config_parser.py 149.4 KB
Newer Older
1
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
'''
The following functions are available in the config file:

Bias: define bias. To be used as value of bias argument in Layer().

Data: define data provider.

Input: define input layer for a layer. To be used as element of inputs argument
       in Layer().

Conv: define a convolution operation for an input of a layer.

Norm: define a normalization operation for an input of a layer.

Pool: define a pooling operation for an input of a layer.

Layer: define a layer.

Parameter: define a parameter.

Import: import another config file. If the imported config file name is
        a relative path, then it will be searched under the directory of the
        current config file.

Inputs(layer_names...):
    Define the name of the input layers of the NeuralNetwork.
    The type of these layers must be "data".
    These layers will be provided with the DataBatch obtained
    from DataProvider. The data streams from DataProvider must
    have the same order.

Outputs(layer_names...):
    Define the name of the output layers of the NeuralNetwork.
    Usually the output is simply the cost layer.
    You can specify other layers as outputs and  calculate the
    cost (and its derivative) yourself.


default_initial_std(val)
default_initial_mean(val)
default_momentum(val):
default_decay_rate(val): Set the default value for these parameters


get_config_arg(name, type, default): Get the value for a config parameter.


*** customized extension to config_parser ***
The functionality of the config_parser can be extended.
If the config_arg_str for parse_config() contains
extension_module_name=[MODULE_NAME], then config_parser will call
MODULE_NAME.get_config_funcs(g_config)
MODULE_NAME.get_config_funcs() should return a dictionary of name to functions,
those functions will be available in the config file.
See trainer/tests/config_parser_test.py for example

To use this from paddle_trainer, paddle_trainer should be called with
--config_args=extension_module_name=[MODULE_NAME]

'''
import copy
import logging
import os
import sys
import traceback
import math
import shutil

try:
    from paddle.proto.DataConfig_pb2 import DataConfig
    from paddle.proto.ModelConfig_pb2 import ModelConfig
    from paddle.proto.ModelConfig_pb2 import LayerConfig
    from paddle.proto.ModelConfig_pb2 import LayerInputConfig
    from paddle.proto.ModelConfig_pb2 import ProjectionConfig
    from paddle.proto.ModelConfig_pb2 import OperatorConfig
    from paddle.proto.ModelConfig_pb2 import GeneratorConfig
    from paddle.proto.ModelConfig_pb2 import LinkConfig
    from paddle.proto.ParameterConfig_pb2 import ParameterConfig
    from paddle.proto.ParameterConfig_pb2 import ParameterUpdaterHookConfig
    from paddle.proto.TrainerConfig_pb2 import TrainerConfig

except Exception as e:
    traceback.print_exc()
    raise

logging.basicConfig(
102
    format='[%(levelname)s %(asctime)s %(filename)s:%(lineno)s] %(message)s', )
103 104 105
logger = logging.getLogger('paddle')
logger.setLevel(logging.INFO)
__real_print__ = print
106
print = logger.info
107 108 109 110

# from layer type name to layer class
g_layer_type_map = {}

111

112 113 114
# Initialize global variables. We use this function so that we can
# call parse_config() multiple times
def init_config_environment(
115 116 117 118 119 120 121 122 123 124 125 126 127 128
        g_default_momentum=None,
        g_default_decay_rate=None,
        g_default_initial_mean=0.,
        g_default_initial_std=0.01,
        g_default_num_batches_regularization=None,
        g_default_initial_strategy=0,
        g_default_initial_smart=False,
        g_default_gradient_clipping_threshold=None,
        g_default_device=None,
        g_default_update_hooks=None,
        g_default_compact_func=None,
        g_config=TrainerConfig(),
        g_layer_map={},
        g_parameter_map={},
129
        g_parameter_initializer_map={},
130
        g_extended_config_funcs={},
131 132

        # store command args of paddle_trainer
133
        g_command_config_args={},
134 135

        # Used for PyDataProvider to avoid duplicate module name
136 137 138 139 140
        g_py_module_name_list=[],
        g_current_submodel=None,
        g_root_submodel=None,
        g_submodel_map={},
        g_submodel_stack=[],
141
        g_add_submodel_suffix=False, ):
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157

    for k, v in locals().iteritems():
        globals()[k] = copy.deepcopy(v)


# Because type is widely used as a variable name in this code.
# we need a different function name for the builtin type()
def type_of(x):
    return type(x)


# Check a condition derived config file
def config_assert(b, msg):
    if not b:
        logger.fatal(msg)

158

159 160
g_config_funcs = {}

161

162 163 164 165 166
# decorator for indicating a function which can be used in config file
def config_func(func):
    g_config_funcs[func.func_name] = func
    return func

167

168 169 170 171 172
# decorator for indicating a class which can be used in config file
def config_class(cls):
    g_config_funcs[cls.__name__] = cls
    return cls

173

174 175 176 177 178 179
# decorator for indicating a class for a layer type
def config_layer(layer_type):
    def wrap(cls):
        g_config_funcs[cls.__name__] = cls
        g_layer_type_map[layer_type] = cls
        return cls
180

181 182
    return wrap

183

184 185 186
def gen_parameter_name(layer_name, input_index):
    return '_%s.w%d' % (layer_name, input_index)

187

188 189 190
def gen_bias_parameter_name(layer_name):
    return '_%s.wbias' % layer_name

191

192 193 194
def default(x, default_value):
    return default_value if x is None else x

195

196 197 198 199 200 201
class Cfg(object):
    def add_keys(self, locals):
        for k, v in locals.iteritems():
            if not k.startswith('_'):
                self.__setattr__(k, v)

202

203 204
# functions available in config file

205

206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
# Define the name of the input layers of the NeuralNetwork.
# The type of these layers must be "data".
# These layers will be provided with the DataBatch obtained
# from DataProvider. The data streams from DataProvider must
# have the same order.
@config_func
def Inputs(*args):
    for name in args:
        name = MakeLayerNameInSubmodel(name)
        global g_current_submodel, g_root_submodel
        if g_current_submodel.is_recurrent_layer_group:
            config_assert(False, "Do not set Inputs in recurrent layer group")
        else:
            g_current_submodel.input_layer_names.append(name)

        if g_current_submodel is g_root_submodel:
            g_config.model_config.input_layer_names.append(name)

224

225 226
@config_func
def HasInputsSet():
227
    return len(g_current_submodel.input_layer_names) != 0
228

229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252

# Define the name of the output layers of the NeuralNetwork.
# Usually the output is simply the cost layer.
# You can specify other layers as outputs and calculate the
# cost (and its derivative) yourself.
@config_func
def Outputs(*args):
    for name in args:
        name = MakeLayerNameInSubmodel(name)
        global g_current_submodel, g_root_submodel
        if g_current_submodel.is_recurrent_layer_group:
            config_assert(False, "Do not set Outputs in recurrent layer group")
        else:
            g_current_submodel.output_layer_names.append(name)

        if g_current_submodel is g_root_submodel:
            g_config.model_config.output_layer_names.append(name)


@config_func
def SubModelBegin(name):
    global g_current_submodel, g_root_submodel, g_submodel_stack
    g_submodel_stack.append(g_current_submodel)

253
    name = MakeLayerNameInParentSubmodel(name)  #rename in nested submodel
254 255 256 257 258 259 260 261 262

    config_assert(name not in g_submodel_map,
                  'Duplicated submodel name: %s' % name)

    sub_model = g_config.model_config.sub_models.add()
    sub_model.name = name
    g_submodel_map[name] = sub_model
    g_current_submodel = sub_model

263

264
@config_func
265
def SubModelEnd(name=None):
266
    global g_current_submodel, g_root_submodel, g_submodel_stack
267 268
    config_assert(g_current_submodel is not g_root_submodel,
                  "submodel not begin")
269
    if name is not None:
270 271 272
        config_assert(
            g_current_submodel.name == MakeLayerNameInParentSubmodel(name),
            "submodel name error")
273 274 275

    g_current_submodel = g_submodel_stack.pop()

276

277 278
def MakeLayerNameInParentSubmodel(name):
    suffix = ""
279 280
    if len(g_submodel_stack) > 1:
        suffix = "@" + g_submodel_stack[-1].name
281 282
    return name + suffix

283

284 285 286
def GetLayerBaseName(name):
    return name.split('@')[0]

287 288

def MakeLayerNameInSubmodel(name, submodel_name=None):
289 290
    global g_current_submodel
    global g_add_submodel_suffix
291 292
    if (submodel_name is None and not g_add_submodel_suffix and
            not g_current_submodel.is_recurrent_layer_group):
293 294 295 296 297
        return name
    if submodel_name is None:
        submodel_name = g_current_submodel.name
    return name + "@" + submodel_name

298

299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
# Define a recurrent layer group begin with RecurrentLayerGroupBegin
# and end with RecurrentLayerGroupEnd.
# A recurrent layer group forward/backward one frame after previous frame
# forward/backward through all layers in layer group.
# in_links are names of layer used as input layer in the layer group.
# out_links are names of layer in layer group used as outside layer's input.
#
# If generator is set, the layer group need one or more than one outlinks.
# The first outlink should always be the generated token ids.
# If generator.num_results_per_sample is not set, the output for one sample is
# a ids sequence. Else if num_results_per_sample is more than one,
# the output for one sample is up to #num_results_per_sample generated
# sequences, which are packed in one sequence in output ids vector. Each
# generated sequence has a generation probability. The probabilities for one
# sample are stored in one row of output value matrix.
# Packed generated sequences format, for each i:
#   seq_i_length: one interger, seq_i content length,
#   [seq_i content], length = seq_i_length
#   seq_i_end_mark: one interger, for format check, always -1
# You can use "seq_text_printer" to print the output of the generator.
@config_func
def RecurrentLayerGroupWithoutOutLinksBegin(name,
                                            in_links,
322 323
                                            seq_reversed=False,
                                            target_inlinkname=""):
324 325 326 327 328 329 330 331
    global g_current_submodel
    config_assert(g_config.model_config.type == "recurrent_nn",
                  "RecurrentLayerGroup should be used only in recurrent_nn")
    RecurrentLayerGroup(name=name)  # add to father model
    SubModelBegin(name)
    g_current_submodel.is_recurrent_layer_group = True
    g_current_submodel.reversed = seq_reversed
    in_links_count = 0
332
    for linkid, link in enumerate(in_links):
333 334 335 336
        if isinstance(link, basestring):
            name = link
        else:
            name = link.link_name
337

338 339 340
        in_links_count += 1
        layer_name = MakeLayerNameInParentSubmodel(name)
        layer = g_layer_map[layer_name]
341 342
        ScatterAgentLayer(
            name=name, size=layer.size, width=layer.width, height=layer.height)
343

344 345 346 347
        pair = g_current_submodel.in_links.add()
        pair.layer_name = layer_name
        pair.link_name = MakeLayerNameInSubmodel(name)

348

349 350 351 352 353 354 355 356 357 358 359 360 361
@config_func
def RecurrentLayerGroupSetOutLink(link):
    if isinstance(link, basestring):
        name = link
    else:
        name = link.link_name
    layer_name = MakeLayerNameInParentSubmodel(name)
    pair = g_current_submodel.out_links.add()
    pair.layer_name = MakeLayerNameInSubmodel(name)
    pair.link_name = layer_name


def RecurrentLayerGroupSetGenerator(generator=None):
362
    generator.eos_layer_name = MakeLayerNameInSubmodel(generator.eos_layer_name)
363 364 365 366 367 368 369 370
    g_current_submodel.generator.CopyFrom(generator)


@config_func
def RecurrentLayerGroupBegin(name,
                             in_links,
                             out_links,
                             generator=None,
371
                             target_inlinkname="",
372
                             seq_reversed=False):
373
    RecurrentLayerGroupWithoutOutLinksBegin(name, in_links, seq_reversed)
374 375 376 377 378
    for link in out_links:
        RecurrentLayerGroupSetOutLink(link)

    if generator is not None:
        RecurrentLayerGroupSetGenerator(generator)
379 380 381 382 383
        config_assert(
            len(in_links) == 0, "no in_links should be passed to generator")
        config_assert(
            len(out_links) >= 1,
            "one or more than one out_links should be passed to generator")
384 385 386 387 388 389 390


@config_func
def RecurrentLayerGroupEnd(name):
    global g_current_submodel
    config_assert(g_current_submodel.is_recurrent_layer_group,
                  "RecurrentLayerGroup not begin")
391
    for pair in g_current_submodel.memories:  #check exist
392
        layer = g_layer_map[pair.layer_name]
Y
Yu Yang 已提交
393 394
        config_assert(layer is not None,
                      "memory declare wrong name:%s" % pair.layer_name)
395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
        memory_link = g_layer_map[pair.link_name]
        config_assert(layer.size == memory_link.size,
                      "memory declare wrong size:%d" % memory_link.size)

    prev_submodel = g_current_submodel
    SubModelEnd(name)

    for pair in prev_submodel.out_links:
        layer = g_layer_map[pair.layer_name]
        # add out agent to father model
        agent_name = GetLayerBaseName(pair.link_name)
        if prev_submodel.HasField("generator"):
            DataLayer(name=agent_name, size=layer.size)
        else:
            GatherAgentLayer(name=agent_name, size=layer.size)

411

412 413 414 415 416 417
# Define the model type
# currently, the paddle supports "nn", "recurrent_nn", "recursive_nn" and "multi_nn"
@config_func
def model_type(name):
    g_config.model_config.type = name

418

419 420
@config_class
class Bias(Cfg):
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
    def __init__(self,
                 parameter_name=None,
                 learning_rate=None,
                 momentum=None,
                 decay_rate=None,
                 decay_rate_l1=None,
                 initial_mean=None,
                 initial_std=None,
                 initial_strategy=None,
                 initial_smart=None,
                 num_batches_regularization=None,
                 sparse_remote_update=None,
                 gradient_clipping_threshold=None,
                 is_static=None,
                 is_shared=None,
                 initializer=None):
437 438
        self.add_keys(locals())

439

440 441 442 443 444 445 446
# Define one input for a layer
@config_class
class Input(Cfg):
    def __init__(
            self,
            input_layer_name,
            parameter_name=None,
447
            initializer=None,
448 449 450 451 452 453 454 455 456 457 458 459 460
            learning_rate=None,
            momentum=None,
            decay_rate=None,
            decay_rate_l1=None,
            initial_mean=None,
            initial_std=None,
            initial_strategy=None,
            initial_smart=None,
            num_batches_regularization=None,
            sparse_remote_update=None,
            sparse_update=None,
            gradient_clipping_threshold=None,
            conv=None,
461
            bilinear_interp=None,
462 463 464 465
            norm=None,
            pool=None,
            image=None,
            block_expand=None,
466
            maxout=None,
Q
qijun 已提交
467
            spp=None,
D
dangqingqing 已提交
468
            pad=None,
469 470 471 472 473
            format=None,
            nnz=None,
            is_static=None,
            is_shared=None,
            update_hooks=None,
474
            input_layer_argument=None,
D
dangqingqing 已提交
475 476 477 478 479
            make_layer_name_in_submodel=True, ):
        """
        @param make_layer_name_in_submodel True by defalut, you might need to
        set it carefully when adding Input in config_parser.py.
        """
480
        self.add_keys(locals())
D
dangqingqing 已提交
481 482 483
        self.input_layer_name = MakeLayerNameInSubmodel(
            input_layer_name
        ) if make_layer_name_in_submodel else input_layer_name
484

485

486 487 488
# Define a projection for iexed layer
@config_class
class Projection(Input):
489 490
    type = None  # subclass should set it correctly

491 492 493
    def __init__(
            self,
            input_layer_name,
494
            size=0,  # projection output size
495 496 497 498 499 500 501 502 503
            parameter_name=None,
            learning_rate=None,
            momentum=None,
            decay_rate=None,
            decay_rate_l1=None,
            initial_mean=None,
            initial_std=None,
            initial_strategy=None,
            initial_smart=None,
504
            initializer=None,
505 506 507 508 509 510 511 512 513 514
            num_batches_regularization=None,
            sparse_remote_update=None,
            sparse_update=None,
            gradient_clipping_threshold=None,
            ptype=None,
            format=None,
            nnz=None,
            is_static=None,
            is_shared=None,
            update_hooks=None,
515
            input_layer_argument=None, ):
516 517 518 519 520 521 522 523 524 525 526 527 528
        self.add_keys(locals())
        self.input_layer_name = MakeLayerNameInSubmodel(input_layer_name)

        self.proj_conf = ProjectionConfig()
        if ptype is not None:
            self.proj_conf.type = ptype
        else:
            self.proj_conf.type = self.type

    # calculate the output_size given input_size. return 0
    # to indicate using the size from Layer config
    def calc_output_size(self, input_layer_config):
        return self.size
529

530 531
    def calc_parameter_size(self, input_size, output_size):
        raise NotimplementedError
532

533 534 535 536 537 538 539 540 541 542
    def calc_parameter_dims(self, input_size, output_size):
        raise NotimplementedError


@config_class
class IdentityProjection(Projection):
    type = 'identity'

    def calc_output_size(self, input_layer_config):
        return input_layer_config.size
543

544 545
    def calc_parameter_size(self, input_size, output_size):
        return 0
546

547 548 549
    def calc_parameter_dims(self, input_size, output_size):
        return []

550

551 552 553 554 555 556
# Like IdentityProjection, but layer size may smaller than input size,
# the projection select dimesions [offset, offset+layer_size) from input
@config_class
class IdentityOffsetProjection(Projection):
    type = 'identity_offset'

557 558 559
    def __init__(self, input_layer_name, offset, **xargs):
        super(IdentityOffsetProjection, self).__init__(input_layer_name,
                                                       **xargs)
560 561 562 563
        self.proj_conf.offset = offset

    def calc_parameter_size(self, input_size, output_size):
        return 0
564

565 566 567
    def calc_parameter_dims(self, input_size, output_size):
        return []

568

569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
@config_class
class SliceProjection(Projection):
    type = 'slice'

    def __init__(self, input_layer_name, slices, **xargs):
        super(SliceProjection, self).__init__(input_layer_name, **xargs)
        input = g_layer_map[input_layer_name]
        if input.type in ["exconv", "cudnn_conv"]:
            # the slice operator is for the channel dimension
            assert input.num_filters is not None
            channels = input.num_filters
            image_size = input.size / channels
            assert slices[len(slices) - 1][1] <= channels
            for i in xrange(len(slices)):
                slice = self.proj_conf.slices.add()
                slice.start = slices[i][0] * image_size
                slice.end = slices[i][1] * image_size
                self.size += slice.end - slice.start
        else:
            config_assert(False,
                          'Currently the input should be convolution layer')

    def calc_parameter_size(self, input_size, output_size):
        return 0

    def calc_parameter_dims(self, input_size, output_size):
        return []


598 599 600 601 602 603 604
# DotMulProjection performs element-wise multiplication with weight
@config_class
class DotMulProjection(Projection):
    type = 'dot_mul'

    def calc_output_size(self, input_layer_config):
        return input_layer_config.size
605

606 607
    def calc_parameter_size(self, input_size, output_size):
        return output_size
608

609 610 611
    def calc_parameter_dims(self, input_size, output_size):
        return [1, output_size]

612

X
xuwei06 已提交
613 614 615 616 617 618 619 620 621 622 623 624 625 626
# ScalingProjection
@config_class
class ScalingProjection(Projection):
    type = 'scaling'

    def calc_output_size(self, input_layer_config):
        return input_layer_config.size

    def calc_parameter_size(self, input_size, output_size):
        return 1

    def calc_parameter_dims(self, input_size, output_size):
        return [1, 1]

627

628 629 630 631 632 633
@config_class
class TableProjection(Projection):
    type = 'table'

    def calc_parameter_size(self, input_size, output_size):
        return input_size * output_size
634

635 636 637
    def calc_parameter_dims(self, input_size, output_size):
        return [input_size, output_size]

638

639 640 641 642 643 644
@config_class
class FullMatrixProjection(Projection):
    type = 'fc'

    def calc_parameter_size(self, input_size, output_size):
        return input_size * output_size
645

646 647 648
    def calc_parameter_dims(self, input_size, output_size):
        return [input_size, output_size]

649

650 651 652 653 654 655
@config_class
class TransposedFullMatrixProjection(Projection):
    type = 'trans_fc'

    def calc_parameter_size(self, input_size, output_size):
        return input_size * output_size
656

657 658 659
    def calc_parameter_dims(self, input_size, output_size):
        return [output_size, input_size]

660

661 662 663 664
@config_class
class ContextProjection(Projection):
    type = 'context'

665 666
    def __init__(self, input_layer_name, context_start, context_length,
                 trainable_padding, **xargs):
667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
        super(ContextProjection, self).__init__(input_layer_name, **xargs)
        self.proj_conf.context_start = context_start
        self.proj_conf.context_length = context_length
        self.proj_conf.trainable_padding = trainable_padding
        self._total_pad = max(0, -self.proj_conf.context_start) \
                          + max(0, self.proj_conf.context_start \
                                + self.proj_conf.context_length - 1)

    def calc_output_size(self, input_layer_config):
        return input_layer_config.size * self.proj_conf.context_length

    def calc_parameter_size(self, input_size, output_size):
        if self.proj_conf.trainable_padding == False:
            return 0
        else:
            return input_size * self._total_pad

    def calc_parameter_dims(self, input_size, output_size):
        return [self._total_pad, input_size]

    _total_pad = 0


690
@config_class
691
class ConvBaseProjection(Projection):
692 693 694 695 696
    def __init__(self,
                 input_layer_name,
                 num_filters=None,
                 conv_conf=None,
                 **xargs):
697
        super(ConvBaseProjection, self).__init__(input_layer_name, **xargs)
698 699 700 701 702 703 704 705 706 707 708 709

        if num_filters is not None:
            self.proj_conf.num_filters = num_filters

    def calc_output_size(self, input_layer_config):
        return self.proj_conf.output_size

    def calc_parameter_size(self, input_size, output_size):
        co = self.proj_conf.num_filters
        ci = self.proj_conf.conv_conf.channels
        fh = self.proj_conf.conv_conf.filter_size
        fw = self.proj_conf.conv_conf.filter_size_y
710 711
        gr = self.proj_conf.conv_conf.groups
        return co * ci * fh * fw / gr
712 713 714 715 716 717 718

    def calc_bias_size(self):
        return self.proj_conf.num_filters

    def calc_parameter_dims(self, input_size, output_size):
        return None

719

720 721 722 723 724 725 726 727 728
@config_class
class ConvProjection(ConvBaseProjection):
    type = 'conv'

    def __init__(self,
                 input_layer_name,
                 num_filters=None,
                 conv_conf=None,
                 **xargs):
729 730
        super(ConvProjection, self).__init__(input_layer_name, num_filters,
                                             conv_conf, **xargs)
731

732
        parse_conv(conv_conf, self.input_layer_name, self.proj_conf.conv_conf,
733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
                   num_filters)
        self.proj_conf.output_size = self.proj_conf.conv_conf.output_x * \
                                     self.proj_conf.conv_conf.output_y * \
                                     num_filters


@config_class
class ConvTransProjection(ConvBaseProjection):
    type = 'convt'

    def __init__(self,
                 input_layer_name,
                 num_filters=None,
                 conv_conf=None,
                 **xargs):
748 749
        super(ConvTransProjection, self).__init__(input_layer_name, num_filters,
                                                  conv_conf, **xargs)
750 751 752

        parse_conv(
            conv_conf,
753
            self.input_layer_name,
754 755 756 757 758 759 760 761
            self.proj_conf.conv_conf,
            num_filters,
            trans=True)
        self.proj_conf.output_size = self.proj_conf.conv_conf.img_size_y * \
                                     self.proj_conf.conv_conf.img_size * \
                                     num_filters


762 763 764
# Define a operator for mixed layer
@config_class
class Operator(Cfg):
765 766
    type = None  # subclass should set it correctly

767 768
    def __init__(
            self,
769
            input_layer_names, ):
770 771 772 773 774 775 776 777 778 779
        self.add_keys(locals())
        self.operator_conf = OperatorConfig()
        self.operator_conf.type = self.type

    def check_dims(self):
        pass

    def calc_output_size(self, input_sizes):
        return 0

780

781 782 783
@config_class
class DotMulOperator(Operator):
    type = 'dot_mul'
784 785 786

    def __init__(self, input_layer_names, scale=None, **xargs):
        super(DotMulOperator, self).__init__(input_layer_names, **xargs)
787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804
        if scale is not None:
            self.operator_conf.dotmul_scale = scale

        config_assert(len(input_layer_names) == 2, "DotMul is binary operator")

    def check_dims(self):
        for i in range(2):
            config_assert(self.operator_conf.input_sizes[i] ==
                          self.operator_conf.output_size,
                          "DotMul input_size != output_size")

    def calc_output_size(self, input_sizes):
        return input_sizes[0]


@config_class
class ConvOperator(Operator):
    type = 'conv'
805 806 807 808 809 810 811

    def __init__(self,
                 input_layer_names,
                 num_filters=None,
                 conv_conf=None,
                 **xargs):
        super(ConvOperator, self).__init__(input_layer_names, **xargs)
812 813 814
        if num_filters is not None:
            self.operator_conf.num_filters = num_filters

815 816
        parse_conv(conv_conf,
                   MakeLayerNameInSubmodel(input_layer_names[0]),
817
                   self.operator_conf.conv_conf, num_filters)
818 819 820
        self.operator_conf.output_size = self.operator_conf.conv_conf.output_x * \
                                         self.operator_conf.conv_conf.output_y * \
                                         num_filters
821 822 823

        config_assert(len(input_layer_names) == 2, "Conv is binary operator")

824 825
    def calc_output_size(self, input_sizes):
        return self.operator_conf.output_size
826 827


828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857
@config_class
class ConvTransOperator(Operator):
    type = 'convt'

    def __init__(self,
                 input_layer_names,
                 num_filters=None,
                 conv_conf=None,
                 **xargs):
        super(ConvTransOperator, self).__init__(input_layer_names, **xargs)
        if num_filters is not None:
            self.operator_conf.num_filters = num_filters

        parse_conv(
            conv_conf,
            MakeLayerNameInSubmodel(input_layer_names[0]),
            self.operator_conf.conv_conf,
            num_filters,
            trans=True)
        self.operator_conf.output_size = \
            self.operator_conf.conv_conf.img_size * \
            self.operator_conf.conv_conf.img_size_y * \
            num_filters

        config_assert(len(input_layer_names) == 2, "Conv is binary operator")

    def calc_output_size(self, input_sizes):
        return self.operator_conf.output_size


858 859 860
# please refer to the comments in proto/ModelConfig.proto
@config_class
class Conv(Cfg):
861 862 863 864 865 866 867 868 869 870 871 872
    def __init__(self,
                 filter_size,
                 channels,
                 padding=None,
                 stride=None,
                 groups=None,
                 filter_channels=None,
                 output_x=None,
                 img_size=None,
                 caffe_mode=True,
                 filter_size_y=None,
                 padding_y=None,
873 874 875
                 stride_y=None,
                 dilation=None,
                 dilation_y=None):
876 877
        self.add_keys(locals())
        if filter_size_y is None:
878
            self.filter_size_y = filter_size
879
        if padding_y is None:
880
            self.padding_y = padding
881 882
        if dilation_y is None:
            self.dilation_y = dilation
883
        if stride_y is None:
884
            self.stride_y = stride
885
        if output_x is not None:
886 887
            config_assert(output_x <= 0)

888

889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908
# please refer to the comments in proto/ModelConfig.proto
@config_class
class Conv3D(Cfg):
    def __init__(self,
                 filter_size,
                 channels,
                 padding=None,
                 stride=None,
                 groups=None,
                 filter_channels=None,
                 output_x=None,
                 img_size=None,
                 caffe_mode=True,
                 filter_size_y=None,
                 padding_y=None,
                 stride_y=None,
                 filter_size_z=None,
                 padding_z=None,
                 stride_z=None):
        self.add_keys(locals())
C
chengduoZH 已提交
909 910 911 912 913 914
        self.filter_size_y = filter_size_y if filter_size_y else filter_size
        self.filter_size_z = filter_size_z if filter_size_z else filter_size
        self.padding_y = padding_y if padding_y else padding
        self.padding_z = padding_z if padding_z else padding
        self.stride_y = stride_y if stride_y else stride
        self.stride_z = stride_z if stride_z else stride
915 916 917 918
        if output_x is not None:
            config_assert(output_x <= 0)


919 920
@config_class
class BilinearInterp(Cfg):
921
    def __init__(self, out_size_x=None, out_size_y=None, channels=None):
922 923
        self.add_keys(locals())

924

925 926
@config_class
class Pool(Cfg):
D
dangqingqing 已提交
927 928 929 930 931 932 933 934 935 936 937
    def __init__(
            self,
            pool_type,
            channels,
            size_x,
            size_y=None,
            start=None,
            stride=None,  # 1 by defalut in protobuf
            stride_y=None,
            padding=None,  # 0 by defalut in protobuf
            padding_y=None):
938
        self.add_keys(locals())
939 940


941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965
@config_class
class Pool3d(Cfg):
    def __init__(
            self,
            pool_type,
            channels,
            size_x,
            size_y=None,
            size_z=None,
            start=None,
            stride=None,  # 1 by defalut in protobuf
            stride_y=None,
            stride_z=None,
            padding=None,  # 0 by defalut in protobuf
            padding_y=None,
            padding_z=None):
        self.add_keys(locals())
        self.filter_size_y = size_y if size_y else size_x
        self.filter_size_z = size_z if size_z else size_x
        self.padding_y = padding_y if padding_y else padding
        self.padding_z = padding_z if padding_z else padding
        self.stride_y = stride_y if stride_y else stride
        self.stride_z = stride_z if stride_z else stride


Q
qijun 已提交
966
@config_class
Q
qijun 已提交
967
class SpatialPyramidPool(Cfg):
968
    def __init__(self, pool_type, pyramid_height, channels):
Q
qijun 已提交
969
        self.add_keys(locals())
970

971

D
dangqingqing 已提交
972 973 974 975 976 977
@config_class
class Pad(Cfg):
    def __init__(self, channels, pad_c, pad_h, pad_w):
        self.add_keys(locals())


978 979
@config_class
class Norm(Cfg):
980 981 982 983 984 985 986 987 988
    def __init__(self,
                 norm_type,
                 channels,
                 size,
                 scale,
                 pow,
                 output_x=None,
                 img_size=None,
                 blocked=None):
989 990
        self.add_keys(locals())

991

992 993
@config_class
class Image(Cfg):
994
    def __init__(self, channels, img_size=None):
995 996
        self.add_keys(locals())

997

998 999
@config_class
class BlockExpand(Cfg):
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
    def __init__(self,
                 channels,
                 padding_x=0,
                 padding_y=0,
                 stride_x=0,
                 stride_y=0,
                 block_x=0,
                 block_y=0,
                 img_size_x=0,
                 img_size_y=0,
                 output_x=0,
                 output_y=0):
1012 1013
        self.add_keys(locals())

1014

1015 1016
@config_class
class MaxOut(Cfg):
1017
    def __init__(self, channels, groups, img_size_x=0, img_size_y=0):
1018 1019
        self.add_keys(locals())

1020

1021
def create_data_config_proto(async_load_data=False,
1022
                             constant_slots=None,
王益 已提交
1023 1024 1025
                             data_ratio=1,
                             is_main_data=True,
                             usage_ratio=None):
1026 1027 1028 1029 1030 1031 1032 1033
    # default: all sub dataproviders are treat as "main data".
    # see proto/DataConfig.proto for is_main_data
    data_config = DataConfig()

    data_config.async_load_data = async_load_data

    if constant_slots:
        data_config.constant_slots.extend(constant_slots)
1034 1035
    data_config.data_ratio = data_ratio
    data_config.is_main_data = is_main_data
1036

1037
    usage_ratio = default(usage_ratio, settings_deprecated["usage_ratio"])
1038 1039 1040 1041 1042 1043
    config_assert(usage_ratio >= 0 and usage_ratio <= 1,
                  "The range of usage_ratio is [0, 1]")
    data_config.usage_ratio = usage_ratio

    return data_config

1044

1045
@config_func
1046 1047 1048 1049 1050
def SimpleData(files=None,
               feat_dim=None,
               context_len=None,
               buffer_capacity=None,
               **xargs):
1051
    data_config = create_data_config_proto(**xargs)
1052 1053 1054 1055 1056 1057 1058 1059 1060
    data_config.type = 'simple'
    data_config.files = files
    data_config.feat_dim = feat_dim
    if context_len is not None:
        data_config.context_len = context_len
    if buffer_capacity:
        data_config.buffer_capacity = buffer_capacity
    return data_config

1061

1062
@config_func
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
def PyData(files=None,
           type=None,
           file_group_queue_capacity=None,
           load_data_module=None,
           load_data_object=None,
           load_data_args="",
           load_file_count=None,
           constant_slots=None,
           load_thread_num=None,
           **xargs):
1073
    data_config = create_data_config_proto(**xargs)
1074 1075
    data_config.type = 'py'
    if load_data_module in g_py_module_name_list:
1076

1077 1078 1079
        def get_path(module):
            m = __import__(load_data_module)
            return os.path.split(os.path.realpath(m.__file__))[0]
1080

1081 1082 1083
        # python C-api is not thread safe, one module can only be import once,
        # so here we nedd to copy the module with different names if it has to be
        # imported several times.
1084 1085
        module_new_name = "%s_copy_%d" % (load_data_module,
                                          len(g_py_module_name_list))
1086
        g_py_module_name_list.append(module_new_name)
1087 1088 1089 1090
        module_path = "%s/%s.py" % (get_path(load_data_module),
                                    load_data_module)
        new_module_path = "%s/%s.py" % (get_path(load_data_module),
                                        module_new_name)
1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
        if os.path.isfile(module_path) == False:
            raise Exception("File %s is not exist." % module_path)
        shutil.copy2(module_path, new_module_path)
        load_data_module = module_new_name
    else:
        g_py_module_name_list.append(load_data_module)
    if load_data_module is not None and load_data_object is not None:
        data_config.load_data_module = load_data_module
        data_config.load_data_object = load_data_object
    else:
        raise ValueError('load_data_module, load_data_object is not defined.')
    data_config.load_data_args = load_data_args

    data_config.files = files or ''
    if file_group_queue_capacity is not None:
        data_config.file_group_conf.queue_capacity = file_group_queue_capacity
    if load_file_count is not None:
        data_config.file_group_conf.load_file_count = load_file_count
    if load_thread_num is not None:
        data_config.file_group_conf.load_thread_num = load_thread_num
    if constant_slots:
        data_config.constant_slots.extend(constant_slots)
    return data_config

1115

1116
@config_func
1117 1118 1119 1120 1121 1122 1123
def ProtoData(files=None,
              type=None,
              file_group_queue_capacity=None,
              load_file_count=None,
              constant_slots=None,
              load_thread_num=None,
              **xargs):
1124
    data_config = create_data_config_proto(**xargs)
1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143
    if type is None:
        data_config.type = 'proto'
    else:
        data_config.type = type
    data_config.files = files

    # When type="proto_group", one data provider contains at most
    # load_file_count files, and there are at most
    # (queue_capacity + load_thread_num + 1) data providers in memory
    if file_group_queue_capacity is not None:
        data_config.file_group_conf.queue_capacity = file_group_queue_capacity
    if load_file_count is not None:
        data_config.file_group_conf.load_file_count = load_file_count
    if load_thread_num is not None:
        data_config.file_group_conf.load_thread_num = load_thread_num
    if constant_slots:
        data_config.constant_slots.extend(constant_slots)
    return data_config

1144

1145 1146
#real data for training is actually provided by "sub_data" data providers.
@config_func
1147
def MultiData(sub_data=[]):
1148 1149 1150 1151 1152
    data_config = DataConfig()
    data_config.type = 'multi'
    data_config.sub_data_configs.extend(sub_data)
    return data_config

1153

1154
@config_func
1155 1156 1157 1158 1159 1160 1161
def Data(type,
         files=None,
         feat_dim=None,
         slot_dims=None,
         context_len=None,
         buffer_capacity=None,
         **xargs):
1162

1163
    data_config = create_data_config_proto(**xargs)
1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196
    data_config.type = type
    data_config.files = files
    data_config.feat_dim = feat_dim
    data_config.slot_dims.extend(slot_dims)
    if context_len is not None:
        data_config.context_len = context_len
    data_config.buffer_capacity = buffer_capacity
    return data_config


@config_func
def TrainData(data_config, async_load_data=None):
    config_assert(not g_config.HasField('data_config'),
                  'Only one TrainData definition is allowed')
    g_config.data_config.CopyFrom(data_config)
    g_config.data_config.for_test = False
    if async_load_data is not None:
        logger.warning("Deprecated: async_load_data should be used inside"
                       " Data definition")
        g_config.data_config.async_load_data = async_load_data


@config_func
def TestData(data_config, async_load_data=None):
    config_assert(not g_config.HasField('test_data_config'),
                  'Only one TestData definition is allowed')
    g_config.test_data_config.CopyFrom(data_config)
    g_config.test_data_config.for_test = True
    if async_load_data is not None:
        logger.warning("Deprecated: async_load_data should be used inside"
                       " Data definition")
        g_config.test_data_config.async_load_data = async_load_data

1197

1198 1199
#caffe_mode: compute the output size using floor instead of ceil,
#            which is consistent of caffe and CuDNN's convention.
1200 1201 1202 1203 1204 1205 1206
def cnn_output_size(img_size, filter_size, padding, stride, caffe_mode):
    output = (2 * padding + img_size - filter_size) / float(stride)
    if caffe_mode:
        return 1 + int(math.floor(output))
    else:
        return 1 + int(math.ceil(output))

1207

1208
#calcualte image_size based on output_size for de-convolution (ConvTransLayer).
1209
#It is the reverse function of cnn_output_size
1210
def cnn_image_size(output_size, filter_size, padding, stride, caffe_mode):
1211 1212 1213
    img_size = (output_size - 1) * stride + filter_size - 2 * padding
    if not caffe_mode:
        img_size = img_size + 1
1214 1215
    return img_size

1216

1217
def get_img_size(input_layer_name, channels):
1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
    input = g_layer_map[input_layer_name]
    img_pixels = input.size / channels
    img_size = input.width if input.width > 0 else int(img_pixels**0.5)
    img_size_y = input.height if input.height > 0 else int(img_pixels /
                                                           img_size)
    config_assert(
        img_size * img_size_y == img_pixels,
        "Input layer %s: Incorrect input image size %d * %d for input image pixels %d"
        % (input_layer_name, img_size, img_size_y, img_pixels))
    return img_size, img_size_y


1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
def get_img3d_size(input_layer_name, channels):
    input = g_layer_map[input_layer_name]
    img_pixels = input.size / channels
    img_size = input.width
    img_size_y = input.height
    img_size_z = input.depth

    config_assert(
        img_size * img_size_y * img_size_z == img_pixels,
        "Input layer %s: Incorrect input image size %d * %d * %d for input image pixels %d"
        % (input_layer_name, img_size, img_size_y, img_size_z, img_pixels))
    return img_size, img_size_y, img_size_z


1244 1245 1246 1247 1248 1249
def parse_bilinear(bilinear, input_layer_name, bilinear_conf):
    parse_image(bilinear, input_layer_name, bilinear_conf.image_conf)
    bilinear_conf.out_size_x = bilinear.out_size_x
    bilinear_conf.out_size_y = bilinear.out_size_y


1250
def parse_pool(pool, input_layer_name, pool_conf, ceil_mode):
1251
    pool_conf.pool_type = pool.pool_type
1252 1253 1254
    config_assert(pool.pool_type in [
        'max-projection', 'avg-projection', 'cudnn-max-pool', 'cudnn-avg-pool'
    ], "pool-type %s is not in "
1255
                  "['max-projection', 'avg-projection', "
1256
                  "'cudnn-max-pool', 'cudnn-avg-pool']" % pool.pool_type)
1257 1258 1259 1260 1261 1262

    pool_conf.channels = pool.channels
    pool_conf.size_x = pool.size_x
    pool_conf.stride = pool.stride

    pool_conf.size_y = default(pool.size_y, pool_conf.size_x)
1263
    pool_conf.stride_y = default(pool.stride_y, pool_conf.stride)
1264

1265
    pool_conf.img_size, pool_conf.img_size_y = \
1266
        get_img_size(input_layer_name, pool.channels)
1267

1268
    config_assert(not pool.start, "start is deprecated in pooling.")
1269

1270
    if pool.padding is not None:
1271
        pool_conf.padding = pool.padding
1272
    pool_conf.padding_y = default(pool.padding_y, pool_conf.padding)
D
dangqingqing 已提交
1273 1274
    pool_conf.output_x = cnn_output_size(pool_conf.img_size, pool_conf.size_x,
                                         pool_conf.padding, pool_conf.stride,
1275
                                         not ceil_mode)
D
dangqingqing 已提交
1276 1277
    pool_conf.output_y = cnn_output_size(pool_conf.img_size_y, pool_conf.size_y,
                                         pool_conf.padding_y,
1278
                                         pool_conf.stride_y, not ceil_mode)
1279

1280

1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319
def parse_pool3d(pool, input_layer_name, pool_conf, ceil_mode):
    pool_conf.pool_type = pool.pool_type
    config_assert(pool.pool_type in ['max-projection', 'avg-projection'],
                  "pool-type %s is not in "
                  "['max-projection', 'avg-projection']" % pool.pool_type)

    pool_conf.channels = pool.channels

    pool_conf.size_x = pool.size_x
    pool_conf.stride = pool.stride
    pool_conf.padding = pool.padding

    pool_conf.size_y = default(pool.size_y, pool_conf.size_x)
    pool_conf.size_z = default(pool.size_z, pool_conf.size_x)
    pool_conf.stride_y = default(pool.stride_y, pool_conf.stride)
    pool_conf.stride_z = default(pool.stride_z, pool_conf.stride)
    pool_conf.padding_y = default(pool.padding_y, pool_conf.padding)
    pool_conf.padding_z = default(pool.padding_z, pool_conf.padding)

    pool_conf.img_size, pool_conf.img_size_y, pool_conf.img_size_z = \
        get_img3d_size(input_layer_name, pool.channels)

    config_assert(not pool.start, "start is deprecated in pooling.")

    if pool.padding is not None:
        pool_conf.padding = pool.padding
    pool_conf.padding_y = default(pool.padding_y, pool_conf.padding)
    pool_conf.padding_z = default(pool.padding_z, pool_conf.padding)
    pool_conf.output_x = cnn_output_size(pool_conf.img_size, pool_conf.size_x,
                                         pool_conf.padding, pool_conf.stride,
                                         not ceil_mode)
    pool_conf.output_y = cnn_output_size(pool_conf.img_size_y, pool_conf.size_y,
                                         pool_conf.padding_y,
                                         pool_conf.stride_y, not ceil_mode)
    pool_conf.output_z = cnn_output_size(pool_conf.img_size_z, pool_conf.size_z,
                                         pool_conf.padding_z,
                                         pool_conf.stride_z, not ceil_mode)


Q
qijun 已提交
1320
def parse_spp(spp, input_layer_name, spp_conf):
1321
    parse_image(spp, input_layer_name, spp_conf.image_conf)
Q
qijun 已提交
1322 1323
    spp_conf.pool_type = spp.pool_type
    config_assert(spp.pool_type in ['max-projection', 'avg-projection'],
1324 1325
                  "pool-type %s is not in "
                  "['max-projection', 'avg-projection']" % spp.pool_type)
Q
qijun 已提交
1326
    spp_conf.pyramid_height = spp.pyramid_height
1327

Q
qijun 已提交
1328

1329 1330
def parse_image(image, input_layer_name, image_conf):
    image_conf.channels = image.channels
1331
    image_conf.img_size, image_conf.img_size_y = \
1332
        get_img_size(input_layer_name, image_conf.channels)
1333

1334 1335 1336

def parse_norm(norm, input_layer_name, norm_conf):
    norm_conf.norm_type = norm.norm_type
1337 1338 1339 1340 1341
    config_assert(
        norm.norm_type in
        ['rnorm', 'cmrnorm-projection', 'cross-channel-norm'],
        "norm-type %s is not in [rnorm, cmrnorm-projection, cross-channel-norm]"
        % norm.norm_type)
1342 1343 1344 1345 1346 1347
    norm_conf.channels = norm.channels
    norm_conf.size = norm.size
    norm_conf.scale = norm.scale
    norm_conf.pow = norm.pow
    norm_conf.blocked = norm.blocked

1348
    norm_conf.img_size, norm_conf.img_size_y = \
1349
        get_img_size(input_layer_name, norm.channels)
1350
    norm_conf.output_x = norm_conf.img_size
1351
    norm_conf.output_y = norm_conf.img_size_y
1352 1353 1354
    if norm.norm_type in ['cmrnorm-projection']:
        norm_conf.scale /= norm.size
    else:
1355 1356
        norm_conf.scale /= norm.size**2

1357

1358 1359
#caffe_mode: compute the output size using floor instead of ceil,
#            which is consistent of caffe and CuDNN's convention.
1360
def parse_conv(conv, input_layer_name, conv_conf, num_filters, trans=False):
1361 1362 1363 1364 1365 1366 1367 1368 1369
    conv_conf.filter_size = conv.filter_size
    conv_conf.filter_size_y = conv.filter_size_y
    conv_conf.channels = conv.channels
    conv_conf.padding = conv.padding
    conv_conf.padding_y = conv.padding_y
    conv_conf.stride = conv.stride
    conv_conf.stride_y = conv.stride_y
    conv_conf.groups = conv.groups
    conv_conf.caffe_mode = conv.caffe_mode
1370

1371
    if not trans:
1372
        conv_conf.filter_channels = conv.channels / conv.groups
1373
        conv_conf.img_size, conv_conf.img_size_y = \
1374
            get_img_size(input_layer_name, conv.channels)
1375
        conv_conf.output_x = cnn_output_size(
1376 1377
            conv_conf.img_size, conv_conf.filter_size, conv_conf.padding,
            conv_conf.stride, conv_conf.caffe_mode)
1378 1379 1380
        conv_conf.output_y = cnn_output_size(
            conv_conf.img_size_y, conv_conf.filter_size_y, conv_conf.padding_y,
            conv_conf.stride_y, conv_conf.caffe_mode)
1381
    else:
1382
        conv_conf.filter_channels = num_filters / conv.groups
1383
        conv_conf.output_x, conv_conf.output_y = \
1384
            get_img_size(input_layer_name, conv.channels)
1385
        conv_conf.img_size = cnn_image_size(
1386 1387
            conv_conf.output_x, conv_conf.filter_size, conv_conf.padding,
            conv_conf.stride, conv_conf.caffe_mode)
1388
        conv_conf.img_size_y = cnn_image_size(
1389 1390
            conv_conf.output_y, conv_conf.filter_size_y, conv_conf.padding_y,
            conv_conf.stride_y, conv_conf.caffe_mode)
1391

1392

1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436
#caffe_mode: compute the output size using floor instead of ceil,
#            which is consistent of caffe and CuDNN's convention.
def parse_conv3d(conv, input_layer_name, conv_conf, num_filters, trans=False):
    conv_conf.filter_size = conv.filter_size
    conv_conf.filter_size_y = conv.filter_size_y
    conv_conf.filter_size_z = conv.filter_size_z
    conv_conf.channels = conv.channels
    conv_conf.padding = conv.padding
    conv_conf.padding_y = conv.padding_y
    conv_conf.padding_z = conv.padding_z
    conv_conf.stride = conv.stride
    conv_conf.stride_y = conv.stride_y
    conv_conf.stride_z = conv.stride_z
    conv_conf.groups = conv.groups
    conv_conf.caffe_mode = conv.caffe_mode

    if not trans:
        conv_conf.filter_channels = conv.channels / conv.groups
        conv_conf.img_size, conv_conf.img_size_y, conv_conf.img_size_z = \
            get_img3d_size(input_layer_name, conv.channels)
        conv_conf.output_x = cnn_output_size(
            conv_conf.img_size, conv_conf.filter_size, conv_conf.padding,
            conv_conf.stride, conv_conf.caffe_mode)
        conv_conf.output_y = cnn_output_size(
            conv_conf.img_size_y, conv_conf.filter_size_y, conv_conf.padding_y,
            conv_conf.stride_y, conv_conf.caffe_mode)
        conv_conf.output_z = cnn_output_size(
            conv_conf.img_size_z, conv_conf.filter_size_z, conv_conf.padding_z,
            conv_conf.stride_z, conv_conf.caffe_mode)
    else:
        conv_conf.filter_channels = num_filters / conv.groups
        conv_conf.output_x, conv_conf.output_y, conv_conf.output_z = \
            get_img3d_size(input_layer_name, conv.channels)
        conv_conf.img_size = cnn_image_size(
            conv_conf.output_x, conv_conf.filter_size, conv_conf.padding,
            conv_conf.stride, conv_conf.caffe_mode)
        conv_conf.img_size_y = cnn_image_size(
            conv_conf.output_y, conv_conf.filter_size_y, conv_conf.padding_y,
            conv_conf.stride_y, conv_conf.caffe_mode)
        conv_conf.img_size_z = cnn_image_size(
            conv_conf.output_z, conv_conf.filter_size_z, conv_conf.padding_z,
            conv_conf.stride_z, conv_conf.caffe_mode)


1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449
def parse_block_expand(block_expand, input_layer_name, block_expand_conf):
    block_expand_conf.channels = block_expand.channels
    block_expand_conf.stride_x = block_expand.stride_x
    block_expand_conf.stride_y = block_expand.stride_y
    block_expand_conf.padding_x = block_expand.padding_x
    block_expand_conf.padding_y = block_expand.padding_y
    block_expand_conf.block_x = block_expand.block_x
    block_expand_conf.block_y = block_expand.block_y
    block_expand_conf.img_size_x = block_expand.img_size_x
    block_expand_conf.img_size_y = block_expand.img_size_y
    if block_expand_conf.img_size_x == 0:
        block_expand_conf.output_x = 0
    else:
1450
        block_expand_conf.output_x = cnn_output_size(
1451
            block_expand.img_size_x, block_expand.block_x,
1452
            block_expand.padding_x, block_expand.stride_x, False)
1453 1454

    if block_expand_conf.img_size_y == 0:
1455
        block_expand_conf.output_y = 0
1456
    else:
1457
        block_expand_conf.output_y = cnn_output_size(
1458
            block_expand.img_size_y, block_expand.block_y,
1459
            block_expand.padding_y, block_expand.stride_y, False)
1460

1461

1462
def parse_maxout(maxout, input_layer_name, maxout_conf):
1463
    parse_image(maxout, input_layer_name, maxout_conf.image_conf)
1464
    maxout_conf.groups = maxout.groups
1465

1466

1467 1468
# Define an evaluator
@config_func
Y
yangyaming 已提交
1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485
def Evaluator(name,
              type,
              inputs,
              chunk_scheme=None,
              num_chunk_types=None,
              classification_threshold=None,
              positive_label=None,
              dict_file=None,
              result_file=None,
              num_results=None,
              top_k=None,
              delimited=None,
              excluded_chunk_types=None,
              overlap_threshold=None,
              background_id=None,
              evaluate_difficult=None,
              ap_type=None):
1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499
    evaluator = g_config.model_config.evaluators.add()
    evaluator.type = type
    evaluator.name = MakeLayerNameInSubmodel(name)
    if type_of(inputs) == str:
        inputs = [inputs]

    evaluator.input_layers.extend(
        [MakeLayerNameInSubmodel(name) for name in inputs])

    if chunk_scheme is not None:
        evaluator.chunk_scheme = chunk_scheme
        evaluator.num_chunk_types = num_chunk_types
    g_current_submodel.evaluator_names.append(evaluator.name)

1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510
    if classification_threshold is not None:
        evaluator.classification_threshold = classification_threshold
    if positive_label is not None:
        evaluator.positive_label = positive_label
    if dict_file is not None:
        evaluator.dict_file = dict_file

    if result_file is not None:
        evaluator.result_file = result_file
    if num_results is not None:
        evaluator.num_results = num_results
1511 1512
    if top_k is not None:
        evaluator.top_k = top_k
1513 1514
    if delimited is not None:
        evaluator.delimited = delimited
1515

1516 1517 1518
    if excluded_chunk_types:
        evaluator.excluded_chunk_types.extend(excluded_chunk_types)

Y
yangyaming 已提交
1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530
    if overlap_threshold is not None:
        evaluator.overlap_threshold = overlap_threshold

    if background_id is not None:
        evaluator.background_id = background_id

    if evaluate_difficult is not None:
        evaluator.evaluate_difficult = evaluate_difficult

    if ap_type is not None:
        evaluator.ap_type = ap_type

1531

1532 1533 1534 1535 1536
class LayerBase(object):
    def __init__(
            self,
            name,
            type,
1537
            size,  # size can be 0. In this case, subclass should set it.
1538 1539 1540 1541
            inputs,
            device=None,
            active_type="",
            drop_rate=0.,
C
caoying03 已提交
1542 1543
            coeff=None,
            error_clipping_threshold=None):
1544
        config_assert('@' not in name,
1545
                      "layer name: %s contain special character @" % name)
1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560
        global g_current_submodel
        name = MakeLayerNameInSubmodel(name)

        config_assert(name not in g_layer_map,
                      'Duplicated layer name: %s' % name)

        self.inputs = copy.deepcopy(inputs)
        self.operators = []

        if self.inputs is None:
            self.inputs = []
        elif type_of(self.inputs) != list:
            self.inputs = [self.inputs]

        self.config = g_config.model_config.layers.add()
1561
        assert isinstance(self.config, LayerConfig)
1562 1563 1564
        self.config.name = name
        self.config.type = type
        self.config.active_type = active_type
1565 1566
        if coeff is not None:
            self.config.coeff = float(coeff)
1567 1568 1569 1570 1571 1572 1573
        if size != 0:
            self.config.size = size
        if drop_rate != 0:
            self.config.drop_rate = drop_rate

        if device is not None:
            self.config.device = device
1574
        elif g_default_device is not None:
1575 1576
            self.config.device = g_default_device

C
caoying03 已提交
1577 1578 1579
        if error_clipping_threshold is not None:
            self.config.error_clipping_threshold = error_clipping_threshold

1580 1581 1582 1583 1584 1585 1586
        for input_index in xrange(len(self.inputs)):
            input = self.inputs[input_index]
            input_config = None
            input_layer_name = ''
            if type_of(input) == str:
                input_layer_name = input
                input_config = Input(
1587 1588
                    input_layer_name=input,
                    parameter_name=gen_parameter_name(name, input_index))
1589 1590 1591 1592 1593 1594 1595 1596
                input_layer_name = input_config.input_layer_name
            elif isinstance(input, Input):
                input_layer_name = input.input_layer_name
                input_config = input
                if input_config.parameter_name is None:
                    input_config.parameter_name = \
                        gen_parameter_name(name, input_index)
            elif isinstance(input, Operator):
1597
                self.operators.append(input)
1598 1599 1600 1601
                input.operator_conf.input_indices.append(input_index)
                input_config = Input(input.input_layer_names[0])
                input_layer_name = input_config.input_layer_name
            else:
1602
                raise ValueError('Wrong type for inputs: %s' % type_of(input))
1603
            config_assert(input_layer_name in g_layer_map,
1604 1605
                          "Unknown input layer '%s' for layer %s" %
                          (input_layer_name, name))
1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622
            self.inputs[input_index] = input_config
            layer_input = self.config.inputs.add()
            layer_input.input_layer_name = input_config.input_layer_name
            if input_config.input_layer_argument is not None:
                layer_input.input_layer_argument = \
                    input_config.input_layer_argument

        g_layer_map[name] = self.config

        g_current_submodel.layer_names.append(self.config.name)

    def get_input_layer(self, input_index):
        return g_layer_map[self.config.inputs[input_index].input_layer_name]

    # will return the bias created if not *for_self*
    def create_bias_parameter(
            self,
1623
            bias,  # True/False or BiasCfg
1624
            size,
1625 1626 1627
            dims=None,
            for_self=True,  # whether create bias for layer self
    ):
1628 1629 1630 1631 1632 1633

        if size == 0:
            return
        if dims is None:
            dims = [1, size]

1634 1635 1636
        config_assert(
            type_of(bias) == bool or type_of(bias) == Bias,
            'Incorrect type for bias: %s' % type_of(bias))
1637 1638 1639 1640 1641 1642 1643 1644 1645

        if type_of(bias) == bool:
            if bias:
                bias = Bias()

        if type_of(bias) == Bias:
            if bias.parameter_name is None:
                bias.parameter_name = gen_bias_parameter_name(self.config.name)
            if bias.parameter_name not in g_parameter_map:
1646 1647
                assert isinstance(self.config, LayerConfig)

1648 1649 1650
                Parameter(
                    bias.parameter_name,
                    size,
1651 1652
                    self.config.device
                    if self.config.HasField('device') else None,
1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663
                    dims,
                    bias.learning_rate,
                    bias.momentum,
                    decay_rate=bias.decay_rate,
                    decay_rate_l1=bias.decay_rate_l1,
                    initial_mean=bias.initial_mean,
                    initial_std=bias.initial_std,
                    initial_strategy=bias.initial_strategy,
                    initial_smart=bias.initial_smart,
                    num_batches_regularization=bias.num_batches_regularization,
                    sparse_remote_update=bias.sparse_remote_update,
1664 1665
                    gradient_clipping_threshold=bias.
                    gradient_clipping_threshold,
1666
                    is_static=bias.is_static,
1667 1668
                    is_shared=bias.is_shared,
                    initializer=bias.initializer)
1669 1670 1671 1672 1673
            if for_self:
                self.config.bias_parameter_name = bias.parameter_name
            else:
                return bias.parameter_name

1674 1675 1676 1677 1678 1679
    def create_input_parameter(self,
                               input_index,
                               size,
                               dims=None,
                               sparse=None,
                               format=None):
1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693
        if dims is None:
            # TODO(yuyang18): print warning and callstack here!
            dims = list()

        if size == 0:
            return

        input_config = self.inputs[input_index]

        self.config.inputs[input_index].input_parameter_name = \
            input_config.parameter_name

        if input_config.parameter_name in g_parameter_map:
            para = g_parameter_map[input_config.parameter_name]
1694 1695
            config_assert(size == para.size, (
                'Shared parameter "%s" does not ' + 'have same size: %s vs. %s')
1696 1697
                          % (input_config.parameter_name, para.size, size))

1698 1699
            config_assert(dims == para.dims, (
                'Shared parameter "%s" does not ' + 'have same dims: %s vs. %s')
1700 1701 1702 1703 1704 1705
                          % (input_config.parameter_name, para.dims, dims))
            return

        Parameter(
            input_config.parameter_name,
            size,
1706
            self.config.device if self.config.HasField("device") else None,
1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718
            dims,
            input_config.learning_rate,
            input_config.momentum,
            decay_rate=input_config.decay_rate,
            decay_rate_l1=input_config.decay_rate_l1,
            initial_mean=input_config.initial_mean,
            initial_std=input_config.initial_std,
            initial_strategy=input_config.initial_strategy,
            initial_smart=input_config.initial_smart,
            num_batches_regularization=input_config.num_batches_regularization,
            sparse_remote_update=input_config.sparse_remote_update,
            sparse_update=input_config.sparse_update,
1719 1720
            gradient_clipping_threshold=input_config.
            gradient_clipping_threshold,
1721 1722 1723 1724
            sparse=sparse,
            format=format,
            is_static=input_config.is_static,
            is_shared=input_config.is_shared,
1725 1726
            update_hooks=input_config.update_hooks,
            initializer=input_config.initializer)
1727 1728 1729 1730 1731 1732 1733 1734 1735

    def set_layer_size(self, size):
        if self.config.size == 0:
            self.config.size = size
        else:
            config_assert(self.config.size == size,
                          'Different inputs result in' +
                          'different layer size at layer %s' % self.config.name)

1736 1737 1738 1739
    def set_layer_height_width(self, height, width):
        self.config.height = height
        self.config.width = width

1740 1741 1742
    def set_layer_depth(self, depth):
        self.config.depth = depth

1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755
    def set_cnn_layer(self,
                      input_layer_name,
                      height,
                      width,
                      channels,
                      is_print=True):
        size = height * width * channels
        self.set_layer_size(size)
        self.set_layer_height_width(height, width)
        if is_print:
            print("output for %s: c = %d, h = %d, w = %d, size = %d" %
                  (input_layer_name, channels, height, width, size))

1756

1757 1758
@config_layer('multi_class_cross_entropy_with_selfnorm')
class MultiClassCrossEntropySelfNormCostLayer(LayerBase):
1759 1760 1761
    def __init__(self, name, inputs, softmax_selfnorm_alpha=0.1, **xargs):
        super(MultiClassCrossEntropySelfNormCostLayer, self).__init__(
            name, 'multi_class_cross_entropy_with_selfnorm', 0, inputs, **xargs)
1762 1763
        self.config.softmax_selfnorm_alpha = softmax_selfnorm_alpha

1764

C
caoying03 已提交
1765 1766 1767
@config_layer('cross_entropy_over_beam')
class CrossEntropyOverBeamLayer(LayerBase):
    def __init__(self, name, inputs, **xargs):
C
caoying03 已提交
1768
        config_assert(len(inputs) % 3 == 0, "Error input number.")
C
caoying03 已提交
1769 1770 1771 1772
        super(CrossEntropyOverBeamLayer, self).__init__(
            name, 'cross_entropy_over_beam', 0, inputs, **xargs)
        input_num = len(inputs) / 3
        for i in range(input_num):
C
caoying03 已提交
1773 1774 1775 1776 1777
            input_layer = self.get_input_layer(i * 3)
            config_assert(input_layer.size == 1, (
                "Inputs for this layer are made up of "
                "several triples, in which the first one is scores over "
                "all candidate paths, whose size should be equal to 1."))
C
caoying03 已提交
1778 1779


1780 1781
@config_layer('fc')
class FCLayer(LayerBase):
T
tensor-tang 已提交
1782 1783
    layer_type = 'fc'

L
lianxiaochen 已提交
1784 1785 1786 1787 1788 1789 1790
    def __init__(self,
                 name,
                 size,
                 inputs,
                 bias=True,
                 error_clipping_threshold=None,
                 **xargs):
T
tensor-tang 已提交
1791
        use_mkldnn = bool(int(g_command_config_args.get("use_mkldnn", 0)))
1792 1793
        use_mkldnn_wgt = bool(
            int(g_command_config_args.get("use_mkldnn_wgt", 0)))
T
tensor-tang 已提交
1794 1795 1796 1797 1798 1799 1800
        if use_mkldnn:
            self.layer_type = 'mkldnn_fc'
            config_assert(
                len(inputs) == 1,
                "MkldnnFCLayer support one and only one input!")
        super(FCLayer, self).__init__(
            name, self.layer_type, size, inputs=inputs, **xargs)
1801 1802 1803 1804 1805 1806
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            psize = self.config.size * input_layer.size
            dims = [input_layer.size, self.config.size]
            format = self.inputs[input_index].format
            sparse = format == "csr" or format == "csc"
T
tensor-tang 已提交
1807 1808 1809
            if use_mkldnn:
                config_assert(not sparse,
                              "MkldnnFCLayer do not support sparse format yet")
1810 1811
                if use_mkldnn_wgt:
                    dims = [self.config.size, input_layer.size]
1812 1813
            if sparse:
                psize = self.inputs[input_index].nnz
1814 1815
            else:
                sparse = None
1816

1817 1818
            self.create_input_parameter(input_index, psize, dims, sparse,
                                        format)
1819
        self.create_bias_parameter(bias, self.config.size)
L
lianxiaochen 已提交
1820 1821
        if error_clipping_threshold is not None:
            self.config.error_clipping_threshold = error_clipping_threshold
1822

1823

T
tensor-tang 已提交
1824 1825 1826 1827 1828
@config_layer('mkldnn_fc')
class MkldnnFcLayer(FCLayer):
    layer_type = 'mkldnn_fc'


1829 1830
@config_layer('selective_fc')
class SelectiveFCLayer(LayerBase):
1831 1832 1833 1834 1835 1836 1837 1838 1839 1840
    def __init__(self,
                 name,
                 size,
                 inputs,
                 bias=True,
                 selective_fc_pass_generation=False,
                 has_selected_colums=True,
                 selective_fc_full_mul_ratio=0.02,
                 selective_fc_parallel_plain_mul_thread_num=None,
                 **xargs):
1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860
        super(SelectiveFCLayer, self).__init__(
            name, 'selective_fc', size, inputs=inputs, **xargs)
        # user MUST know if selctive fc is used in training,
        # parameter matrices saved by this layer are automatically transposed,
        # BUT bias is not.

        # if selective_fc is used only in testing mode, and parameters for
        # this layer are trained by fully connected layers,
        # then TranposedFullMatrixProjectin MUST be used in training
        # to avoid manual transpose in testing.

        self.config.selective_fc_pass_generation = selective_fc_pass_generation
        self.config.has_selected_colums = has_selected_colums
        self.config.selective_fc_full_mul_ratio = selective_fc_full_mul_ratio
        if selective_fc_parallel_plain_mul_thread_num is not None:
            self.config.selective_fc_parallel_plain_mul_thread_num = selective_fc_parallel_plain_mul_thread_num

        input_num = len(self.inputs)
        if has_selected_colums:
            config_assert(input_num >= 2,
1861 1862
                          ("if indices of selected columns are not specified, "
                           "selective_fc Layer has at least two inputs"))
1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874
            input_num -= 1

        for input_index in xrange(input_num):
            input_layer = self.get_input_layer(input_index)
            psize = self.config.size * input_layer.size
            dims = [input_layer.size, self.config.size]
            dims = dims[::-1]  # transpose the parameter
            format = self.inputs[input_index].format
            sparse = format == "csr" or format == "csc"
            if sparse:
                psize = self.inputs[input_index].nnz

1875 1876
            self.create_input_parameter(input_index, psize, dims, sparse,
                                        format)
1877 1878
        self.create_bias_parameter(bias, self.config.size)

1879

1880 1881
@config_layer('print')
class PrintLayer(LayerBase):
1882
    def __init__(self, name, inputs, format=None):
1883
        super(PrintLayer, self).__init__(name, 'print', 0, inputs)
1884 1885 1886 1887 1888 1889
        if format is None:
            format = "\n".join([
                "layer=" + input.input_layer_name + " %s"
                for input in self.inputs
            ])
        self.config.user_arg = format
1890

1891

Y
yuan 已提交
1892 1893
@config_layer('priorbox')
class PriorBoxLayer(LayerBase):
G
gaoyuan 已提交
1894 1895
    def __init__(self, name, inputs, size, min_size, max_size, aspect_ratio,
                 variance):
Y
yuan 已提交
1896
        super(PriorBoxLayer, self).__init__(name, 'priorbox', 0, inputs)
1897
        config_assert(len(inputs) == 2, 'PriorBoxLayer must have 2 inputs')
G
gaoyuan 已提交
1898 1899 1900 1901 1902 1903 1904
        input_layer = self.get_input_layer(1)
        config_assert(
            input_layer.type == 'data',
            'Expecting the second input layer of an priorbox layer to be '
            'a data layer')
        config_assert(input_layer.width > 0, 'The data layer must set width')
        config_assert(input_layer.height > 0, 'The data layer must set height')
1905
        config_assert(len(variance) == 4, 'The variance must have 4 inputs')
Y
yuan 已提交
1906 1907 1908 1909 1910 1911
        self.config.inputs[0].priorbox_conf.min_size.extend(min_size)
        self.config.inputs[0].priorbox_conf.max_size.extend(max_size)
        self.config.inputs[0].priorbox_conf.aspect_ratio.extend(aspect_ratio)
        self.config.inputs[0].priorbox_conf.variance.extend(variance)
        self.config.size = size

1912

1913 1914 1915
@config_layer('multibox_loss')
class MultiBoxLossLayer(LayerBase):
    def __init__(self, name, inputs, input_num, num_classes, overlap_threshold,
1916
                 neg_pos_ratio, neg_overlap, background_id, **xargs):
1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937
        super(MultiBoxLossLayer, self).__init__(name, 'multibox_loss', 0,
                                                inputs)
        config_assert(
            len(inputs) == (input_num * 2 + 2),
            'MultiBoxLossLayer does not have enough inputs')
        config_assert(num_classes > background_id,
                      'Classes number must greater than background ID')
        self.config.inputs[0].multibox_loss_conf.num_classes = num_classes
        self.config.inputs[
            0].multibox_loss_conf.overlap_threshold = overlap_threshold
        self.config.inputs[0].multibox_loss_conf.neg_pos_ratio = neg_pos_ratio
        self.config.inputs[0].multibox_loss_conf.neg_overlap = neg_overlap
        self.config.inputs[0].multibox_loss_conf.background_id = background_id
        self.config.inputs[0].multibox_loss_conf.input_num = input_num
        self.config.size = 1


@config_layer('detection_output')
class DetectionOutputLayer(LayerBase):
    def __init__(self, name, inputs, size, input_num, num_classes,
                 nms_threshold, nms_top_k, keep_top_k, confidence_threshold,
1938
                 background_id, **xargs):
1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958
        super(DetectionOutputLayer, self).__init__(name, 'detection_output', 0,
                                                   inputs)
        config_assert(
            len(inputs) == (input_num * 2 + 1),
            'DetectionOutputLayer does not have enough inputs')
        config_assert(num_classes > background_id,
                      'Classes number must greater than background ID')
        self.config.inputs[0].detection_output_conf.num_classes = num_classes
        self.config.inputs[
            0].detection_output_conf.nms_threshold = nms_threshold
        self.config.inputs[0].detection_output_conf.nms_top_k = nms_top_k
        self.config.inputs[0].detection_output_conf.keep_top_k = keep_top_k
        self.config.inputs[
            0].detection_output_conf.confidence_threshold = confidence_threshold
        self.config.inputs[
            0].detection_output_conf.background_id = background_id
        self.config.inputs[0].detection_output_conf.input_num = input_num
        self.config.size = size


1959 1960
@config_layer('data')
class DataLayer(LayerBase):
1961 1962 1963 1964 1965 1966 1967
    def __init__(self,
                 name,
                 size,
                 depth=None,
                 height=None,
                 width=None,
                 device=None):
1968 1969
        super(DataLayer, self).__init__(
            name, 'data', size, inputs=[], device=device)
1970 1971
        if height and width:
            self.set_layer_height_width(height, width)
1972 1973
        if depth:
            self.set_layer_depth(depth)
1974

1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001

'''
DataNormLayer: A layer for data normalization
Input: One and only one input layer is accepted. The input layer must
       be DataLayer with dense data type
Output: The normalization of the input data

Reference:
    LA Shalabi, Z Shaaban, B Kasasbeh. Data mining: A preprocessing engine

Example:
    Layer(
        name = "norm_input_layer",
        type = "data_norm",
        inputs = [Input("input_layer",
                        parameter_name = "_slot0.stats")],
        data_norm_strategy = "z-score",
    )

Note:
  (1) The parameter has been calculated in the preprocessing stage,
      and should be initialized by --init_model_path when training.
  (2) Three data normalization methoeds are considered
          z-score: y = (x-mean)/std
          min-max: y = (x-min)/(max-min)
          decimal-scaling: y = x/10^j, where j is the smallest integer such that max(|y|)<1
'''
2002 2003


2004 2005
@config_layer('data_norm')
class DataNormLayer(LayerBase):
2006
    def __init__(self, name, inputs, data_norm_strategy="z-score", device=None):
2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
        super(DataNormLayer, self).__init__(
            name, 'data_norm', 0, inputs=inputs, device=device)
        self.config.data_norm_strategy = data_norm_strategy
        config_assert(len(inputs) == 1, 'DataNormLayer must have 1 input')
        input_layer = self.get_input_layer(0)
        self.set_layer_size(input_layer.size)
        para_size = 5 * input_layer.size
        para_dims = [5, input_layer.size]
        self.inputs[0].is_static = True
        self.create_input_parameter(0, para_size, para_dims)

2018

2019 2020 2021
@config_layer('prelu')
class ParameterReluLayer(LayerBase):
    layer_type = 'prelu'
2022 2023

    def __init__(self, name, inputs, partial_sum=1, **args):
2024 2025 2026
        super(ParameterReluLayer, self).__init__(
            name, self.layer_type, 0, inputs=inputs, **args)
        input_layer = self.get_input_layer(0)
2027 2028 2029
        config_assert(len(self.inputs) == 1, "prelu layer has only one input.")
        config_assert(input_layer.size % partial_sum == 0,
                      "a wrong setting for partial_sum")
2030 2031 2032
        self.set_layer_size(input_layer.size)
        self.create_input_parameter(0, input_layer.size / partial_sum)

2033

2034 2035 2036
@config_layer('conv')
class ConvLayerBase(LayerBase):
    layer_type = 'conv'
2037 2038 2039 2040 2041 2042 2043 2044

    def __init__(self,
                 name,
                 inputs=[],
                 bias=True,
                 num_filters=None,
                 shared_biases=False,
                 **xargs):
2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060
        super(ConvLayerBase, self).__init__(
            name, self.layer_type, 0, inputs=inputs, **xargs)

        if num_filters is not None:
            self.config.num_filters = num_filters

        use_gpu = int(g_command_config_args.get("use_gpu", 0))
        parallel_nn = int(g_command_config_args.get("parallel_nn", 0))

        # Automatically select cudnn_type for GPU and exconv for CPU
        # if set type=conv, but still reserve the way user specify
        # exconv or cudnn_conv manually.
        if self.layer_type == "cudnn_conv":
            config_assert(use_gpu, "cudnn_conv only support GPU")

        if (use_gpu == 1 and self.layer_type != "exconv" and
2061
            (parallel_nn == 0 or self.config.device > -1)):
2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073
            self.layer_type = "cudnn_conv"
        else:
            self.layer_type = "exconv"
        # need to specify layer in config
        self.config.type = self.layer_type

        if shared_biases is not None:
            self.config.shared_biases = shared_biases

        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            conv_conf = self.config.inputs[input_index].conv_conf
2074 2075
            parse_conv(self.inputs[input_index].conv, input_layer.name,
                       conv_conf, num_filters)
2076 2077
            psize = self.calc_parameter_size(conv_conf)
            self.create_input_parameter(input_index, psize)
2078 2079
            self.set_cnn_layer(name, conv_conf.output_y, conv_conf.output_x,
                               self.config.num_filters)
2080 2081 2082 2083 2084 2085 2086 2087

        psize = self.config.size
        if shared_biases:
            psize = self.config.num_filters
        self.create_bias_parameter(bias, psize, [psize, 1])

    def calc_parameter_size(self, conv_conf):
        return self.config.num_filters * conv_conf.filter_channels \
2088
               * (conv_conf.filter_size * conv_conf.filter_size_y)
2089

2090

2091 2092 2093 2094
@config_layer('exconv')
class ConvLayer(ConvLayerBase):
    layer_type = 'exconv'

2095

2096 2097 2098 2099
@config_layer('cudnn_conv')
class ConvLayer(ConvLayerBase):
    layer_type = 'cudnn_conv'

2100 2101 2102 2103

@config_layer('convt')
class ConvTransLayerBase(LayerBase):
    layer_type = 'convt'
2104 2105 2106 2107 2108 2109 2110 2111

    def __init__(self,
                 name,
                 inputs=[],
                 bias=True,
                 num_filters=None,
                 shared_biases=False,
                 **xargs):
2112
        super(ConvTransLayerBase, self).__init__(
2113 2114 2115 2116 2117 2118 2119 2120
            name, self.layer_type, 0, inputs=inputs, **xargs)

        if num_filters is not None:
            self.config.num_filters = num_filters

        use_gpu = int(g_command_config_args.get("use_gpu", 0))
        parallel_nn = int(g_command_config_args.get("parallel_nn", 0))

2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131
        # Automatically select cudnn_type for GPU and exconvt for CPU
        # if set type=exconvt, but still reserve the way user specify
        # exconvt or cudnn_convt manually.
        if self.layer_type == "cudnn_convt":
            config_assert(use_gpu, "cudnn_convt only support GPU")

        if (use_gpu == 1 and self.layer_type != "exconvt" and
            (parallel_nn == 0 or self.config.device > -1)):
            self.layer_type = "cudnn_convt"
        else:
            self.layer_type = "exconvt"
2132 2133 2134 2135 2136 2137 2138 2139
        # need to specify layer in config
        self.config.type = self.layer_type

        if shared_biases is not None:
            self.config.shared_biases = shared_biases

        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
2140
            parse_conv(
2141 2142
                self.inputs[input_index].conv,
                input_layer.name,
2143
                self.config.inputs[input_index].conv_conf,
2144
                num_filters,
2145
                trans=True)
2146 2147 2148
            conv_conf = self.config.inputs[input_index].conv_conf
            psize = self.calc_parameter_size(conv_conf)
            self.create_input_parameter(input_index, psize)
2149 2150
            self.set_cnn_layer(name, conv_conf.img_size_y, conv_conf.img_size,
                               self.config.num_filters)
2151 2152 2153 2154 2155 2156 2157

        psize = self.config.size
        if shared_biases:
            psize = self.config.num_filters
        self.create_bias_parameter(bias, psize, [psize, 1])

    def calc_parameter_size(self, conv_conf):
2158
        return conv_conf.channels * conv_conf.filter_channels \
2159 2160
                    * (conv_conf.filter_size * conv_conf.filter_size_y)

2161

2162 2163 2164 2165
@config_layer('exconvt')
class ConvTransLayer(ConvTransLayerBase):
    layer_type = 'exconvt'

2166

2167 2168 2169 2170 2171
@config_layer('cudnn_convt')
class ConvTransLayer(ConvTransLayerBase):
    layer_type = 'cudnn_convt'


C
chengduoZH 已提交
2172 2173
@config_layer('conv_3d')
class Conv3DLayerBase(LayerBase):
2174 2175 2176 2177 2178
    def __init__(self,
                 name,
                 inputs=[],
                 bias=True,
                 num_filters=None,
C
chengduoZH 已提交
2179
                 shared_biases=True,
2180
                 **xargs):
C
chengduoZH 已提交
2181
        super(Conv3DLayerBase, self).__init__(
2182 2183 2184 2185 2186 2187 2188 2189
            name, self.layer_type, 0, inputs=inputs, **xargs)

        if num_filters is not None:
            self.config.num_filters = num_filters

        # need to specify layer in config
        self.config.type = self.layer_type

C
chengduoZH 已提交
2190 2191 2192 2193
        trans = False
        if self.config.type == "deconv3d":
            trans = True

2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204
        if shared_biases is not None:
            self.config.shared_biases = shared_biases

        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            conv_conf = self.config.inputs[input_index].conv_conf
            parse_conv3d(
                self.inputs[input_index].conv,
                input_layer.name,
                conv_conf,
                num_filters,
C
chengduoZH 已提交
2205
                trans=trans
2206 2207 2208
            )  # for z-axis pad:0, strid:1, filter_size:1, img_size:1
            psize = self.calc_parameter_size(conv_conf)
            self.create_input_parameter(input_index, psize)
C
chengduoZH 已提交
2209 2210 2211 2212 2213 2214 2215
            if trans:
                self.set_cnn_layer(name, conv_conf.img_size_z,
                                   conv_conf.img_size_y, conv_conf.img_size,
                                   self.config.num_filters)
            else:
                self.set_cnn_layer(name, conv_conf.output_z, conv_conf.output_y,
                                   conv_conf.output_x, self.config.num_filters)
2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235

        psize = self.config.size
        if shared_biases:
            psize = self.config.num_filters
        self.create_bias_parameter(bias, psize, [psize, 1])

    def calc_parameter_size(self, conv_conf):
        return self.config.num_filters * conv_conf.filter_channels \
               * (conv_conf.filter_size * conv_conf.filter_size_y \
                  * conv_conf.filter_size_z)

    def set_cnn_layer(self,
                      input_layer_name,
                      depth,
                      height,
                      width,
                      channels,
                      is_print=True):
        size = depth * height * width * channels
        self.set_layer_size(size)
C
chengduoZH 已提交
2236 2237
        self.set_layer_height_width(height, width)
        self.set_layer_depth(depth)
2238 2239 2240 2241 2242
        if is_print:
            print("output for %s: c = %d, d = %d, h = %d, w = %d, size = %d" %
                  (input_layer_name, channels, depth, height, width, size))


C
chengduoZH 已提交
2243 2244 2245
@config_layer('conv3d')
class Conv3DLayer(Conv3DLayerBase):
    layer_type = 'conv3d'
2246

2247

C
chengduoZH 已提交
2248 2249 2250
@config_layer('deconv3d')
class Conv3DLayer(Conv3DLayerBase):
    layer_type = 'deconv3d'
2251 2252


2253 2254
@config_layer('norm')
class NormLayer(LayerBase):
2255 2256
    def __init__(self, name, inputs, **xargs):
        super(NormLayer, self).__init__(name, 'norm', 0, inputs=inputs, **xargs)
2257 2258 2259
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            norm_conf = self.config.inputs[input_index].norm_conf
2260 2261 2262 2263
            parse_norm(self.inputs[input_index].norm, input_layer.name,
                       norm_conf)
            self.set_cnn_layer(name, norm_conf.output_y, norm_conf.output_x,
                               norm_conf.channels, False)
2264 2265 2266
            if norm_conf.norm_type == "cross-channel-norm":
                self.create_input_parameter(0, norm_conf.channels,
                                            [norm_conf.channels, 1])
2267

2268 2269 2270

@config_layer('pool')
class PoolLayer(LayerBase):
2271 2272
    def __init__(self, name, inputs, ceil_mode=True, **xargs):
        super(PoolLayer, self).__init__(name, 'pool', 0, inputs=inputs, **xargs)
2273 2274 2275
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            pool_conf = self.config.inputs[input_index].pool_conf
2276
            parse_pool(self.inputs[input_index].pool, input_layer.name,
2277
                       pool_conf, ceil_mode)
2278 2279
            self.set_cnn_layer(name, pool_conf.output_y, pool_conf.output_x,
                               pool_conf.channels)
2280

2281

2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310
@config_layer('pool3d')
class Pool3DLayer(LayerBase):
    def __init__(self, name, inputs, ceil_mode=True, **xargs):
        super(Pool3DLayer, self).__init__(
            name, 'pool3d', 0, inputs=inputs, **xargs)
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            pool_conf = self.config.inputs[input_index].pool_conf
            parse_pool3d(self.inputs[input_index].pool, input_layer.name,
                         pool_conf, ceil_mode)
            self.set_cnn_layer(name, pool_conf.output_z, pool_conf.output_y,
                               pool_conf.output_x, pool_conf.channels)

    def set_cnn_layer(self,
                      input_layer_name,
                      depth,
                      height,
                      width,
                      channels,
                      is_print=True):
        size = depth * height * width * channels
        self.set_layer_size(size)
        self.set_layer_height_width(height, width)
        self.set_layer_depth(depth)
        if is_print:
            print("output for %s: c = %d, d = %d, h = %d, w = %d, size = %d" %
                  (input_layer_name, channels, depth, height, width, size))


Q
qijun 已提交
2311 2312
@config_layer('spp')
class SpatialPyramidPoolLayer(LayerBase):
2313
    def __init__(self, name, inputs, **xargs):
2314
        super(SpatialPyramidPoolLayer, self).__init__(
2315
            name, 'spp', 0, inputs=inputs, **xargs)
Q
qijun 已提交
2316 2317 2318
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            spp_conf = self.config.inputs[input_index].spp_conf
2319 2320 2321
            parse_spp(self.inputs[input_index].spp, input_layer.name, spp_conf)
            output_x = (pow(4, spp_conf.pyramid_height) - 1) / (4 - 1)
            self.set_cnn_layer(name, 1, output_x, spp_conf.image_conf.channels)
Q
qijun 已提交
2322

2323

D
dangqingqing 已提交
2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342
@config_layer('pad')
class PadLayer(LayerBase):
    def __init__(self, name, inputs, **xargs):
        super(PadLayer, self).__init__(name, 'pad', 0, inputs=inputs, **xargs)
        pad = self.inputs[0].pad
        self.config.inputs[0].pad_conf.pad_c.extend(pad.pad_c)
        self.config.inputs[0].pad_conf.pad_h.extend(pad.pad_h)
        self.config.inputs[0].pad_conf.pad_w.extend(pad.pad_w)

        input_layer = self.get_input_layer(0)
        image_conf = self.config.inputs[0].pad_conf.image_conf
        parse_image(pad, input_layer.name, image_conf)
        out_ch = pad.channels + pad.pad_c[0] + pad.pad_c[1]
        out_h = image_conf.img_size_y + pad.pad_h[0] + pad.pad_h[1]
        out_w = image_conf.img_size + pad.pad_w[0] + pad.pad_w[1]
        self.set_cnn_layer(name, out_h, out_w, out_ch)
        self.config.size = out_ch * out_h * out_w


2343 2344
@config_layer('crop')
class CropLayer(LayerBase):
2345
    def __init__(self, name, inputs, axis, offset, shape, **xargs):
2346
        super(CropLayer, self).__init__(name, 'crop', 0, inputs=inputs, **xargs)
2347 2348 2349
        self.config.axis = axis
        self.config.offset.extend(offset)
        self.config.shape.extend(shape)
2350 2351 2352 2353 2354 2355 2356 2357 2358 2359

        # get channel, width and height from input_0 layer
        input_layer = self.get_input_layer(0)
        image_conf = self.config.inputs[0].image_conf
        image_conf.img_size = input_layer.width
        image_conf.img_size_y = input_layer.height
        image_conf.channels = input_layer.size / (input_layer.width *
                                                  input_layer.height)


2360 2361 2362
@config_layer('batch_norm')
class BatchNormLayer(LayerBase):
    layer_type = 'batch_norm'
2363 2364 2365 2366 2367 2368 2369 2370 2371

    def __init__(self,
                 name,
                 inputs,
                 bias=True,
                 use_global_stats=True,
                 moving_average_fraction=0.9,
                 batch_norm_type=None,
                 **xargs):
2372 2373 2374 2375
        if inputs is None:
            inputs = []
        elif not isinstance(inputs, list):
            inputs = [inputs]
2376 2377
        config_assert(
            len(inputs) == 1, "BatchNormLayer must have one and only one input")
2378 2379 2380 2381 2382 2383 2384 2385
        # Create Input for moving mean and std,
        # in batch normalization layer.
        # These paras no need to update, so set is_static is true.
        # If not use is_static, even set learning_rate = 0, decay_rate = 0,
        # these paras will change if set average_window in configure.
        use_gpu = bool(int(g_command_config_args.get("use_gpu", 0)))
        is_shared = True if not use_gpu else False
        for i in xrange(2):
2386 2387 2388 2389 2390 2391
            inputs.append(
                Input(
                    inputs[0].input_layer_name,
                    initial_std=0.0,
                    initial_mean=0.0,
                    is_static=True,
2392
                    is_shared=is_shared,
D
dangqingqing 已提交
2393
                    make_layer_name_in_submodel=False, ))
2394 2395 2396 2397 2398 2399

        parallel_nn = bool(int(g_command_config_args.get("parallel_nn", 0)))
        cudnn_version = int(g_command_config_args.get("cudnn_version", 0))
        # Automatically select cudnn_batch_norm for GPU and batch_norm for CPU.
        # Also based on cudnn version.
        use_cudnn = use_gpu and batch_norm_type != "batch_norm" and \
2400
                ((not parallel_nn) or self.config.device > -1)
2401
        self.layer_type = "cudnn_batch_norm" if use_cudnn else "batch_norm"
2402
        super(BatchNormLayer, self).__init__(
2403
            name, self.layer_type, 0, inputs=inputs, **xargs)
2404 2405 2406 2407 2408 2409

        if use_global_stats is not None:
            self.config.use_global_stats = use_global_stats
        if moving_average_fraction is not None:
            self.config.moving_average_fraction = moving_average_fraction

2410
        input_layer = self.get_input_layer(0)
2411
        image_conf = self.config.inputs[0].image_conf
2412
        parse_image(self.inputs[0].image, input_layer.name, image_conf)
2413

2414 2415
        # Only pass the width and height of input to batch_norm layer
        # when either of it is non-zero.
2416 2417
        if input_layer.width != 0 or input_layer.height != 0:
            self.set_cnn_layer(name, image_conf.img_size_y, image_conf.img_size,
D
dangqingqing 已提交
2418
                               image_conf.channels, False)
2419 2420
        else:
            self.set_layer_size(input_layer.size)
2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432

        psize = self.calc_parameter_size(image_conf)
        dims = [1, psize]
        self.create_input_parameter(0, psize)
        self.create_input_parameter(1, psize, dims)
        self.create_input_parameter(2, psize, dims)

        self.create_bias_parameter(bias, psize)

    def calc_parameter_size(self, image_conf):
        return image_conf.channels

2433

2434 2435
@config_layer('trans')
class TransLayer(LayerBase):
2436
    def __init__(self, name, inputs, **xargs):
2437
        super(TransLayer, self).__init__(
2438
            name, 'trans', 0, inputs=inputs, **xargs)
2439 2440 2441
        config_assert(
            len(self.inputs) == 1,
            'TransLayer must have one and only one input')
2442 2443
        self.set_layer_size(self.get_input_layer(0).size)

2444

2445 2446
@config_layer('resize')
class ResizeLayer(LayerBase):
2447
    def __init__(self, name, size, inputs, **xargs):
2448
        super(ResizeLayer, self).__init__(
2449
            name, 'resize', size=size, inputs=inputs, **xargs)
2450 2451 2452 2453
        config_assert(
            len(self.inputs) == 1,
            'ResizeLayer must have one and only one input')

2454

2455 2456
@config_layer('rotate')
class RotateLayer(LayerBase):
2457
    def __init__(self, name, inputs, height, width, device=None):
2458 2459 2460 2461 2462
        super(RotateLayer, self).__init__(
            name, 'rotate', 0, inputs=inputs, device=device)
        config_assert(
            len(self.inputs) == 1,
            'RotateLayer must have one and only one input')
2463
        self.set_layer_height_width(height, width)
2464 2465 2466
        self.set_layer_size(self.get_input_layer(0).size)


2467 2468
@config_layer('blockexpand')
class BlockExpandLayer(LayerBase):
2469
    def __init__(self, name, inputs, **xargs):
2470
        super(BlockExpandLayer, self).__init__(
2471
            name, 'blockexpand', 0, inputs=inputs, **xargs)
2472 2473
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
2474 2475
            parse_block_expand(
                self.inputs[input_index].block_expand, input_layer.name,
2476
                self.config.inputs[input_index].block_expand_conf)
2477 2478 2479 2480 2481 2482
            block_expand_conf = self.config.inputs[
                input_index].block_expand_conf
            self.set_layer_size(block_expand_conf.block_x *
                                block_expand_conf.block_y *
                                block_expand_conf.channels)

2483

2484 2485
@config_layer('maxout')
class MaxOutLayer(LayerBase):
2486 2487 2488
    def __init__(self, name, inputs, **xargs):
        super(MaxOutLayer, self).__init__(
            name, 'maxout', 0, inputs=inputs, **xargs)
2489 2490
        input_layer = self.get_input_layer(0)
        maxout_conf = self.config.inputs[0].maxout_conf
2491
        parse_maxout(self.inputs[0].maxout, input_layer.name, maxout_conf)
2492
        out_channels = maxout_conf.image_conf.channels / maxout_conf.groups
2493 2494
        self.set_cnn_layer(name, maxout_conf.image_conf.img_size_y,
                           maxout_conf.image_conf.img_size, out_channels)
2495

2496

D
dangqingqing 已提交
2497 2498 2499 2500
@config_layer('row_conv')
class RowConvLayer(LayerBase):
    def __init__(self, name, inputs, context_length, **xargs):
        super(RowConvLayer, self).__init__(
2501
            name, 'row_conv', 0, inputs=inputs, **xargs)
D
dangqingqing 已提交
2502 2503
        config_assert(
            len(self.inputs) == 1,
2504
            'row convolution layer must have one and only one input.')
D
dangqingqing 已提交
2505 2506 2507 2508 2509 2510 2511 2512 2513
        input_layer = self.get_input_layer(0)
        row_conv_conf = self.config.inputs[0].row_conv_conf
        row_conv_conf.context_length = context_length
        self.set_layer_size(input_layer.size)
        psize = context_length * input_layer.size
        dims = [context_length, input_layer.size]
        self.create_input_parameter(0, psize, dims)


G
guosheng 已提交
2514 2515
@config_layer('clip')
class ClipLayer(LayerBase):
2516 2517
    def __init__(self, name, inputs, min, max, **xargs):
        super(ClipLayer, self).__init__(name, 'clip', 0, inputs=inputs, **xargs)
G
guosheng 已提交
2518 2519
        config_assert(
            len(self.inputs) == 1,
2520 2521
            'ClipLayer must have one and only one input.')
        config_assert(min < max, 'min must be less than max.')
G
guosheng 已提交
2522 2523
        input_layer = self.get_input_layer(0)
        self.set_layer_size(input_layer.size)
2524 2525
        self.config.inputs[0].clip_conf.min = min
        self.config.inputs[0].clip_conf.max = max
G
guosheng 已提交
2526 2527


G
guosheng 已提交
2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541
@config_layer('scale_shift')
class ScaleShiftLayer(LayerBase):
    def __init__(self, name, inputs, bias=True, **xargs):
        super(ScaleShiftLayer, self).__init__(
            name, 'scale_shift', 0, inputs=inputs, **xargs)
        config_assert(
            len(self.inputs) == 1,
            'ScaleShiftLayer must have one and only one input.')
        input_layer = self.get_input_layer(0)
        self.set_layer_size(input_layer.size)
        self.create_input_parameter(0, 1, [1, 1])
        self.create_bias_parameter(bias, 1)


2542 2543 2544 2545
# key: cost type
# value: cost class
g_cost_map = {}

2546

2547 2548 2549
# define a cost layer without any parameters
def define_cost(class_name, cost_type):
    def init(cls, name, inputs, device=None, coeff=1.):
2550 2551
        super(type(cls), cls).__init__(
            name, cost_type, 1, inputs, device=device, coeff=coeff)
2552

2553
    cls = type(class_name, (LayerBase, ), dict(__init__=init))
2554 2555 2556
    global g_cost_map
    g_cost_map[cost_type] = cls

2557

2558
define_cost('MultiClassCrossEntropy', 'multi-class-cross-entropy')
C
caoying03 已提交
2559
define_cost('CrossEntropyOverBeamCostLayer', 'cross_entropy_over_beam')
2560 2561 2562 2563 2564 2565
define_cost('RankingCost', 'rank-cost')
define_cost('AucValidation', 'auc-validation')
define_cost('PnpairValidation', 'pnpair-validation')
define_cost('SumOfSquaresCostLayer', 'square_error')
define_cost('MultiBinaryLabelCrossEntropy', 'multi_binary_label_cross_entropy')
define_cost('SoftBinaryClassCrossEntropy', 'soft_binary_class_cross_entropy')
2566
define_cost('HuberTwoClassification', 'huber_classification')
X
xuwei06 已提交
2567
define_cost('SumCost', 'sum_cost')
D
dangqingqing 已提交
2568
define_cost('SmoothL1Cost', 'smooth_l1')
2569

2570

2571 2572
@config_layer('hsigmoid')
class HierarchicalSigmoidLayer(LayerBase):
2573
    def __init__(self, name, num_classes, inputs, device=None, bias=True):
2574 2575
        super(HierarchicalSigmoidLayer, self).__init__(
            name, 'hsigmoid', 1, inputs=inputs, device=device)
2576 2577 2578
        config_assert(
            len(self.inputs) >= 2,
            'HierarchicalSigmoidLayer must have at least 2 inputs')
2579 2580 2581 2582 2583 2584 2585 2586
        self.config.num_classes = num_classes
        for input_index in xrange(len(self.inputs) - 1):
            input_layer = self.get_input_layer(input_index)
            psize = (num_classes - 1) * input_layer.size
            dims = [num_classes - 1, input_layer.size]
            self.create_input_parameter(input_index, psize, dims)
        self.create_bias_parameter(bias, num_classes - 1)

2587

2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611
'''
lambdaCost for lambdaRank LTR approach

Usage:
  Example: Layer(name = "cost", type = "lambda_cost", NDCG_num = 8,
             max_sort_size = -1, inputs = ["output", "score"])

  Input data: Samples of the same query should be loaded as a sequence,
          by ProtoDataProvider or PyDataProvider etc.. User should provide
          scores for each sample. The score slot should be the 2nd
          input of lambdaRank layer.

  NDCG_num = the size of NDCG, e.g., 5 for NDCG@5.
    Note: NDCG_num must be less than or equal to the minimum
          size of lists.

  max_sort_size = the size of partial sorting in calculating gradient.
    Note: If max_sort_size = -1, then for each list, the algorithm will
          sort the entire list to get gradient.
          In other cases, max_sort_size must be greater than or equal
          to NDCG_num.
          max_sort_size can be greater than the size of a list, in which
          case the algorithm will sort the entire list to get gradient.
'''
2612 2613


2614 2615
@config_layer('lambda_cost')
class LambdaCost(LayerBase):
2616
    def __init__(self, name, inputs, NDCG_num=5, max_sort_size=-1, device=None):
2617 2618
        super(LambdaCost, self).__init__(
            name, 'lambda_cost', 1, inputs=inputs, device=device)
2619
        config_assert(len(self.inputs) == 2, 'lambdaCost must have 2 inputs')
2620 2621
        self.config.NDCG_num = NDCG_num
        if max_sort_size != -1:
2622 2623 2624
            config_assert(
                NDCG_num <= max_sort_size,
                'NDCG_num must be less than or equal to max_sort_size')
2625 2626
        self.config.max_sort_size = max_sort_size

2627

L
Luo Tao 已提交
2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638
@config_layer('huber_regression')
class HuberRegressionLoss(LayerBase):
    def __init__(self, name, inputs, delta=1., coeff=1., device=None):
        super(HuberRegressionLoss, self).__init__(
            name, 'huber_regression', 1, inputs=inputs, device=device)
        config_assert(
            len(self.inputs) == 2, 'HuberRegression must have 2 inputs')
        self.config.delta = delta
        self.config.coeff = coeff


2639 2640
@config_layer('nce')
class NCELayer(LayerBase):
2641 2642 2643 2644 2645 2646 2647 2648
    def __init__(self,
                 name,
                 num_classes,
                 inputs,
                 num_neg_samples=10,
                 neg_sampling_dist=None,
                 bias=True,
                 **xargs):
2649
        super(NCELayer, self).__init__(name, 'nce', 1, inputs=inputs, **xargs)
2650 2651
        config_assert(
            len(self.inputs) >= 2, 'NCELayer must have at least 2 inputs')
2652 2653
        self.config.num_classes = num_classes
        if neg_sampling_dist is not None:
2654 2655 2656 2657
            config_assert(
                len(neg_sampling_dist) == num_classes,
                'len(neg_sampling_dist)(%s) is not same as num_classes (%s)' %
                (len(neg_sampling_dist), num_classes))
2658
            s = sum(neg_sampling_dist)
2659 2660 2661
            config_assert(
                abs(s - 1) < 1e-5,
                'The sum of neg_sampling_dist (%s) is not 1' % s)
2662 2663 2664 2665 2666

            self.config.neg_sampling_dist.extend(neg_sampling_dist)

        self.config.num_neg_samples = num_neg_samples
        num_real_inputs = len(self.inputs) - 1
2667
        input_layer = self.get_input_layer(num_real_inputs)
2668 2669 2670 2671
        config_assert(input_layer.type == 'data',
                      'Expecting the last input layer of an nce layer to be '
                      'a data layer')

2672 2673
        if (num_real_inputs > 1 and input_layer.size == 1 and
                self.get_input_layer(num_real_inputs - 1).type == 'data'):
2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686
            # This input layer is assumed to be a sample weight layer
            num_real_inputs -= 1

        for input_index in xrange(num_real_inputs):
            input_layer = self.get_input_layer(input_index)
            psize = num_classes * input_layer.size
            dims = [num_classes, input_layer.size]
            self.create_input_parameter(input_index, psize, dims)
        self.create_bias_parameter(bias, num_classes)


@config_layer('addto')
class AddToLayer(LayerBase):
2687
    def __init__(self, name, inputs, bias=True, **xargs):
2688 2689
        super(AddToLayer, self).__init__(
            name, 'addto', 0, inputs=inputs, **xargs)
2690
        config_assert(len(inputs) > 0, 'inputs cannot be empty for AddToLayer')
2691 2692 2693 2694 2695
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            self.set_layer_size(input_layer.size)
        self.create_bias_parameter(bias, self.config.size)

2696

2697 2698
@config_layer('agent')
class AgentLayer(LayerBase):
2699 2700 2701 2702
    def __init__(self, name, size, device=None):
        super(AgentLayer, self).__init__(
            name, 'agent', size, inputs=[], device=device)

2703 2704 2705

@config_layer('gather_agent')
class GatherAgentLayer(LayerBase):
2706
    def __init__(self, name, size, device=None):
2707 2708 2709
        super(GatherAgentLayer, self).__init__(
            name, 'gather_agent', size, inputs=[], device=device)

2710

2711 2712
@config_layer('scatter_agent')
class ScatterAgentLayer(LayerBase):
2713
    def __init__(self, name, size, width=None, height=None, device=None):
2714 2715
        super(ScatterAgentLayer, self).__init__(
            name, 'scatter_agent', size, inputs=[], device=device)
2716 2717
        if height and width:
            self.set_layer_height_width(height, width)
2718

2719

2720 2721
@config_layer('multiplex')
class MultiplexLayer(LayerBase):
2722 2723 2724 2725 2726
    def __init__(self, name, inputs, size, device=None):
        super(MultiplexLayer, self).__init__(
            name, 'multiplex', size, inputs=inputs, device=device)
        config_assert(
            len(inputs) > 2, 'MultiplexLayer should have more than 2 inputs.')
2727
        for i in range(1, len(inputs)):
2728 2729 2730 2731 2732
            config_assert(
                self.get_input_layer(i).size == size,
                "All the input layers except the first one should"
                "have the same size as the MultiplexLayer.")

2733 2734

@config_func
2735 2736 2737 2738
def Link(name, has_subseq=False):
    """
    Still keeping has_subseq for backward compatibility
    """
2739 2740 2741 2742
    link_config = LinkConfig()
    link_config.link_name = name
    return link_config

2743

2744 2745
# memory for recurrent layer group.
# *name* and *size* are actual layer's name and size.
2746 2747 2748 2749
# If *name* is None, need to provide *memory_name* and need to use
# SetMemoryInput() later to specify the layer which this memory remembers.
#
# return the name of the memory,
2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760
# use this name if you assign the memory as other layer's input
#
# boot frame of memory is zeroed by default,
# or initialize by boot layer output if *boot_layer* set,
# or initialize by trainable bias if *boot_bias* set,
# or initialize by a constant id if *boot_with_const_id* set
#
# Memory can be a sequence if *is_sequence* set, this type of memory
# can only be initailized by a *boot_layer* which is a sequence.
#
@config_func
2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772
def Memory(name,
           size,
           is_sequence=False,
           boot_layer=None,
           boot_bias=False,
           boot_bias_active_type="",
           boot_with_const_id=None,
           memory_name=None):
    if not memory_name:
        config_assert(name is not None, "name needs cannot be None")
        memory_name = name + "+delay1"
    agent_name = memory_name
2773
    agent_layer = AgentLayer(agent_name, size)
2774
    config_assert(g_current_submodel.is_recurrent_layer_group,
2775
                  'Memory should be used in recurrent layer group only')
2776
    memory = g_current_submodel.memories.add()
2777 2778
    if name is not None:
        memory.layer_name = MakeLayerNameInSubmodel(name)
2779
    memory.link_name = MakeLayerNameInSubmodel(agent_name)
2780
    options = sum((boot_layer is not None, bool(boot_bias),
2781
                   boot_with_const_id is not None))
2782 2783 2784 2785
    config_assert(
        options <= 1,
        'take one option at most from boot_layer, boot_bias, or boot_with_const_id'
    )
2786 2787 2788
    if boot_layer is not None:
        boot_layer = MakeLayerNameInParentSubmodel(boot_layer)
        config_assert(boot_layer in g_layer_map,
2789 2790
                      'boot_layer "%s" does not correspond to a layer name' %
                      boot_layer)
2791 2792 2793
        memory.boot_layer_name = boot_layer
    elif boot_bias:
        memory.boot_bias_parameter_name = agent_layer.create_bias_parameter(
2794
            boot_bias, size, for_self=False)
2795 2796 2797 2798 2799
        memory.boot_bias_active_type = boot_bias_active_type
    elif boot_with_const_id is not None:
        memory.boot_with_const_id = boot_with_const_id
    return agent_name

2800

2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811
@config_func
def SetMemoryInput(memory_name, layer_name):
    memory_name = MakeLayerNameInSubmodel(memory_name)
    layer_name = MakeLayerNameInSubmodel(layer_name)
    for mem in g_current_submodel.memories:
        if mem.link_name == memory_name:
            mem.layer_name = layer_name
            return
    logger.fatal("Nonexistent memory name: " + memory_name)


2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822
# Generator for recurrent layer group, to use it:
#  1. define a id layer as output of layer group
#  2. define a memory of this id layer, and assign a boot id(begin of sequence)
#  3. define a eos check layer and fill its name in generator's *eos_layer_name*
# Sequence generation will stop when eos check return 1 or *max_num_frames* reached.
# If *beam_size* is greater than one, generator will use beam search.
#   in beam search, if *num_results_per_sample* set, one sample sequence can output
#   multiple results each with a probility.
@config_func
def Generator(
        max_num_frames,
2823 2824 2825 2826
        eos_layer_name="eos_check",
        num_results_per_sample=1,
        beam_size=1,
        log_prob=None, ):
2827 2828 2829 2830 2831 2832 2833 2834 2835
    generator_config = GeneratorConfig()
    generator_config.max_num_frames = max_num_frames
    generator_config.eos_layer_name = eos_layer_name
    generator_config.num_results_per_sample = num_results_per_sample
    generator_config.beam_size = beam_size
    if log_prob is not None:
        generator_config.log_prob = log_prob
    return generator_config

2836

2837 2838
@config_layer('expand')
class ExpandLayer(LayerBase):
2839
    def __init__(self, name, inputs, trans_type='non-seq', bias=False, **xargs):
2840
        super(ExpandLayer, self).__init__(
2841
            name, 'expand', 0, inputs=inputs, **xargs)
2842 2843 2844 2845 2846 2847 2848 2849
        config_assert(
            len(self.inputs) == 2, 'ExpandLayer takes 2 and only 2 inputs')
        self.config.trans_type = trans_type
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
        self.set_layer_size(self.get_input_layer(0).size)
        self.create_bias_parameter(bias, self.config.size)

2850 2851 2852

@config_layer('featmap_expand')
class FeatMapExpandLayer(LayerBase):
2853 2854 2855 2856 2857
    def __init__(self,
                 name,
                 inputs,
                 num_filters=None,
                 as_row_vector=True,
2858 2859
                 bias=False,
                 **xargs):
2860
        super(FeatMapExpandLayer, self).__init__(
2861
            name, 'featmap_expand', 0, inputs=inputs, **xargs)
2862 2863 2864
        config_assert(
            len(self.inputs) == 1, 'ExpandLayer takes 1 and only 1 inputs')
        if num_filters is not None:
2865
            self.config.num_filters = num_filters
2866
        else:
2867
            logger.fatal("FeatMapExpandLayer must specify num_filters.")
2868 2869
        if not as_row_vector:
            self.config.user_arg = "as_col_vec"
2870
        self.set_layer_size(self.get_input_layer(0).size * num_filters)
2871 2872 2873 2874


@config_layer('max')
class MaxLayer(LayerBase):
2875 2876 2877 2878 2879
    def __init__(self,
                 name,
                 inputs,
                 trans_type='non-seq',
                 bias=False,
2880
                 output_max_index=None,
2881
                 stride=-1,
2882
                 **xargs):
2883
        super(MaxLayer, self).__init__(name, 'max', 0, inputs=inputs, **xargs)
2884
        config_assert(len(self.inputs) == 1, 'MaxLayer must have 1 input')
2885 2886
        if trans_type == 'seq':
            config_assert(stride == -1, 'subseq does not support stride window')
2887
        self.config.trans_type = trans_type
2888
        self.config.seq_pool_stride = stride
2889 2890 2891 2892
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            self.set_layer_size(input_layer.size)
        self.create_bias_parameter(bias, self.config.size)
2893 2894
        if output_max_index is not None:
            self.config.output_max_index = output_max_index
2895 2896 2897 2898


@config_layer('maxid')
class MaxIdLayer(LayerBase):
2899
    def __init__(self, name, inputs, beam_size=None, device=None):
2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916
        super(MaxIdLayer, self).__init__(
            name, 'maxid', 0, inputs=inputs, device=device)
        config_assert(len(self.inputs) == 1, 'MaxIdLayer must have 1 input')
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            self.set_layer_size(input_layer.size)

        if beam_size is None:
            global g_current_submodel
            if g_current_submodel.HasField("generator"):
                self.config.beam_size = g_current_submodel.generator.beam_size
        else:
            self.config.beam_size = beam_size


@config_layer('eos_id')
class EosIdLayer(LayerBase):
2917
    def __init__(self, name, inputs, eos_id, device=None):
2918 2919 2920
        super(EosIdLayer, self).__init__(
            name, 'eos_id', 0, inputs=inputs, device=device)
        config_assert(len(self.inputs) == 1, 'EosIdLayer must have 1 input')
2921
        self.set_layer_size(2)  # boolean output
2922 2923
        self.config.eos_id = eos_id

2924

2925 2926
@config_layer('seqlastins')
class SequenceLastInstanceLayer(LayerBase):
2927 2928 2929 2930
    def __init__(self,
                 name,
                 inputs,
                 trans_type='non-seq',
2931
                 bias=False,
2932
                 stride=-1,
2933
                 **xargs):
2934
        super(SequenceLastInstanceLayer, self).__init__(
2935
            name, 'seqlastins', 0, inputs=inputs, **xargs)
2936 2937
        config_assert(
            len(inputs) == 1, 'SequenceLastInstanceLayer must have 1 input')
2938
        if trans_type == 'seq':
2939
            config_assert(stride == -1, 'subseq does not support stride window')
2940
        self.config.trans_type = trans_type
2941 2942
        self.config.seq_pool_stride = stride
        self.set_layer_size(self.get_input_layer(0).size)
2943 2944
        self.create_bias_parameter(bias, self.config.size)

2945

2946 2947
@config_layer('seqfirstins')
class SequenceFirstInstanceLayer(SequenceLastInstanceLayer):
2948 2949 2950 2951 2952
    def __init__(self,
                 name,
                 inputs,
                 trans_type='non-seq',
                 bias=False,
2953
                 stride=-1,
2954
                 **xargs):
2955
        super(SequenceFirstInstanceLayer, self).__init__(
2956 2957 2958 2959 2960 2961
            name,
            inputs=inputs,
            trans_type=trans_type,
            bias=bias,
            stride=stride,
            **xargs)
2962 2963
        self.config.select_first = True

2964

2965 2966
@config_layer('seqconcat')
class SequenceConcatLayer(LayerBase):
2967
    def __init__(self, name, inputs, bias=False, **xargs):
2968
        super(SequenceConcatLayer, self).__init__(
2969
            name, 'seqconcat', 0, inputs=inputs, **xargs)
2970 2971
        config_assert(
            len(inputs) == 2, 'SequenceConcatLayer must have 2 inputs')
2972 2973 2974 2975 2976
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            self.set_layer_size(input_layer.size)
        self.create_bias_parameter(bias, self.config.size)

2977

2978 2979
@config_layer('seqreshape')
class SequenceReshapeLayer(LayerBase):
2980
    def __init__(self, name, size, inputs, bias=False, **xargs):
2981
        super(SequenceReshapeLayer, self).__init__(
2982
            name, 'seqreshape', size, inputs=inputs, **xargs)
2983 2984
        config_assert(
            len(inputs) == 1, 'SequenceReshapeLayer must have 1 inputs')
2985 2986 2987
        self.set_layer_size(size)
        self.create_bias_parameter(bias, size)

2988

2989 2990
@config_layer('subseq')
class SubSequenceLayer(LayerBase):
2991
    def __init__(self, name, inputs, bias=False, **xargs):
2992
        super(SubSequenceLayer, self).__init__(
2993
            name, 'subseq', 0, inputs=inputs, **xargs)
2994 2995 2996 2997 2998 2999
        config_assert(len(inputs) == 3, 'SubSequenceLayer must have 3 inputs')
        input_layer0 = self.get_input_layer(0)
        size = input_layer0.size
        self.set_layer_size(size)
        self.create_bias_parameter(bias, size)

3000

3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029
@config_layer('seq_slice')
class SeqSliceLayer(LayerBase):
    def __init__(self, name, inputs, starts, ends, bias=False, **xargs):
        if isinstance(inputs, list):
            assert len(inputs) == 1, ('the first input of sequence slice layer '
                                      'is a single sequence input.')
        else:
            inputs = [inputs]

        if starts is not None:
            if isinstance(starts, list):
                assert len(starts) == 1, (
                    'the start indices for sequence slice layer cannot '
                    'be a list having more than one element.')
                starts = starts[0]
            inputs.append(starts)

        if ends is not None:
            if isinstance(ends, list):
                assert len(ends) == 1, (
                    'the end indices for sequence slice layer cannot '
                    'be a list having more than one element.')
                ends = ends[0]
            inputs.append(ends)
        assert len(inputs) >= 2, (
            'the sequence slice layer has at least two inputs.')

        super(SeqSliceLayer, self).__init__(
            name, 'seq_slice', 0, inputs=inputs, **xargs)
3030

3031 3032 3033 3034 3035 3036 3037 3038 3039 3040
        input_layer0 = self.get_input_layer(0)
        size = input_layer0.size
        self.set_layer_size(size)

        if len(inputs) == 3:
            assert (
                self.get_input_layer(1).size == self.get_input_layer(2).size), (
                    'If start and end indices are both given to'
                    'sequence slice layer, they should have the same width.')
        elif len(inputs) == 2:
C
caoying03 已提交
3041
            self.config.select_first = (starts is not None)
3042 3043


C
caoying03 已提交
3044 3045
@config_layer('sub_nested_seq')
class SubNestedSequenceLayer(LayerBase):
3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057
    def __init__(self, name, inputs, selected_indices, bias=False, **xargs):
        if isinstance(inputs, list):
            assert len(inputs) == 1, ('the first input of sub_nested_seq '
                                      'layer is a single nested sequence.')
            inputs = inputs[0]
        if isinstance(selected_indices, list):
            assert len(selected_indices) == 1, (
                'the second input of '
                'sub_nested_seq layer is a single layer which is a '
                'set of selected indices.')
            selected_indices = selected_indices[0]

C
caoying03 已提交
3058
        super(SubNestedSequenceLayer, self).__init__(
3059 3060 3061 3062 3063
            name,
            'sub_nested_seq',
            0,
            inputs=[inputs, selected_indices],
            **xargs)
C
caoying03 已提交
3064 3065 3066 3067 3068
        input_layer0 = self.get_input_layer(0)
        size = input_layer0.size
        self.set_layer_size(size)


3069 3070
@config_layer('out_prod')
class OuterProdLayer(LayerBase):
3071 3072 3073
    def __init__(self, name, inputs, device=None):
        super(OuterProdLayer, self).__init__(
            name, 'out_prod', 0, inputs=inputs, device=device)
3074 3075 3076 3077 3078
        config_assert(len(inputs) == 2, 'OuterProdLayer must have 2 inputs')
        input_layer0 = self.get_input_layer(0)
        input_layer1 = self.get_input_layer(1)
        self.set_layer_size(input_layer0.size * input_layer1.size)

3079

3080 3081
@config_layer('power')
class PowerLayer(LayerBase):
3082 3083 3084
    def __init__(self, name, inputs, device=None):
        super(PowerLayer, self).__init__(
            name, 'power', 0, inputs=inputs, device=device)
3085 3086 3087 3088
        config_assert(len(inputs) == 2, 'PowerLayer must have 2 inputs')
        input_layer1 = self.get_input_layer(1)
        self.set_layer_size(input_layer1.size)
        input_layer0 = self.get_input_layer(0)
3089 3090 3091
        config_assert(1 == input_layer0.size,
                      'The left input is the exponent and should be of size 1')

3092 3093 3094

@config_layer('slope_intercept')
class SlopeInterceptLayer(LayerBase):
3095 3096 3097
    def __init__(self, name, inputs, slope=1.0, intercept=0.0, device=None):
        super(SlopeInterceptLayer, self).__init__(
            name, 'slope_intercept', 0, inputs=inputs, device=device)
3098 3099 3100 3101 3102 3103
        self.config.slope = slope
        self.config.intercept = intercept
        config_assert(len(inputs) == 1, 'SlopeInterceptLayer must have 1 input')
        input_layer0 = self.get_input_layer(0)
        self.set_layer_size(input_layer0.size)

3104

3105 3106
@config_layer('scaling')
class ScalingLayer(LayerBase):
3107 3108 3109
    def __init__(self, name, inputs, device=None):
        super(ScalingLayer, self).__init__(
            name, 'scaling', 0, inputs=inputs, device=device)
3110 3111 3112 3113
        config_assert(len(inputs) == 2, 'ScalingLayer must have 2 inputs')
        input_layer1 = self.get_input_layer(1)
        self.set_layer_size(input_layer1.size)
        input_layer0 = self.get_input_layer(0)
3114 3115 3116
        config_assert(1 == input_layer0.size,
                      'The left input should be of size 1')

3117 3118 3119

@config_layer('conv_shift')
class ConvShiftLayer(LayerBase):
3120 3121 3122
    def __init__(self, name, inputs, device=None):
        super(ConvShiftLayer, self).__init__(
            name, 'conv_shift', 0, inputs=inputs, device=device)
3123 3124 3125 3126
        config_assert(len(inputs) == 2, 'ConvShiftLayer must have 2 inputs')
        input_layer0 = self.get_input_layer(0)
        self.set_layer_size(input_layer0.size)

3127

3128 3129
@config_layer('convex_comb')
class ConvexCombinationLayer(LayerBase):
3130
    def __init__(self, name, size, inputs, device=None):
3131
        super(ConvexCombinationLayer, self).__init__(
3132 3133 3134
            name, 'convex_comb', size, inputs=inputs, device=device)
        config_assert(
            len(self.inputs) == 2, 'ConvexCombinationLayer must have 2 inputs')
3135 3136 3137
        config_assert(
            size * self.get_input_layer(0).size == self.get_input_layer(1).size,
            'Wrong input size for ConvexCombinationLayer')
3138 3139
        self.set_layer_size(size)

3140

3141 3142
@config_layer('interpolation')
class InterpolationLayer(LayerBase):
3143
    def __init__(self, name, inputs, device=None):
3144 3145
        super(InterpolationLayer, self).__init__(
            name, 'interpolation', 0, inputs=inputs, device=device)
3146 3147
        config_assert(
            len(self.inputs) == 3, 'InterpolationLayer must have 3 inputs')
3148 3149 3150 3151 3152 3153 3154 3155
        input_layer0 = self.get_input_layer(0)
        input_layer1 = self.get_input_layer(1)
        input_layer2 = self.get_input_layer(2)
        self.set_layer_size(input_layer1.size)
        config_assert(input_layer0.size == 1, 'weight should be of size 1')
        config_assert(input_layer1.size == input_layer2.size,
                      'the two vector inputs should be of the same size')

3156

3157 3158
@config_layer('bilinear_interp')
class BilinearInterpLayer(LayerBase):
3159
    def __init__(self, name, inputs, **xargs):
3160
        super(BilinearInterpLayer, self).__init__(
L
liaogang 已提交
3161
            name, 'bilinear_interp', 0, inputs=inputs, **xargs)
3162
        input_layer = self.get_input_layer(0)
3163 3164 3165 3166
        conf = self.config.inputs[0].bilinear_interp_conf
        parse_bilinear(self.inputs[0].bilinear_interp, input_layer.name, conf)
        self.set_cnn_layer(name, conf.out_size_y, conf.out_size_x,
                           conf.image_conf.channels)
3167

L
liaogang 已提交
3168

3169 3170
@config_layer('sum_to_one_norm')
class SumToOneNormLayer(LayerBase):
3171
    def __init__(self, name, inputs, device=None):
3172
        super(SumToOneNormLayer, self).__init__(
3173 3174 3175
            name, 'sum_to_one_norm', 0, inputs=inputs, device=device)
        config_assert(
            len(self.inputs) == 1, 'SumToOneNormLayer must have 1 input')
3176 3177 3178
        input_layer0 = self.get_input_layer(0)
        self.set_layer_size(input_layer0.size)

3179

G
guosheng 已提交
3180 3181
@config_layer('row_l2_norm')
class RowL2NormLayer(LayerBase):
3182
    def __init__(self, name, inputs, **xargs):
G
guosheng 已提交
3183
        super(RowL2NormLayer, self).__init__(
3184
            name, 'row_l2_norm', 0, inputs=inputs, **xargs)
G
guosheng 已提交
3185
        config_assert(len(self.inputs) == 1, 'RowL2NormLayer must have 1 input')
3186 3187
        input_layer = self.get_input_layer(0)
        self.set_layer_size(input_layer.size)
G
guosheng 已提交
3188 3189


3190 3191
@config_layer('cos_vm')
class CosSimVecMatLayer(LayerBase):
3192
    def __init__(self, name, size, inputs, cos_scale=1.0, device=None):
3193
        super(CosSimVecMatLayer, self).__init__(
3194
            name, 'cos_vm', size, inputs=inputs, device=device)
3195
        self.config.cos_scale = cos_scale
3196 3197
        config_assert(
            len(self.inputs) == 2, 'CosSimVecMatLayer must have 2 inputs')
3198 3199 3200
        config_assert(
            size * self.get_input_layer(0).size == self.get_input_layer(1).size,
            'Wrong input size for CosSimVecMatLayer')
3201

3202

3203 3204
@config_layer('sampling_id')
class SamplingIdLayer(LayerBase):
3205
    def __init__(self, name, inputs, device=None):
3206 3207
        super(SamplingIdLayer, self).__init__(
            name, 'sampling_id', 0, inputs=inputs, device=device)
3208 3209
        config_assert(
            len(self.inputs) == 1, 'SamplingIdLayer must have 1 input')
3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            self.set_layer_size(input_layer.size)


# AverageLayer: "average" for each sample within a sequence.
# average_stratrgy: set to one of the following:
# 'average': plain average.
# 'sum': sum each sample instead of average (which is divide by sample_num).
# 'squarerootn': sum each sample, but divide by sqrt(sample_num).
@config_layer('average')
class AverageLayer(LayerBase):
3222 3223 3224 3225 3226
    def __init__(self,
                 name,
                 inputs,
                 average_strategy='average',
                 trans_type='non-seq',
3227
                 bias=False,
3228
                 stride=-1,
3229
                 **xargs):
3230
        super(AverageLayer, self).__init__(
3231
            name, 'average', 0, inputs=inputs, **xargs)
3232
        self.config.average_strategy = average_strategy
3233 3234
        if trans_type == 'seq':
            config_assert(stride == -1, 'subseq does not support stride window')
3235
        self.config.trans_type = trans_type
3236
        self.config.seq_pool_stride = stride
3237 3238 3239 3240 3241 3242
        config_assert(len(inputs) == 1, 'AverageLayer must have 1 input')
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            self.set_layer_size(input_layer.size)
        self.create_bias_parameter(bias, self.config.size)

3243

3244 3245
@config_layer('cos')
class CosSimLayer(LayerBase):
3246
    def __init__(self, name, inputs, cos_scale=1, device=None):
3247 3248 3249 3250 3251 3252
        super(CosSimLayer, self).__init__(
            name, 'cos', 1, inputs=inputs, device=device)
        config_assert(len(self.inputs) == 2, 'CosSimLayer must have 2 inputs')
        config_assert(
            self.get_input_layer(0).size == self.get_input_layer(1).size,
            'inputs of CosSimLayer must have same dim')
3253
        self.config.cos_scale = cos_scale
3254 3255 3256 3257


@config_layer('tensor')
class TensorLayer(LayerBase):
3258
    def __init__(self, name, size, inputs, bias=True, **xargs):
3259
        super(TensorLayer, self).__init__(
3260
            name, 'tensor', size, inputs=inputs, **xargs)
3261 3262
        config_assert(len(self.inputs) == 2, 'TensorLayer must have 2 inputs')
        config_assert(size > 0, 'size must be positive')
3263 3264
        config_assert(inputs[1].parameter_name == None,
                      'second parameter should be None.')
3265 3266 3267 3268 3269 3270 3271 3272 3273 3274
        input_layer0 = self.get_input_layer(0)
        input_layer1 = self.get_input_layer(1)
        psize = size * input_layer0.size * input_layer1.size
        dims = [input_layer0.size, input_layer1.size, size]
        self.create_input_parameter(0, psize, dims)
        self.create_bias_parameter(bias, size)


@config_layer('mixed')
class MixedLayer(LayerBase):
C
caoying03 已提交
3275
    def __init__(self, name, inputs, size=0, bias=True, **xargs):
3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292
        config_assert(inputs, 'inputs cannot be empty')
        super(MixedLayer, self).__init__(
            name, 'mixed', size, inputs=inputs, **xargs)
        operator_input_index = []
        for operator in self.operators:
            operator_conf = operator.operator_conf
            for i in xrange(1, len(operator.input_layer_names)):
                input_index = len(self.config.inputs)
                operator_conf.input_indices.append(input_index)
                input_config = Input(operator.input_layer_names[i])
                self.inputs.append(input_config)
                layer_input = self.config.inputs.add()
                layer_input.input_layer_name = input_config.input_layer_name
            for input_index in operator_conf.input_indices:
                input_layer = self.get_input_layer(input_index)
                operator_conf.input_sizes.append(input_layer.size)
                operator_input_index.append(input_index)
3293
            if self.config.size == 0:
3294 3295 3296
                size = operator.calc_output_size(operator_conf.input_sizes)
                if size != 0:
                    self.set_layer_size(size)
3297
            else:
3298 3299
                sz = operator.calc_output_size(operator_conf.input_sizes)
                if sz != 0:
3300 3301 3302 3303
                    config_assert(
                        sz == self.config.size,
                        "different inputs have different size: %s vs. %s" %
                        (sz, self.config.size))
3304 3305 3306 3307
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            input = self.inputs[input_index]
            if input_index not in operator_input_index:
3308 3309 3310
                config_assert(
                    isinstance(input, Projection),
                    "input should be projection or operation")
3311
            if self.config.size == 0 and isinstance(input, Projection):
3312 3313 3314
                size = input.calc_output_size(input_layer)
                if size != 0:
                    self.set_layer_size(size)
3315
            elif isinstance(input, Projection):
3316 3317 3318 3319 3320 3321
                sz = input.calc_output_size(input_layer)
                if sz != 0:
                    config_assert(
                        sz == self.config.size,
                        "different inputs have different size: %s vs. %s" %
                        (sz, self.config.size))
3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332
        config_assert(size != 0, "size is not set")

        for input_index in xrange(len(self.inputs)):
            input = self.inputs[input_index]
            if isinstance(input, Projection):
                input_layer = self.get_input_layer(input_index)
                input.proj_conf.input_size = input_layer.size
                input.proj_conf.output_size = size

                input_config = self.config.inputs[input_index]
                input_config.proj_conf.CopyFrom(input.proj_conf)
3333 3334
                input_config.proj_conf.name = gen_parameter_name(name,
                                                                 input_index)
3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345
                psize = input.calc_parameter_size(input_layer.size, size)
                dims = input.calc_parameter_dims(input_layer.size, size)
                self.create_input_parameter(input_index, psize, dims)

        for operator in self.operators:
            operator_conf = operator.operator_conf
            operator_conf.output_size = self.config.size
            operator.check_dims()
            record_operator_conf = self.config.operator_confs.add()
            record_operator_conf.CopyFrom(operator_conf)

3346 3347 3348 3349 3350 3351
        psize = self.config.size
        if isinstance(self.inputs[0], ConvProjection):
            self.config.shared_biases = True
            psize = 0
            for input in self.inputs:
                psize += input.calc_bias_size()
3352

3353 3354 3355
        if bias:
            self.config.bias_size = psize
            self.create_bias_parameter(bias, psize)
3356

3357

3358 3359
# like MixedLayer, but no bias parameter
@config_func
3360
def ExpressionLayer(name, inputs, **xargs):
3361 3362
    MixedLayer(name, inputs, bias=False, **xargs)

3363

3364 3365
@config_layer('concat')
class ConcatenateLayer(LayerBase):
3366
    def __init__(self, name, inputs, bias=False, **xargs):
3367
        config_assert(inputs, 'inputs cannot be empty')
3368
        config_assert(not bias, 'ConcatenateLayer cannot support bias.')
3369 3370 3371 3372 3373 3374
        super(ConcatenateLayer, self).__init__(
            name, 'concat', 0, inputs=inputs, **xargs)
        size = 0
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            input = self.inputs[input_index]
3375
            if self.config.size == 0:
3376 3377 3378 3379
                size += input_layer.size

        self.set_layer_size(size)

3380

3381 3382 3383
# like concat layer, but each input layer was processed by a Projection.
@config_layer('concat2')
class ConcatenateLayer2(LayerBase):
3384
    def __init__(self, name, inputs, bias=False, **xargs):
3385 3386 3387
        config_assert(inputs, 'inputs cannot be empty')
        super(ConcatenateLayer2, self).__init__(
            name, 'concat2', 0, inputs=inputs, **xargs)
3388 3389

        if isinstance(self.inputs[0], ConvProjection):
3390 3391 3392 3393 3394 3395
            for input_index in xrange(len(self.inputs) - 1):
                input = self.inputs[input_index + 1]
                config_assert(
                    isinstance(input, ConvProjection),
                    "The first input of ConcatenateLayer2 is ConvProjection, "
                    "the other inputs should also be ConvProjection.")
3396

3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416
        size = 0
        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            input = self.inputs[input_index]
            output_size = input.calc_output_size(input_layer)
            config_assert(output_size != 0, "proj output size is not set")
            size += output_size

        self.set_layer_size(size)

        for input_index in xrange(len(self.inputs)):
            input_layer = self.get_input_layer(input_index)
            input = self.inputs[input_index]
            input.proj_conf.input_size = input_layer.size
            input.proj_conf.output_size = input.calc_output_size(input_layer)

            input_config = self.config.inputs[input_index]
            input_config.proj_conf.CopyFrom(input.proj_conf)
            input_config.proj_conf.name = gen_parameter_name(name, input_index)
            psize = input.calc_parameter_size(input.proj_conf.input_size,
3417
                                              input.proj_conf.output_size)
3418
            dims = input.calc_parameter_dims(input.proj_conf.input_size,
3419
                                             input.proj_conf.output_size)
3420 3421
            self.create_input_parameter(input_index, psize, dims)

3422 3423 3424 3425 3426 3427 3428
        psize = self.config.size
        if isinstance(self.inputs[0], ConvProjection):
            self.config.shared_biases = True
            psize = 0
            for input in self.inputs:
                psize += input.calc_bias_size()

3429 3430 3431
        if bias:
            self.config.bias_size = psize
            self.create_bias_parameter(bias, psize)
3432

3433

3434 3435
@config_layer('recurrent')
class RecurrentLayer(LayerBase):
3436
    def __init__(self, name, inputs, reversed=False, bias=True, **xargs):
Y
Yu Yang 已提交
3437 3438
        super(RecurrentLayer, self).__init__(name, 'recurrent', 0, inputs,
                                             **xargs)
3439 3440 3441 3442 3443 3444 3445 3446 3447
        config_assert(len(self.inputs) == 1, 'RecurrentLayer must have 1 input')
        input_layer = self.get_input_layer(0)
        size = input_layer.size
        self.set_layer_size(size)
        self.config.reversed = reversed
        dims = [size, size]
        self.create_input_parameter(0, size * size, dims)
        self.create_bias_parameter(bias, self.config.size)

3448

3449 3450
@config_layer('lstmemory')
class LstmLayer(LayerBase):
3451 3452 3453 3454 3455 3456 3457 3458
    def __init__(self,
                 name,
                 inputs,
                 reversed=False,
                 active_gate_type="sigmoid",
                 active_state_type="sigmoid",
                 bias=True,
                 **xargs):
3459 3460 3461 3462 3463 3464 3465 3466
        super(LstmLayer, self).__init__(name, 'lstmemory', 0, inputs, **xargs)
        config_assert(len(self.inputs) == 1, 'LstmLayer must have 1 input')
        input_layer = self.get_input_layer(0)
        #check input_layer.size is divided by 4
        config_assert(input_layer.size % 4 == 0, "size % 4 should be 0!")
        size = input_layer.size / 4
        self.set_layer_size(size)
        self.config.reversed = reversed
3467
        self.config.active_gate_type = active_gate_type
3468 3469 3470 3471 3472
        self.config.active_state_type = active_state_type
        self.create_input_parameter(0, size * size * 4, [size, size, 4])
        #bias includes 3 kinds of peephole, 4 + 3 = 7
        self.create_bias_parameter(bias, size * 7)

3473

3474 3475
@config_layer('lstm_step')
class LstmStepLayer(LayerBase):
3476 3477 3478 3479 3480 3481 3482 3483 3484 3485
    def __init__(self,
                 name,
                 size,
                 inputs,
                 active_gate_type="sigmoid",
                 active_state_type="sigmoid",
                 bias=True,
                 **xargs):
        super(LstmStepLayer, self).__init__(name, 'lstm_step', size, inputs,
                                            **xargs)
3486 3487 3488
        config_assert(len(inputs) == 2, 'LstmStepLayer must have 2 inputs')
        input_layer0 = self.get_input_layer(0)
        input_layer1 = self.get_input_layer(1)
3489 3490 3491 3492 3493
        config_assert(input_layer0.size == 4 * size,
                      'input_layer0.size != 4 * layer.size')
        config_assert(input_layer1.size == size,
                      'input_layer1.size != layer.size')
        self.config.active_gate_type = active_gate_type
3494 3495 3496
        self.config.active_state_type = active_state_type
        self.create_bias_parameter(bias, size * 3)

3497

3498 3499 3500
# get the specific output from the input layer.
@config_layer('get_output')
class GetOutputLayer(LayerBase):
3501 3502 3503 3504
    def __init__(self, name, size, inputs):
        super(GetOutputLayer, self).__init__(name, 'get_output', size, inputs)
        config_assert(
            len(self.inputs) == 1, 'GetOutputLayer must have 1 inputs')
3505 3506 3507 3508
        inputs = self.inputs[0]
        config_assert(inputs.input_layer_argument,
                      'input_layer_argument cannot be empty')

3509

3510 3511
@config_layer('mdlstmemory')
class MDLstmLayer(LayerBase):
3512 3513 3514 3515 3516 3517 3518 3519
    def __init__(self,
                 name,
                 inputs,
                 directions=True,
                 active_gate_type="sigmoid",
                 active_state_type="sigmoid",
                 bias=True,
                 **xargs):
Y
Yu Yang 已提交
3520 3521
        super(MDLstmLayer, self).__init__(name, 'mdlstmemory', 0, inputs,
                                          **xargs)
3522 3523 3524 3525
        config_assert(len(self.inputs) == 1, 'MDLstmLayer must have 1 input')
        input_layer = self.get_input_layer(0)
        dim_num = len(directions)
        #check input_layer.size is divided by (3+dim_num)
Y
Yu Yang 已提交
3526 3527
        config_assert(input_layer.size % (3 + dim_num) == 0,
                      "size % (dim_num) should be 0!")
3528
        size = input_layer.size / (3 + dim_num)
3529
        self.set_layer_size(size)
3530
        self.config.active_gate_type = active_gate_type
3531 3532 3533
        self.config.active_state_type = active_state_type
        for i in xrange(len(directions)):
            self.config.directions.append(int(directions[i]))
Y
Yu Yang 已提交
3534 3535
        self.create_input_parameter(0, size * size * (3 + dim_num),
                                    [size, size, 3 + dim_num])
3536
        #bias includes 3 kinds of peephole, 3+dim_num+2+dim_num
3537 3538
        self.create_bias_parameter(bias, size * (5 + 2 * dim_num))

3539 3540 3541

@config_layer('gated_recurrent')
class GatedRecurrentLayer(LayerBase):
3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552
    def __init__(self,
                 name,
                 inputs,
                 reversed=False,
                 active_gate_type="sigmoid",
                 bias=True,
                 **xargs):
        super(GatedRecurrentLayer, self).__init__(name, 'gated_recurrent', 0,
                                                  inputs, **xargs)
        config_assert(
            len(self.inputs) == 1, 'GatedRecurrentLayer must have 1 input')
3553 3554 3555 3556 3557 3558
        input_layer = self.get_input_layer(0)
        #check input_layer.size is divided by 3
        config_assert(input_layer.size % 3 == 0, "size % 3 should be 0!")
        size = input_layer.size / 3
        self.set_layer_size(size)
        self.config.reversed = reversed
3559
        self.config.active_gate_type = active_gate_type
3560 3561 3562
        self.create_input_parameter(0, size * size * 3, [size, size * 3])
        self.create_bias_parameter(bias, size * 3)

3563

3564 3565
@config_layer('gru_step')
class GruStepLayer(LayerBase):
3566 3567 3568 3569 3570 3571 3572
    def __init__(self,
                 name,
                 size,
                 inputs,
                 active_gate_type="sigmoid",
                 bias=True,
                 **xargs):
Y
Yu Yang 已提交
3573 3574
        super(GruStepLayer, self).__init__(name, 'gru_step', size, inputs,
                                           **xargs)
3575 3576 3577
        config_assert(len(self.inputs) == 2, 'GruStepLayer must have 2 input')
        input_layer0 = self.get_input_layer(0)
        input_layer1 = self.get_input_layer(1)
3578 3579 3580 3581 3582
        config_assert(input_layer0.size == 3 * size,
                      'input_layer0.size != 3 * layer.size')
        config_assert(input_layer1.size == size,
                      'input_layer1.size != layer.size')
        self.config.active_gate_type = active_gate_type
3583
        self.create_input_parameter(0, size * size * 3, [size, size * 3])
3584 3585
        self.create_bias_parameter(bias, size * 3)

3586

3587 3588 3589 3590 3591 3592 3593
'''
 A layer for calculating the cost of sequential conditional random field model.
 Example: CRFLayer(name="crf_cost", size=label_num,
                   inputs=["output", "label", "weight"])
          where "weight" is optional, one weight for each sequence
 @param coeff: weight of the layer
'''
3594 3595


3596 3597
@config_layer('crf')
class CRFLayer(LayerBase):
3598
    def __init__(self, name, size, inputs, coeff=1.0, device=None):
3599
        super(CRFLayer, self).__init__(name, 'crf', size, inputs, device=device)
3600 3601
        config_assert(2 <= len(self.inputs) <= 3,
                      'CRFLayer must have 2 or 3 inputs')
3602
        self.create_input_parameter(0, size * (size + 2), [size + 2, size])
3603 3604
        self.config.coeff = coeff

3605

3606 3607 3608 3609 3610 3611 3612 3613
'''
 A layer for calculating the decoding sequence of sequential conditional
 random field model.
 The decoding sequence is stored in output_.ids
 If a second input is provided, it is treated as the ground-truth label, and
 this layer will also calculate error, output_.value[i] is 1 for incorrect
 decoding or 0 for correct decoding
'''
3614 3615


3616 3617
@config_layer('crf_decoding')
class CRFDecodingLayer(LayerBase):
3618
    def __init__(self, name, size, inputs, device=None):
3619 3620 3621 3622 3623
        super(CRFDecodingLayer, self).__init__(
            name, 'crf_decoding', size, inputs, device=device)
        config_assert(
            len(self.inputs) <= 2,
            'CRFDecodingLayer cannot have more than 2 inputs')
3624
        self.create_input_parameter(0, size * (size + 2), [size + 2, size])
3625

3626

3627 3628
@config_layer('ctc')
class CTCLayer(LayerBase):
3629
    def __init__(self, name, size, inputs, norm_by_times=False, device=None):
3630 3631 3632 3633
        super(CTCLayer, self).__init__(name, 'ctc', size, inputs, device=device)
        self.config.norm_by_times = norm_by_times
        config_assert(len(self.inputs) == 2, 'CTCLayer must have 2 inputs')

3634

3635 3636 3637 3638 3639 3640 3641 3642 3643 3644
@config_layer('kmax_seq_score')
class KmaxSeqScoreLayer(LayerBase):
    def __init__(self, name, inputs, beam_size, **xargs):
        super(KmaxSeqScoreLayer, self).__init__(
            name, 'kmax_seq_score', 0, inputs=inputs, **xargs)
        config_assert(
            len(self.inputs) == 1, 'KmaxSeqScoreLayer has only one input.')
        self.config.beam_size = beam_size


3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665
@config_layer('warp_ctc')
class WarpCTCLayer(LayerBase):
    def __init__(self,
                 name,
                 size,
                 inputs,
                 blank=0,
                 norm_by_times=False,
                 device=None):
        super(WarpCTCLayer, self).__init__(
            name, 'warp_ctc', size=size, inputs=inputs, device=device)
        self.config.blank = blank
        self.config.norm_by_times = norm_by_times
        config_assert(len(self.inputs) == 2, 'WarpCTCLayer must have 2 inputs')
        input_layer = self.get_input_layer(0)
        config_assert(
            (input_layer.active_type == '' or
             input_layer.active_type == 'linear'),
            "Expecting the active_type of input layer to be linear or null")


3666 3667
@config_layer('recurrent_layer_group')
class RecurrentLayerGroup(LayerBase):
3668
    def __init__(self, name, device=None):
3669 3670 3671 3672
        super(RecurrentLayerGroup, self).__init__(
            name, 'recurrent_layer_group', 0, inputs=[], device=device)


3673 3674 3675 3676 3677
@config_layer('switch_order')
class SwitchOrderLayer(LayerBase):
    def __init__(self, name, inputs, reshape, **xargs):
        super(SwitchOrderLayer, self).__init__(
            name, 'switch_order', 0, inputs=inputs, **xargs)
3678 3679
        self.config.reshape_conf.height_axis.extend(reshape['height'])
        self.config.reshape_conf.width_axis.extend(reshape['width'])
3680 3681


3682 3683
# Deprecated, use a new layer specific class instead
@config_func
3684
def Layer(name, type, **xargs):
3685 3686 3687 3688
    layers = {}
    layers.update(g_cost_map)
    layers.update(g_layer_type_map)
    layer_func = layers.get(type)
3689
    config_assert(layer_func, "layer type '%s' not supported." % type)
3690
    return layer_func(name, **xargs)
3691

3692

3693
@config_func
3694
def ParameterHook(type, **kwargs):
3695
    if type == 'pruning':
3696 3697
        hook = ParameterUpdaterHookConfig()
        hook.type = type
X
xzl 已提交
3698
        sparsity_ratio = kwargs.get('sparsity_ratio', None)
X
xzl 已提交
3699 3700
        if sparsity_ratio is not None:
            hook.sparsity_ratio = sparsity_ratio
3701
        return hook
3702 3703 3704 3705
    elif type == 'dpruning':
        hook = ParameterUpdaterHookConfig()
        hook.type = type
        return hook
3706 3707 3708 3709 3710
    else:
        return None


@config_func
3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731
def Parameter(name,
              size,
              device,
              dims,
              learning_rate=None,
              momentum=None,
              decay_rate=None,
              decay_rate_l1=None,
              initial_mean=None,
              initial_std=None,
              initial_strategy=None,
              initial_smart=None,
              num_batches_regularization=None,
              sparse_remote_update=None,
              sparse_update=None,
              gradient_clipping_threshold=None,
              sparse=None,
              format=None,
              need_compact=None,
              is_static=None,
              is_shared=None,
3732 3733
              update_hooks=None,
              initializer=None):
3734 3735 3736 3737 3738 3739 3740

    config_assert(name not in g_parameter_map,
                  'Duplicated parameter name: ' + name)

    para = g_config.model_config.parameters.add()
    para.name = name
    para.size = size
3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751
    if device is not None:
        para.device = int(device)
    para.dims.extend(dims)

    if learning_rate is not None:
        para.learning_rate = float(learning_rate)

    momentum = default(momentum, g_default_momentum)
    if momentum is not None:
        para.momentum = float(momentum)

3752 3753
    config_assert(not momentum or not decay_rate_l1,
                  "momentum and decay_rate_l1 cannot both be non-zero")
3754 3755 3756 3757 3758

    decay_rate = default(decay_rate, g_default_decay_rate)
    if decay_rate is not None:
        para.decay_rate = decay_rate

3759 3760 3761 3762
    if decay_rate_l1 is not None:
        para.decay_rate_l1 = decay_rate_l1
    para.initial_std = default(initial_std, g_default_initial_std)
    para.initial_mean = default(initial_mean, g_default_initial_mean)
3763

3764 3765
    num_batches_regularization = default(num_batches_regularization,
                                         g_default_num_batches_regularization)
3766 3767 3768
    if num_batches_regularization is not None:
        para.num_batches_regularization = int(num_batches_regularization)

3769 3770 3771 3772 3773 3774
    if sparse_remote_update is not None:
        para.sparse_remote_update = sparse_remote_update
        if sparse_remote_update:
            g_config.opt_config.use_sparse_remote_updater = True
    if sparse_update is not None:
        para.sparse_update = sparse_update
3775 3776
    gradient_clipping_threshold = default(gradient_clipping_threshold,
                                          g_default_gradient_clipping_threshold)
3777 3778
    if gradient_clipping_threshold is not None:
        para.gradient_clipping_threshold = gradient_clipping_threshold
3779 3780
    para.initial_strategy = default(initial_strategy,
                                    g_default_initial_strategy)
3781 3782 3783 3784 3785 3786
    para.initial_smart = default(initial_smart, g_default_initial_smart)
    if para.initial_smart:
        para.initial_mean = 0.
        if len(para.dims) != 0:
            para.initial_std = 1. / math.sqrt(para.dims[0])
        else:
3787 3788 3789
            print(
                "Use initial_smart, but dims not set. Initial_smart may not be used in this layer"
            )
3790 3791 3792 3793
            traceback.print_exc()
            para.initial_std = 1. / math.sqrt(para.size)
    if g_default_compact_func is not None:
        sparse, format, need_compact = g_default_compact_func(para.name)
3794 3795 3796 3797 3798 3799 3800

    if sparse is not None:
        para.is_sparse = sparse
    if format is not None:
        para.format = format
    if need_compact is not None:
        para.need_compact = need_compact
3801 3802 3803 3804
    if is_static is not None:
        para.is_static = is_static
    config_assert(not para.sparse_remote_update or not para.is_static,
                  "sparse_remote_update and is_static cannot both be true")
3805 3806
    if is_shared is not None:
        para.is_shared = is_shared
3807 3808 3809 3810 3811

    update_hooks = default(update_hooks, g_default_update_hooks)

    if update_hooks is not None:
        if hasattr(update_hooks, '__call__'):
X
xzl 已提交
3812
            update_hooks = update_hooks()
3813 3814 3815 3816 3817

        if isinstance(update_hooks, list):
            for hook in update_hooks:
                para.update_hooks.extend([hook])
        else:
X
xzl 已提交
3818
            para.update_hooks.extend([update_hooks])
3819 3820

    g_parameter_map[name] = para
3821 3822 3823 3824 3825
    if initializer is not None:
        config_assert(
            callable(initializer),
            "parameter initializer should be a callable object")
        g_parameter_initializer_map[name] = initializer
3826 3827 3828 3829 3830 3831 3832


@config_func
def default_initial_std(val):
    global g_default_initial_std
    g_default_initial_std = val

3833

3834 3835 3836 3837 3838
@config_func
def default_initial_mean(val):
    global g_default_initial_mean
    g_default_initial_mean = val

3839

3840 3841 3842 3843 3844
@config_func
def default_initial_strategy(val):
    global g_default_initial_strategy
    g_default_initial_strategy = val

3845

3846 3847 3848 3849 3850
@config_func
def default_initial_smart(val):
    global g_default_initial_smart
    g_default_initial_smart = val

3851

3852 3853 3854 3855 3856
@config_func
def default_momentum(val):
    global g_default_momentum
    g_default_momentum = val

3857

3858 3859 3860 3861 3862
@config_func
def default_decay_rate(val):
    global g_default_decay_rate
    g_default_decay_rate = val

3863

3864 3865 3866 3867 3868
@config_func
def default_num_batches_regularization(val):
    global g_default_num_batches_regularization
    g_default_num_batches_regularization = val

3869

3870 3871 3872 3873 3874
@config_func
def default_gradient_clipping_threshold(val):
    global g_default_gradient_clipping_threshold
    g_default_gradient_clipping_threshold = val

3875

3876 3877 3878 3879 3880
@config_func
def default_device(val):
    global g_default_device
    g_default_device = val

3881

3882 3883 3884 3885 3886
@config_func
def default_update_hooks(val):
    global g_default_update_hooks
    g_default_update_hooks = val

3887

3888 3889 3890 3891 3892
@config_func
def default_compact_func(val):
    global g_default_compact_func
    g_default_compact_func = val

3893

3894 3895 3896 3897 3898
def make_importer(config_dir, config_args):
    def Import(config_file, local_args={}):
        if not config_file.startswith('/'):
            config_file = config_dir + '/' + config_file
            g_config.config_files.append(config_file)
3899 3900 3901
        execfile(config_file,
                 make_config_environment(config_file, config_args), local_args)

3902 3903
    return Import

3904

3905
DEFAULT_SETTING = dict(
3906 3907 3908 3909 3910
    batch_size=None,
    mini_batch_size=None,
    algorithm='async_sgd',
    async_lagged_grad_discard_ratio=1.5,
    learning_method='momentum',
3911
    gradient_clipping_threshold=None,
3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933
    num_batches_per_send_parameter=None,
    num_batches_per_get_parameter=None,
    center_parameter_update_method=None,
    learning_rate=1.,
    learning_rate_decay_a=0.,
    learning_rate_decay_b=0.,
    learning_rate_schedule='poly',
    learning_rate_args='',
    l1weight=0.1,
    l2weight=0.,
    l2weight_zero_iter=0,
    c1=0.0001,
    backoff=0.5,
    owlqn_steps=10,
    max_backoff=5,
    average_window=0,
    do_average_in_cpu=False,
    max_average_window=None,
    ada_epsilon=1e-6,
    ada_rou=0.95,
    delta_add_rate=1.0,
    shrink_parameter_value=0,
3934 3935 3936
    adam_beta1=0.9,
    adam_beta2=0.999,
    adam_epsilon=1e-8, )
3937

3938
settings = copy.deepcopy(DEFAULT_SETTING)
X
xuwei06 已提交
3939

3940
settings_deprecated = dict(usage_ratio=1., )
3941 3942 3943 3944

trainer_settings = dict(
    save_dir="./output/model",
    init_model_path=None,
3945 3946
    start_pass=0, )

3947 3948 3949 3950 3951

@config_func
def Settings(**args):
    for k, v in args.iteritems():
        if k == "usage_ratio":
3952 3953
            logger.warning(
                "Deprecated: define usage_ratio in DataConfig instead")
3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964
            if g_config.HasField("data_config"):
                g_config.data_config.__setattr__(k, v)
            settings_deprecated[k] = v
            continue
        elif k in settings:
            settings[k] = v
        elif k in trainer_settings:
            trainer_settings[k] = v
        else:
            logger.fatal('Unkown setting: %s' % k)

3965

3966 3967 3968 3969
@config_func
def cluster_config(**args):
    pass

3970

3971 3972 3973 3974 3975 3976 3977 3978 3979
@config_func
def EnableSubmodelSuffix(flag=True):
    """
    If enabled, the layer and evaluator names in submodel will be automatically
    appended with @submodel_name
    """
    global g_add_submodel_suffix
    g_add_submodel_suffix = flag

3980

3981 3982 3983 3984
def make_config_environment(config_file, config_args):
    def make_setter(k):
        def setter(v):
            logger.fatal("Obsolete: use Settings(%s=%s, ...) instead" % (k, v))
3985

3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000
        return setter

    funcs = {}
    funcs.update(g_config_funcs)

    for k in settings.iterkeys():
        funcs[k] = make_setter(k)
    for k in settings_deprecated.iterkeys():
        funcs[k] = make_setter(k)
    config_dir = os.path.dirname(config_file)
    if not config_dir:
        config_dir = '.'

    funcs.update(
        Import=make_importer(config_dir, config_args),
4001
        get_config_arg=make_get_config_arg(config_args), )
4002 4003 4004 4005 4006

    funcs.update(g_extended_config_funcs)

    return funcs

4007

4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023
def make_get_config_arg(config_args):
    def get_config_arg(name, type, default=None):
        if type == bool:
            s = config_args.get(name)
            if not s:
                return default
            if s == 'True' or s == '1' or s == 'true':
                return True
            if s == 'False' or s == '0' or s == 'false':
                return False
            raise ValueError('Value of config_arg %s is not boolean' % name)
        else:
            return type(config_args.get(name, default))

    return get_config_arg

4024

4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036
def importlib(name):
    __import__(name)
    return sys.modules[name]


def find_caller():
    stack = traceback.extract_stack()
    for s in stack[-4::-1]:
        if not s[0].endswith('config_parser.py'):
            return s[0], s[1], s[2]
    return "(unknown file)", 0, "(unknown function)"

4037

4038 4039 4040 4041
def my_fatal(s):
    logger.critical(s)
    raise Exception()

Y
Yu Yang 已提交
4042

4043
_parse_config_hooks = set()
Y
Yu Yang 已提交
4044 4045


4046 4047 4048 4049 4050 4051 4052
def register_parse_config_hook(f):
    """
    Register a hook function for parse_config. parse_config will invoke the hook
    at the beginning of parse. This make it possible to reset global state for
    for constructing the model.
    """
    _parse_config_hooks.add(f)
4053

Y
Yu Yang 已提交
4054

4055
def update_g_config():
4056
    '''
4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079
    Update g_config after execute config_file or config_functions.
    '''
    for k, v in settings.iteritems():
        if v is None:
            continue
        g_config.opt_config.__setattr__(k, v)

    for k, v in trainer_settings.iteritems():
        if v is None:
            continue
        g_config.__setattr__(k, v)

    for name in g_config.model_config.input_layer_names:
        assert name in g_layer_map, \
            'input name "%s" does not correspond to a layer name' % name
        assert (g_layer_map[name].type == "data" or g_layer_map[name].type == "data_trim"), \
            'The type of input layer "%s" is not "data"' % name
    for name in g_config.model_config.output_layer_names:
        assert name in g_layer_map, \
            'input name "%s" does not correspond to a layer name' % name
    return g_config


4080
def begin_parse():
4081
    init_config_environment()
4082 4083
    for hook in _parse_config_hooks:
        hook()
4084 4085 4086 4087 4088

    logger.findCaller = find_caller
    logger.fatal = my_fatal

    g_config.model_config.type = "nn"
X
xuwei06 已提交
4089 4090 4091 4092 4093 4094 4095 4096 4097

    global g_current_submodel, g_root_submodel
    g_root_submodel = g_config.model_config.sub_models.add()
    g_root_submodel.name = 'root'
    g_root_submodel.is_recurrent_layer_group = False
    g_current_submodel = g_root_submodel


def parse_config(trainer_config, config_arg_str):
4098 4099 4100 4101
    '''
    @param config_arg_str: a string of the form var1=val1,var2=val2. It will be
    passed to config script as a dictionary CONFIG_ARGS
    '''
X
xuwei06 已提交
4102

4103
    begin_parse()
X
xuwei06 已提交
4104 4105
    config_args = {}

4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117
    if config_arg_str:
        config_args = dict([f.split('=') for f in config_arg_str.split(',')])

    global g_command_config_args
    g_command_config_args.update(config_args)

    extension_module_name = config_args.get('extension_module_name')
    if extension_module_name:
        global g_extended_config_funcs
        extension_module = importlib(extension_module_name)
        g_extended_config_funcs = extension_module.get_config_funcs(g_config)

4118 4119
    if hasattr(trainer_config, '__call__'):
        trainer_config.func_globals.update(
L
Luo Tao 已提交
4120
            make_config_environment("", config_args))
4121
        trainer_config()
4122
    else:
4123 4124
        execfile(trainer_config,
                 make_config_environment(trainer_config, config_args))
4125

4126
    return update_g_config()
4127 4128


4129
def parse_config_and_serialize(trainer_config, config_arg_str):
4130
    try:
4131
        config = parse_config(trainer_config, config_arg_str)
4132 4133 4134 4135 4136 4137
        #logger.info(config)
        return config.SerializeToString()
    except:
        traceback.print_exc()
        raise

4138

4139 4140 4141 4142 4143 4144 4145 4146
if __name__ == '__main__':
    try:
        config = parse_config(sys.argv[1], '')
        config.SerializeToString()
        __real_print__(str(config))
    except:
        traceback.print_exc()
        raise
反馈
建议
客服 返回
顶部