponential
values of all the other dimensions in the K-dimensional vector input.
Then the ratio of the exponential of the given dimension and the sum of
exponential values of all the other dimensions is the output of the softmax
operator.
C
caoying03 已提交
132

F
fengjiayi 已提交
133
For each row $i$ and each column $j$ in the matrix, we have:
F
fengjiayi 已提交
134
    $$Out[i, j] = \frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}$$
C
caoying03 已提交
135 136

)DOC");
137 138 139
  }
};

C
chengduo 已提交
140 141
class SoftmaxOpInferVarType : public framework::PassInDtypeAndVarTypeToOutput {
 protected:
142
  std::unordered_map<std::string, std::string>& GetInputOutputWithSameType()
C
chengduo 已提交
143
      const override {
144 145
    static std::unordered_map<std::string, std::string> m{{"X", /*->*/ "Out"}};
    return m;
C
chengduo 已提交
146 147 148
  }
};

D
dongzhihong 已提交
149
class SoftmaxOpGrad : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
150 151 152
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

153 154 155 156
 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    // choose cudnn kernel if the runtime supported.
K
Kexin Zhao 已提交
157
    framework::LibraryType library_{framework::LibraryType::kPlain};
J
Jacek Czaja 已提交
158 159
    std::string data_format = ctx.Attr<std::string>("data_format");
    framework::DataLayout layout_ = framework::StringToDataLayout(data_format);
160 161
    auto input_data_type = OperatorWithKernel::IndicateVarDataType(
        ctx, framework::GradVarName("Out"));
162
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
K
Kexin Zhao 已提交
163
    if (platform::CanCUDNNBeUsed(ctx)) {
K
Kexin Zhao 已提交
164
      library_ = framework::LibraryType::kCUDNN;
165 166
    }
#endif
J
Jacek Czaja 已提交
167 168
#ifdef PADDLE_WITH_MKLDNN
    if (library_ == framework::LibraryType::kPlain &&
169
        this->CanMKLDNNBeUsed(ctx, input_data_type)) {
J
Jacek Czaja 已提交
170 171 172 173 174
      library_ = framework::LibraryType::kMKLDNN;
      layout_ = framework::DataLayout::kMKLDNN;
    }
#endif
    if (input_data_type == framework::proto::VarType::FP16) {
175
      if (!(platform::is_gpu_place(ctx.GetPlace()) ||
176 177
            platform::is_npu_place(ctx.GetPlace()) ||
            platform::is_xpu_place(ctx.GetPlace())))
178
        PADDLE_THROW(platform::errors::InvalidArgument(
179
            "float16 can only be used on GPU/NPU/XPU place"));
J
Jacek Czaja 已提交
180 181 182 183
    }

    return framework::OpKernelType(input_data_type, ctx.GetPlace(), layout_,
                                   library_);
184
  }
D
dongzhihong 已提交
185 186
};

H
hong 已提交
187 188
template <typename T>
class SoftmaxOpGradMaker : public framework::SingleGradOpMaker<T> {
189
 public:
H
hong 已提交
190
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
191 192

 protected:
193
  void Apply(GradOpPtr<T> op) const override {
194 195
    op->SetType("softmax_grad");

H
hong 已提交
196 197
    op->SetInput("Out", this->Output("Out"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
198

H
hong 已提交
199
    op->SetAttrMap(this->Attrs());
200

H
hong 已提交
201
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
202 203
  }
};
D
dzhwinter 已提交
204

205 206
DECLARE_INPLACE_OP_INFERER(SoftmaxInplaceInferer, {"X", "Out"});

207 208 209
}  // namespace operators
}  // namespace paddle

D
dongzhihong 已提交
210
namespace ops = paddle::operators;
D
dongzhihong 已提交
211

212 213
DECLARE_INFER_SHAPE_FUNCTOR(softmax, SoftmaxInferShapeFunctor,
                            PD_INFER_META(phi::SoftmaxInferMeta));
Y
Yang Yang 已提交
214
REGISTER_OPERATOR(softmax, ops::SoftmaxOp, ops::SoftmaxOpMaker,
H
hong 已提交
215 216 217
                  ops::SoftmaxOpInferVarType,
                  ops::SoftmaxOpGradMaker<paddle::framework::OpDesc>,
                  ops::SoftmaxOpGradMaker<paddle::imperative::OpBase>,
218
                  ops::SoftmaxInplaceInferer, SoftmaxInferShapeFunctor);
C
Chen Weihang 已提交
219
DECLARE_INFER_SHAPE_FUNCTOR(softmax_grad, SoftmaxGradInferShapeFunctor,
220 221
                            PD_INFER_META(phi::GeneralUnaryGradInferMeta));
REGISTER_OPERATOR(softmax_grad, ops::SoftmaxOpGrad,
C
Chen Weihang 已提交
222
                  SoftmaxGradInferShapeFunctor);