sum_op.cc 9.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

12
#include <algorithm>
M
minqiyang 已提交
13
#include <memory>
14
#include <string>
15
#include <unordered_map>
16
#include <vector>
17

H
HongyuJia 已提交
18
#include "paddle/fluid/framework/convert_utils.h"
Y
YuanRisheng 已提交
19 20
#include "paddle/fluid/framework/infershape_utils.h"
#include "paddle/fluid/framework/op_registry.h"
Y
Yi Wang 已提交
21
#include "paddle/fluid/framework/var_type_inference.h"
Y
YuanRisheng 已提交
22 23
#include "paddle/phi/core/infermeta_utils.h"
#include "paddle/phi/infermeta/multiary.h"
24 25 26 27 28 29 30 31

namespace paddle {
namespace operators {

class SumOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

32
 protected:
33
  phi::KernelKey GetExpectedKernelType(
34 35
      const framework::ExecutionContext& ctx) const override {
    auto x_vars = ctx.MultiInputVar("X");
H
hong 已提交
36
    auto x_vars_name = ctx.InputNames("X");
37

38
    PADDLE_ENFORCE_GT(
39 40
        x_vars.size(),
        0,
41
        platform::errors::InvalidArgument("Input[X] should not be empty"));
L
Leo Chen 已提交
42 43

    PADDLE_ENFORCE_NOT_NULL(
44 45 46
        x_vars[0],
        platform::errors::NotFound("Input var[%s] should not be nullptr",
                                   x_vars_name[0]));
L
Leo Chen 已提交
47

48
    if (x_vars[0]->IsType<phi::DenseTensor>()) {
49
      int dtype = -1;
C
chengduo 已提交
50
      for (size_t idx = 0; idx < x_vars.size(); ++idx) {
51 52 53 54
        PADDLE_ENFORCE_NOT_NULL(
            x_vars[idx],
            platform::errors::NotFound("Input var[%s] should not be nullptr",
                                       x_vars_name[idx]));
C
chengduo 已提交
55 56
        auto tensor =
            framework::GetLoDTensorOrSelectedRowsValueFromVar(*x_vars[idx]);
57
        if (!tensor->IsInitialized()) {
58 59 60
          continue;
        }
        if (dtype == -1) {
61
          dtype = framework::TransToProtoVarType(tensor->dtype());
62
        } else {
63 64
          PADDLE_ENFORCE_EQ(dtype,
                            framework::TransToProtoVarType(tensor->dtype()),
65 66
                            platform::errors::InvalidArgument(
                                "The inputs type of sum op must be same"));
67 68
        }
      }
69 70
      PADDLE_ENFORCE_NE(dtype,
                        -1,
71 72
                        platform::errors::InvalidArgument(
                            "Sum operator should have at least one tensor"));
73

74
      auto data_type = static_cast<framework::proto::VarType::Type>(dtype);
75 76 77 78 79 80 81 82 83 84 85 86

      // NOTE(jiahongyu): Below codes originally enclosed by PADDLE_WITH_MKLDNN
      if (!((data_type == framework::proto::VarType::FP32 ||
             data_type == framework::proto::VarType::BF16) &&
            ctx.OutputVar("Out")->IsType<phi::DenseTensor>())) {
        this->SetDnnFallback(true);
      } else if (!std::all_of(x_vars.begin(),
                              x_vars.end(),
                              [](const framework::Variable* v) {
                                return v->IsType<phi::DenseTensor>();
                              })) {
        this->SetDnnFallback(true);
87
      }
88 89
      // NOTE(jiahongyu): Above codes originally enclosed by PADDLE_WITH_MKLDNN

90
      return phi::KernelKey(data_type, ctx.GetPlace());
91
    } else if (x_vars[0]->IsType<phi::SelectedRows>()) {
92
      for (auto& var : x_vars) {
93
        auto& value = var->Get<phi::SelectedRows>().value();
94
        if (value.IsInitialized()) {
95 96
          return phi::KernelKey(framework::TransToProtoVarType(value.dtype()),
                                ctx.GetPlace());
97 98 99
        }
      }
      // if input sparse vars are not initialized, use an default kernel type.
100
      return phi::KernelKey(framework::proto::VarType::FP32, ctx.GetPlace());
101
    } else if (x_vars[0]->IsType<framework::LoDTensorArray>()) {
Y
Yang Yang(Tony) 已提交
102 103 104
      for (auto& x_var : x_vars) {
        auto& array = x_var->Get<framework::LoDTensorArray>();
        for (auto& each : array) {
105
          if (each.numel() != 0 && each.IsInitialized()) {
106 107
            return phi::KernelKey(framework::TransToProtoVarType(each.dtype()),
                                  ctx.GetPlace());
Y
Yang Yang(Tony) 已提交
108
          }
109 110
        }
      }
111 112 113 114 115
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Expected each tensor in Input(x) in sum op has be initialized, but "
          "some tensor in Input(x) is not be initialized, please check your "
          "code.",
          framework::ToTypeName(x_vars[0]->Type())));
116
    }
117 118 119 120 121
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Expected type of Input(X) must be Tensor,  SelectedRows or "
        "LodTensorArray. But got "
        "unsupport type: %s.",
        framework::ToTypeName(x_vars[0]->Type())));
122
  }
123 124 125 126
};

class SumOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
127
  void Make() override {
128 129 130 131 132 133
    AddInput(
        "X",
        "A Varaible list. The shape and data type of the list elements"
        "should be consistent. Variable can be multi-dimensional Tensor"
        "or phi::DenseTensor, and data types can be: float32, float64, int32, "
        "int64.")
134
        .AsDuplicable();
135 136 137
    AddOutput("Out",
              "the sum of input :code:`x`. its shape and data types are "
              "consistent with :code:`x`.");
138 139 140
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
        .SetDefault(false);
J
Jacek Czaja 已提交
141 142 143 144 145
    AddAttr<std::string>(
        "mkldnn_data_type",
        "(string, default \"float32\"). Data type of mkldnn kernel")
        .SetDefault("float32")
        .InEnum({"float32", "bfloat16"});
146 147 148
    AddComment(
        R"DOC(This OP is used to sum one or more Tensor or phi::DenseTensor
                    of the input. If the input is phi::DenseTensor, the output only
149
                    shares LoD information with the first input.)DOC");
150 151 152
  }
};

Q
QI JUN 已提交
153 154
class SumOpVarTypeInference : public framework::VarTypeInference {
 public:
M
minqiyang 已提交
155
  void operator()(framework::InferVarTypeContext* ctx) const override {
156 157 158 159 160 161 162 163
    if (!ctx->IsDygraph()) {
      auto var_type = framework::proto::VarType::SELECTED_ROWS;
      if (VLOG_IS_ON(10)) {
        for (size_t ind = 0; ind < ctx->InputSize("X"); ++ind) {
          VLOG(10) << ctx->InputVarName("X", ind) << " "
                   << ctx->GetInputType("X", ind);
        }
      }
164

165 166 167 168 169 170 171 172 173 174 175
      if (ctx->InputTypeAnyOf("X",
                              framework::proto::VarType::LOD_TENSOR_ARRAY)) {
        if (!ctx->InputTypeAllOf("X",
                                 framework::proto::VarType::LOD_TENSOR_ARRAY)) {
          std::ostringstream os;
          for (size_t ind = 0; ind < ctx->InputSize("X"); ++ind) {
            os << "    " << ctx->InputVarName("X", ind) << " type is "
               << ctx->GetInputType("X", ind) << "\n";
          }
          PADDLE_THROW(platform::errors::InvalidArgument(
              "Not all inputs are tensor array:\n%s", os.str()));
Y
Yang Yang(Tony) 已提交
176
        }
177 178 179 180
        var_type = framework::proto::VarType::LOD_TENSOR_ARRAY;
      } else if (ctx->InputTypeAnyOf("X",
                                     framework::proto::VarType::LOD_TENSOR)) {
        var_type = framework::proto::VarType::LOD_TENSOR;
Y
Yang Yang(Tony) 已提交
181
      }
Q
QI JUN 已提交
182

183 184 185
      ctx->SetOutputType("Out", var_type);
      ctx->SetOutputDataType("Out", ctx->GetInputDataType("X"));
    }
Q
QI JUN 已提交
186 187 188
  }
};

H
hong 已提交
189
class SumGradDescMaker : public framework::GradOpDescMakerBase {
190
 public:
191
  using framework::GradOpDescMakerBase::GradOpDescMakerBase;
192

Y
Yu Yang 已提交
193
  std::vector<std::unique_ptr<framework::OpDesc>> operator()() const override {
194
    auto x_grads = InputGrad("X", false);
Y
Yu Yang 已提交
195
    std::vector<std::unique_ptr<framework::OpDesc>> grad_ops;
196 197
    grad_ops.reserve(x_grads.size());
    auto og = OutputGrad("Out");
198 199 200
    std::transform(x_grads.begin(),
                   x_grads.end(),
                   std::back_inserter(grad_ops),
201
                   [&og](const std::string& x_grad) {
Y
Yu Yang 已提交
202
                     auto* grad_op = new framework::OpDesc();
Y
Yu Yang 已提交
203 204 205 206
                     grad_op->SetType("scale");
                     grad_op->SetInput("X", og);
                     grad_op->SetOutput("Out", {x_grad});
                     grad_op->SetAttr("scale", 1.0f);
Y
Yu Yang 已提交
207
                     return std::unique_ptr<framework::OpDesc>(grad_op);
208
                   });
H
hong 已提交
209 210 211 212 213 214 215 216 217

    return grad_ops;
  }
};

class SumGradOpBaseMaker : public imperative::GradOpBaseMakerBase {
 public:
  using imperative::GradOpBaseMakerBase::GradOpBaseMakerBase;

218
  std::shared_ptr<imperative::GradOpNode> operator()() const override {
H
hong 已提交
219
    auto x_grads = InputGrad("X", false);
220 221
    using InputGradsType = decltype(x_grads);

222 223 224 225 226 227 228 229 230 231
    if (!x_grads.empty()) {
      auto node = this->NewGradNode();
      node->reserve(x_grads.size());
      auto og = OutputGrad("Out");
      for (auto& x_grad : x_grads) {
        imperative::TracedGradOp op(node);
        op.SetType("scale");
        op.SetInput("X", og);
        op.SetOutput("Out", InputGradsType{x_grad});
        op.SetAttr("scale", 1.0f);
232
        op.SetDefaultAttrsMap(DefaultAttrsMap());
233 234 235 236 237
      }
      return node;
    } else {
      return nullptr;
    }
238 239 240
  }
};

241
DECLARE_INPLACE_OP_INFERER(SumInplaceInferer, {"X", "Out"});
242

243 244 245 246
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
247

Y
YuanRisheng 已提交
248 249 250 251 252
namespace ops = paddle::operators;
DECLARE_INFER_SHAPE_FUNCTOR(sum,
                            AddNInferShapeFunctor,
                            PD_INFER_META(phi::AddNTensorArrayInferMeta));

253 254 255 256 257 258
REGISTER_OPERATOR(sum,
                  ops::SumOp,
                  ops::SumOpMaker,
                  ops::SumGradDescMaker,
                  ops::SumGradOpBaseMaker,
                  ops::SumOpVarTypeInference,
Y
YuanRisheng 已提交
259 260
                  ops::SumInplaceInferer,
                  AddNInferShapeFunctor);