sum_op.cc 9.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

12
#include <algorithm>
M
minqiyang 已提交
13
#include <memory>
14
#include <string>
15
#include <unordered_map>
16
#include <vector>
17

Y
YuanRisheng 已提交
18 19
#include "paddle/fluid/framework/infershape_utils.h"
#include "paddle/fluid/framework/op_registry.h"
Y
Yi Wang 已提交
20
#include "paddle/fluid/framework/var_type_inference.h"
Y
YuanRisheng 已提交
21 22
#include "paddle/phi/core/infermeta_utils.h"
#include "paddle/phi/infermeta/multiary.h"
23

24 25 26
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
27
#include "paddle/fluid/framework/convert_utils.h"
28

29 30 31 32 33 34 35
namespace paddle {
namespace operators {

class SumOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

36
 protected:
37
  framework::OpKernelType GetExpectedKernelType(
38 39
      const framework::ExecutionContext& ctx) const override {
    auto x_vars = ctx.MultiInputVar("X");
H
hong 已提交
40
    auto x_vars_name = ctx.InputNames("X");
41

42
    PADDLE_ENFORCE_GT(
43 44
        x_vars.size(),
        0,
45
        platform::errors::InvalidArgument("Input[X] should not be empty"));
L
Leo Chen 已提交
46 47

    PADDLE_ENFORCE_NOT_NULL(
48 49 50
        x_vars[0],
        platform::errors::NotFound("Input var[%s] should not be nullptr",
                                   x_vars_name[0]));
L
Leo Chen 已提交
51

52
    if (x_vars[0]->IsType<phi::DenseTensor>()) {
53
      int dtype = -1;
C
chengduo 已提交
54
      for (size_t idx = 0; idx < x_vars.size(); ++idx) {
55 56 57 58
        PADDLE_ENFORCE_NOT_NULL(
            x_vars[idx],
            platform::errors::NotFound("Input var[%s] should not be nullptr",
                                       x_vars_name[idx]));
C
chengduo 已提交
59 60
        auto tensor =
            framework::GetLoDTensorOrSelectedRowsValueFromVar(*x_vars[idx]);
61
        if (tensor->numel() <= 0 || (!tensor->IsInitialized())) {
62 63 64
          continue;
        }
        if (dtype == -1) {
65
          dtype = framework::TransToProtoVarType(tensor->dtype());
66
        } else {
67 68
          PADDLE_ENFORCE_EQ(dtype,
                            framework::TransToProtoVarType(tensor->dtype()),
69 70
                            platform::errors::InvalidArgument(
                                "The inputs type of sum op must be same"));
71 72
        }
      }
73 74
      PADDLE_ENFORCE_NE(dtype,
                        -1,
75 76
                        platform::errors::InvalidArgument(
                            "Sum operator should have at least one tensor"));
77

78
      auto data_type = static_cast<framework::proto::VarType::Type>(dtype);
79 80 81 82 83 84 85 86 87 88 89 90

      // NOTE(jiahongyu): Below codes originally enclosed by PADDLE_WITH_MKLDNN
      if (!((data_type == framework::proto::VarType::FP32 ||
             data_type == framework::proto::VarType::BF16) &&
            ctx.OutputVar("Out")->IsType<phi::DenseTensor>())) {
        this->SetDnnFallback(true);
      } else if (!std::all_of(x_vars.begin(),
                              x_vars.end(),
                              [](const framework::Variable* v) {
                                return v->IsType<phi::DenseTensor>();
                              })) {
        this->SetDnnFallback(true);
91
      }
92 93
      // NOTE(jiahongyu): Above codes originally enclosed by PADDLE_WITH_MKLDNN

94
      return framework::OpKernelType(data_type, ctx.GetPlace());
95
    } else if (x_vars[0]->IsType<phi::SelectedRows>()) {
96
      for (auto& var : x_vars) {
97
        auto& value = var->Get<phi::SelectedRows>().value();
98
        if (value.IsInitialized()) {
99 100
          return framework::OpKernelType(
              framework::TransToProtoVarType(value.dtype()),
101
              ctx.device_context());
102 103 104 105
        }
      }
      // if input sparse vars are not initialized, use an default kernel type.
      return framework::OpKernelType(framework::proto::VarType::FP32,
106
                                     ctx.device_context());
107
    } else if (x_vars[0]->IsType<framework::LoDTensorArray>()) {
Y
Yang Yang(Tony) 已提交
108 109 110
      for (auto& x_var : x_vars) {
        auto& array = x_var->Get<framework::LoDTensorArray>();
        for (auto& each : array) {
111
          if (each.numel() != 0 && each.IsInitialized()) {
112 113
            return framework::OpKernelType(
                framework::TransToProtoVarType(each.dtype()),
114
                ctx.device_context());
Y
Yang Yang(Tony) 已提交
115
          }
116 117
        }
      }
118 119 120 121 122
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Expected each tensor in Input(x) in sum op has be initialized, but "
          "some tensor in Input(x) is not be initialized, please check your "
          "code.",
          framework::ToTypeName(x_vars[0]->Type())));
123
    }
124 125 126 127 128
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Expected type of Input(X) must be Tensor,  SelectedRows or "
        "LodTensorArray. But got "
        "unsupport type: %s.",
        framework::ToTypeName(x_vars[0]->Type())));
129
  }
130 131 132 133
};

class SumOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
134
  void Make() override {
135 136 137 138 139
    AddInput("X",
             "A Varaible list. The shape and data type of the list elements"
             "should be consistent. Variable can be multi-dimensional Tensor"
             "or LoDTensor, and data types can be: float32, float64, int32, "
             "int64.")
140
        .AsDuplicable();
141 142 143
    AddOutput("Out",
              "the sum of input :code:`x`. its shape and data types are "
              "consistent with :code:`x`.");
144 145 146
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
        .SetDefault(false);
J
Jacek Czaja 已提交
147 148 149 150 151
    AddAttr<std::string>(
        "mkldnn_data_type",
        "(string, default \"float32\"). Data type of mkldnn kernel")
        .SetDefault("float32")
        .InEnum({"float32", "bfloat16"});
152 153 154
    AddComment(R"DOC(This OP is used to sum one or more Tensor or LoDTensor
                    of the input. If the input is LoDTensor, the output only
                    shares LoD information with the first input.)DOC");
155 156 157
  }
};

Q
QI JUN 已提交
158 159
class SumOpVarTypeInference : public framework::VarTypeInference {
 public:
M
minqiyang 已提交
160
  void operator()(framework::InferVarTypeContext* ctx) const override {
161 162 163 164 165 166 167 168
    if (!ctx->IsDygraph()) {
      auto var_type = framework::proto::VarType::SELECTED_ROWS;
      if (VLOG_IS_ON(10)) {
        for (size_t ind = 0; ind < ctx->InputSize("X"); ++ind) {
          VLOG(10) << ctx->InputVarName("X", ind) << " "
                   << ctx->GetInputType("X", ind);
        }
      }
169

170 171 172 173 174 175 176 177 178 179 180
      if (ctx->InputTypeAnyOf("X",
                              framework::proto::VarType::LOD_TENSOR_ARRAY)) {
        if (!ctx->InputTypeAllOf("X",
                                 framework::proto::VarType::LOD_TENSOR_ARRAY)) {
          std::ostringstream os;
          for (size_t ind = 0; ind < ctx->InputSize("X"); ++ind) {
            os << "    " << ctx->InputVarName("X", ind) << " type is "
               << ctx->GetInputType("X", ind) << "\n";
          }
          PADDLE_THROW(platform::errors::InvalidArgument(
              "Not all inputs are tensor array:\n%s", os.str()));
Y
Yang Yang(Tony) 已提交
181
        }
182 183 184 185
        var_type = framework::proto::VarType::LOD_TENSOR_ARRAY;
      } else if (ctx->InputTypeAnyOf("X",
                                     framework::proto::VarType::LOD_TENSOR)) {
        var_type = framework::proto::VarType::LOD_TENSOR;
Y
Yang Yang(Tony) 已提交
186
      }
Q
QI JUN 已提交
187

188 189 190
      ctx->SetOutputType("Out", var_type);
      ctx->SetOutputDataType("Out", ctx->GetInputDataType("X"));
    }
Q
QI JUN 已提交
191 192 193
  }
};

H
hong 已提交
194
class SumGradDescMaker : public framework::GradOpDescMakerBase {
195
 public:
196
  using framework::GradOpDescMakerBase::GradOpDescMakerBase;
197

Y
Yu Yang 已提交
198
  std::vector<std::unique_ptr<framework::OpDesc>> operator()() const override {
199
    auto x_grads = InputGrad("X", false);
Y
Yu Yang 已提交
200
    std::vector<std::unique_ptr<framework::OpDesc>> grad_ops;
201 202
    grad_ops.reserve(x_grads.size());
    auto og = OutputGrad("Out");
203 204 205
    std::transform(x_grads.begin(),
                   x_grads.end(),
                   std::back_inserter(grad_ops),
206
                   [&og](const std::string& x_grad) {
Y
Yu Yang 已提交
207
                     auto* grad_op = new framework::OpDesc();
Y
Yu Yang 已提交
208 209 210 211
                     grad_op->SetType("scale");
                     grad_op->SetInput("X", og);
                     grad_op->SetOutput("Out", {x_grad});
                     grad_op->SetAttr("scale", 1.0f);
Y
Yu Yang 已提交
212
                     return std::unique_ptr<framework::OpDesc>(grad_op);
213
                   });
H
hong 已提交
214 215 216 217 218 219 220 221 222

    return grad_ops;
  }
};

class SumGradOpBaseMaker : public imperative::GradOpBaseMakerBase {
 public:
  using imperative::GradOpBaseMakerBase::GradOpBaseMakerBase;

223
  std::shared_ptr<imperative::GradOpNode> operator()() const override {
H
hong 已提交
224
    auto x_grads = InputGrad("X", false);
225 226
    using InputGradsType = decltype(x_grads);

227 228 229 230 231 232 233 234 235 236
    if (!x_grads.empty()) {
      auto node = this->NewGradNode();
      node->reserve(x_grads.size());
      auto og = OutputGrad("Out");
      for (auto& x_grad : x_grads) {
        imperative::TracedGradOp op(node);
        op.SetType("scale");
        op.SetInput("X", og);
        op.SetOutput("Out", InputGradsType{x_grad});
        op.SetAttr("scale", 1.0f);
237
        op.SetDefaultAttrsMap(DefaultAttrsMap());
238 239 240 241 242
      }
      return node;
    } else {
      return nullptr;
    }
243 244 245
  }
};

246
DECLARE_INPLACE_OP_INFERER(SumInplaceInferer, {"X", "Out"});
247

248 249 250 251
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
252

Y
YuanRisheng 已提交
253 254 255 256 257
namespace ops = paddle::operators;
DECLARE_INFER_SHAPE_FUNCTOR(sum,
                            AddNInferShapeFunctor,
                            PD_INFER_META(phi::AddNTensorArrayInferMeta));

258 259 260 261 262 263
REGISTER_OPERATOR(sum,
                  ops::SumOp,
                  ops::SumOpMaker,
                  ops::SumGradDescMaker,
                  ops::SumGradOpBaseMaker,
                  ops::SumOpVarTypeInference,
Y
YuanRisheng 已提交
264 265
                  ops::SumInplaceInferer,
                  AddNInferShapeFunctor);