sum_op.cc 9.8 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

12
#include <algorithm>
M
minqiyang 已提交
13
#include <memory>
14
#include <string>
15
#include <unordered_map>
16
#include <vector>
17

H
HongyuJia 已提交
18
#include "paddle/fluid/framework/convert_utils.h"
Y
YuanRisheng 已提交
19 20
#include "paddle/fluid/framework/infershape_utils.h"
#include "paddle/fluid/framework/op_registry.h"
Y
Yi Wang 已提交
21
#include "paddle/fluid/framework/var_type_inference.h"
Y
YuanRisheng 已提交
22 23
#include "paddle/phi/core/infermeta_utils.h"
#include "paddle/phi/infermeta/multiary.h"
24 25 26 27 28 29 30 31

namespace paddle {
namespace operators {

class SumOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

32
 protected:
33
  framework::OpKernelType GetExpectedKernelType(
34 35
      const framework::ExecutionContext& ctx) const override {
    auto x_vars = ctx.MultiInputVar("X");
H
hong 已提交
36
    auto x_vars_name = ctx.InputNames("X");
37

38
    PADDLE_ENFORCE_GT(
39 40
        x_vars.size(),
        0,
41
        platform::errors::InvalidArgument("Input[X] should not be empty"));
L
Leo Chen 已提交
42 43

    PADDLE_ENFORCE_NOT_NULL(
44 45 46
        x_vars[0],
        platform::errors::NotFound("Input var[%s] should not be nullptr",
                                   x_vars_name[0]));
L
Leo Chen 已提交
47

48
    if (x_vars[0]->IsType<phi::DenseTensor>()) {
49
      int dtype = -1;
C
chengduo 已提交
50
      for (size_t idx = 0; idx < x_vars.size(); ++idx) {
51 52 53 54
        PADDLE_ENFORCE_NOT_NULL(
            x_vars[idx],
            platform::errors::NotFound("Input var[%s] should not be nullptr",
                                       x_vars_name[idx]));
C
chengduo 已提交
55 56
        auto tensor =
            framework::GetLoDTensorOrSelectedRowsValueFromVar(*x_vars[idx]);
57
        if (tensor->numel() <= 0 || (!tensor->IsInitialized())) {
58 59 60
          continue;
        }
        if (dtype == -1) {
61
          dtype = framework::TransToProtoVarType(tensor->dtype());
62
        } else {
63 64
          PADDLE_ENFORCE_EQ(dtype,
                            framework::TransToProtoVarType(tensor->dtype()),
65 66
                            platform::errors::InvalidArgument(
                                "The inputs type of sum op must be same"));
67 68
        }
      }
69 70
      PADDLE_ENFORCE_NE(dtype,
                        -1,
71 72
                        platform::errors::InvalidArgument(
                            "Sum operator should have at least one tensor"));
73

74
      auto data_type = static_cast<framework::proto::VarType::Type>(dtype);
75 76 77 78 79 80 81 82 83 84 85 86

      // NOTE(jiahongyu): Below codes originally enclosed by PADDLE_WITH_MKLDNN
      if (!((data_type == framework::proto::VarType::FP32 ||
             data_type == framework::proto::VarType::BF16) &&
            ctx.OutputVar("Out")->IsType<phi::DenseTensor>())) {
        this->SetDnnFallback(true);
      } else if (!std::all_of(x_vars.begin(),
                              x_vars.end(),
                              [](const framework::Variable* v) {
                                return v->IsType<phi::DenseTensor>();
                              })) {
        this->SetDnnFallback(true);
87
      }
88 89
      // NOTE(jiahongyu): Above codes originally enclosed by PADDLE_WITH_MKLDNN

90
      return framework::OpKernelType(data_type, ctx.GetPlace());
91
    } else if (x_vars[0]->IsType<phi::SelectedRows>()) {
92
      for (auto& var : x_vars) {
93
        auto& value = var->Get<phi::SelectedRows>().value();
94
        if (value.IsInitialized()) {
95 96
          return framework::OpKernelType(
              framework::TransToProtoVarType(value.dtype()),
97
              ctx.device_context());
98 99 100 101
        }
      }
      // if input sparse vars are not initialized, use an default kernel type.
      return framework::OpKernelType(framework::proto::VarType::FP32,
102
                                     ctx.device_context());
103
    } else if (x_vars[0]->IsType<framework::LoDTensorArray>()) {
Y
Yang Yang(Tony) 已提交
104 105 106
      for (auto& x_var : x_vars) {
        auto& array = x_var->Get<framework::LoDTensorArray>();
        for (auto& each : array) {
107
          if (each.numel() != 0 && each.IsInitialized()) {
108 109
            return framework::OpKernelType(
                framework::TransToProtoVarType(each.dtype()),
110
                ctx.device_context());
Y
Yang Yang(Tony) 已提交
111
          }
112 113
        }
      }
114 115 116 117 118
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Expected each tensor in Input(x) in sum op has be initialized, but "
          "some tensor in Input(x) is not be initialized, please check your "
          "code.",
          framework::ToTypeName(x_vars[0]->Type())));
119
    }
120 121 122 123 124
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Expected type of Input(X) must be Tensor,  SelectedRows or "
        "LodTensorArray. But got "
        "unsupport type: %s.",
        framework::ToTypeName(x_vars[0]->Type())));
125
  }
126 127 128 129
};

class SumOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
130
  void Make() override {
131 132 133 134 135 136
    AddInput(
        "X",
        "A Varaible list. The shape and data type of the list elements"
        "should be consistent. Variable can be multi-dimensional Tensor"
        "or phi::DenseTensor, and data types can be: float32, float64, int32, "
        "int64.")
137
        .AsDuplicable();
138 139 140
    AddOutput("Out",
              "the sum of input :code:`x`. its shape and data types are "
              "consistent with :code:`x`.");
141 142 143
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
        .SetDefault(false);
J
Jacek Czaja 已提交
144 145 146 147 148
    AddAttr<std::string>(
        "mkldnn_data_type",
        "(string, default \"float32\"). Data type of mkldnn kernel")
        .SetDefault("float32")
        .InEnum({"float32", "bfloat16"});
149 150 151
    AddComment(
        R"DOC(This OP is used to sum one or more Tensor or phi::DenseTensor
                    of the input. If the input is phi::DenseTensor, the output only
152
                    shares LoD information with the first input.)DOC");
153 154 155
  }
};

Q
QI JUN 已提交
156 157
class SumOpVarTypeInference : public framework::VarTypeInference {
 public:
M
minqiyang 已提交
158
  void operator()(framework::InferVarTypeContext* ctx) const override {
159 160 161 162 163 164 165 166
    if (!ctx->IsDygraph()) {
      auto var_type = framework::proto::VarType::SELECTED_ROWS;
      if (VLOG_IS_ON(10)) {
        for (size_t ind = 0; ind < ctx->InputSize("X"); ++ind) {
          VLOG(10) << ctx->InputVarName("X", ind) << " "
                   << ctx->GetInputType("X", ind);
        }
      }
167

168 169 170 171 172 173 174 175 176 177 178
      if (ctx->InputTypeAnyOf("X",
                              framework::proto::VarType::LOD_TENSOR_ARRAY)) {
        if (!ctx->InputTypeAllOf("X",
                                 framework::proto::VarType::LOD_TENSOR_ARRAY)) {
          std::ostringstream os;
          for (size_t ind = 0; ind < ctx->InputSize("X"); ++ind) {
            os << "    " << ctx->InputVarName("X", ind) << " type is "
               << ctx->GetInputType("X", ind) << "\n";
          }
          PADDLE_THROW(platform::errors::InvalidArgument(
              "Not all inputs are tensor array:\n%s", os.str()));
Y
Yang Yang(Tony) 已提交
179
        }
180 181 182 183
        var_type = framework::proto::VarType::LOD_TENSOR_ARRAY;
      } else if (ctx->InputTypeAnyOf("X",
                                     framework::proto::VarType::LOD_TENSOR)) {
        var_type = framework::proto::VarType::LOD_TENSOR;
Y
Yang Yang(Tony) 已提交
184
      }
Q
QI JUN 已提交
185

186 187 188
      ctx->SetOutputType("Out", var_type);
      ctx->SetOutputDataType("Out", ctx->GetInputDataType("X"));
    }
Q
QI JUN 已提交
189 190 191
  }
};

H
hong 已提交
192
class SumGradDescMaker : public framework::GradOpDescMakerBase {
193
 public:
194
  using framework::GradOpDescMakerBase::GradOpDescMakerBase;
195

Y
Yu Yang 已提交
196
  std::vector<std::unique_ptr<framework::OpDesc>> operator()() const override {
197
    auto x_grads = InputGrad("X", false);
Y
Yu Yang 已提交
198
    std::vector<std::unique_ptr<framework::OpDesc>> grad_ops;
199 200
    grad_ops.reserve(x_grads.size());
    auto og = OutputGrad("Out");
201 202 203
    std::transform(x_grads.begin(),
                   x_grads.end(),
                   std::back_inserter(grad_ops),
204
                   [&og](const std::string& x_grad) {
Y
Yu Yang 已提交
205
                     auto* grad_op = new framework::OpDesc();
Y
Yu Yang 已提交
206 207 208 209
                     grad_op->SetType("scale");
                     grad_op->SetInput("X", og);
                     grad_op->SetOutput("Out", {x_grad});
                     grad_op->SetAttr("scale", 1.0f);
Y
Yu Yang 已提交
210
                     return std::unique_ptr<framework::OpDesc>(grad_op);
211
                   });
H
hong 已提交
212 213 214 215 216 217 218 219 220

    return grad_ops;
  }
};

class SumGradOpBaseMaker : public imperative::GradOpBaseMakerBase {
 public:
  using imperative::GradOpBaseMakerBase::GradOpBaseMakerBase;

221
  std::shared_ptr<imperative::GradOpNode> operator()() const override {
H
hong 已提交
222
    auto x_grads = InputGrad("X", false);
223 224
    using InputGradsType = decltype(x_grads);

225 226 227 228 229 230 231 232 233 234
    if (!x_grads.empty()) {
      auto node = this->NewGradNode();
      node->reserve(x_grads.size());
      auto og = OutputGrad("Out");
      for (auto& x_grad : x_grads) {
        imperative::TracedGradOp op(node);
        op.SetType("scale");
        op.SetInput("X", og);
        op.SetOutput("Out", InputGradsType{x_grad});
        op.SetAttr("scale", 1.0f);
235
        op.SetDefaultAttrsMap(DefaultAttrsMap());
236 237 238 239 240
      }
      return node;
    } else {
      return nullptr;
    }
241 242 243
  }
};

244
DECLARE_INPLACE_OP_INFERER(SumInplaceInferer, {"X", "Out"});
245

246 247 248 249
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
250

Y
YuanRisheng 已提交
251 252 253 254 255
namespace ops = paddle::operators;
DECLARE_INFER_SHAPE_FUNCTOR(sum,
                            AddNInferShapeFunctor,
                            PD_INFER_META(phi::AddNTensorArrayInferMeta));

256 257 258 259 260 261
REGISTER_OPERATOR(sum,
                  ops::SumOp,
                  ops::SumOpMaker,
                  ops::SumGradDescMaker,
                  ops::SumGradOpBaseMaker,
                  ops::SumOpVarTypeInference,
Y
YuanRisheng 已提交
262 263
                  ops::SumInplaceInferer,
                  AddNInferShapeFunctor);