Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
ade50226
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
ade50226
编写于
1月 25, 2020
作者:
L
lidanqing
提交者:
Tao Luo
1月 25, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[UT Coverage]Improve sum_mkldnn_op line coverage (#22275)
上级
3099d9d4
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
129 addition
and
98 deletion
+129
-98
paddle/fluid/operators/mkldnn/sum_mkldnn_op.cc
paddle/fluid/operators/mkldnn/sum_mkldnn_op.cc
+65
-83
paddle/fluid/operators/sum_op.cc
paddle/fluid/operators/sum_op.cc
+17
-8
python/paddle/fluid/tests/unittests/mkldnn/test_sum_mkldnn_op.py
...paddle/fluid/tests/unittests/mkldnn/test_sum_mkldnn_op.py
+47
-7
未找到文件。
paddle/fluid/operators/mkldnn/sum_mkldnn_op.cc
浏览文件 @
ade50226
...
...
@@ -54,102 +54,84 @@ class SumMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
auto
&
dev_ctx
=
ctx
.
template
device_context
<
MKLDNNDeviceContext
>();
const
auto
&
mkldnn_engine
=
dev_ctx
.
GetEngine
();
auto
in_vars
=
ctx
.
MultiInputVar
(
"X"
);
const
int
N
=
in_vars
.
size
();
auto
out_var
=
ctx
.
OutputVar
(
"Out"
);
PADDLE_ENFORCE_NE
(
in_vars
.
empty
(),
true
,
platform
::
errors
::
InvalidArgument
(
"Input variable is empty."
));
bool
in_place
=
out_var
==
in_vars
[
0
];
if
(
out_var
->
IsType
<
framework
::
LoDTensor
>
())
{
LoDTensor
*
output
=
ctx
.
Output
<
LoDTensor
>
(
"Out"
);
T
*
output_data
=
output
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
dst_tz
=
framework
::
vectorize
<
int64_t
>
(
output
->
dims
());
auto
src_tz
=
dst_tz
;
MKLDNNMemoryFormat
output_format
{
MKLDNNMemoryFormat
::
undef
};
std
::
vector
<
float
>
scales
;
std
::
vector
<
memory
::
desc
>
srcs_md
;
std
::
vector
<
mkldnn
::
memory
>
srcs_mem
;
PADDLE_ENFORCE_EQ
(
in_vars
[
0
]
->
IsType
<
LoDTensor
>
(),
true
,
"Input[0] must be LoDTensors"
);
auto
&
input0
=
in_vars
[
0
]
->
Get
<
LoDTensor
>
();
PADDLE_ENFORCE_EQ
(
input0
.
layout
(),
DataLayout
::
kMKLDNN
,
"Wrong layout set for inputs[0] tensor"
);
PADDLE_ENFORCE_NE
(
input0
.
format
(),
MKLDNNMemoryFormat
::
undef
,
"Wrong format set for inputs[0] tensor"
);
MKLDNNMemoryFormat
input_format
=
input0
.
format
();
for
(
int
i
=
0
;
i
<
N
;
i
++
)
{
PADDLE_ENFORCE_EQ
(
in_vars
[
i
]
->
IsType
<
LoDTensor
>
(),
true
,
"all inputs must be all LoDTensors"
);
auto
&
input
=
in_vars
[
i
]
->
Get
<
LoDTensor
>
();
PADDLE_ENFORCE_EQ
(
input
.
layout
(),
DataLayout
::
kMKLDNN
,
"Wrong layout set for inputs"
);
PADDLE_ENFORCE_NE
(
input
.
format
(),
MKLDNNMemoryFormat
::
undef
,
"Wrong format set for inputs"
);
if
(
input
.
numel
()
==
0
)
{
continue
;
}
const
T
*
input_data
=
input
.
data
<
T
>
();
auto
src_md
=
memory
::
desc
(
src_tz
,
memory
::
data_type
::
f32
,
input_format
);
auto
src_mem
=
memory
(
src_md
,
mkldnn_engine
,
to_void_cast
(
input_data
));
srcs_md
.
push_back
(
src_md
);
srcs_mem
.
push_back
(
src_mem
);
scales
.
push_back
(
1.0
);
}
LoDTensor
*
output
=
ctx
.
Output
<
LoDTensor
>
(
"Out"
);
T
*
output_data
=
output
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
dst_md
=
memory
::
desc
(
dst_tz
,
memory
::
data_type
::
f32
,
MKLDNNMemoryFormat
::
any
);
auto
dst_tz
=
framework
::
vectorize
<
int64_t
>
(
output
->
dims
());
auto
src_tz
=
dst_tz
;
MKLDNNMemoryFormat
output_format
{
MKLDNNMemoryFormat
::
undef
};
std
::
vector
<
float
>
scales
;
std
::
vector
<
memory
::
desc
>
srcs_md
;
std
::
vector
<
mkldnn
::
memory
>
srcs_mem
;
auto
sum_pd
=
sum
::
primitive_desc
(
dst_md
,
scales
,
srcs_md
,
mkldnn_engine
);
auto
&
input0
=
in_vars
[
0
]
->
Get
<
LoDTensor
>
();
in_place
=
(
input0
.
numel
()
>
0
)
&&
(
input0
.
data
<
T
>
()
==
output_data
);
std
::
shared_ptr
<
memory
>
dst_mem
;
if
(
in_place
)
{
dst_mem
.
reset
(
new
memory
(
sum_pd
.
dst_desc
(),
mkldnn_engine
));
}
else
{
dst_mem
.
reset
(
new
memory
(
sum_pd
.
dst_desc
(),
mkldnn_engine
,
output_data
));
}
MKLDNNMemoryFormat
input_format
=
input0
.
format
();
auto
sum_prim
=
mkldnn
::
sum
(
sum_pd
);
output_format
=
platform
::
GetMKLDNNFormat
(
sum_pd
.
dst_desc
());
std
::
shared_ptr
<
mkldnn
::
reorder
>
reorder_p
;
std
::
shared_ptr
<
memory
>
target_mem
;
if
(
in_place
)
{
output_format
=
input_format
;
target_mem
.
reset
(
new
memory
({{
src_tz
},
memory
::
data_type
::
f32
,
output_format
},
mkldnn_engine
,
output_data
));
reorder_p
=
std
::
make_shared
<
reorder
>
(
*
dst_mem
,
*
target_mem
);
for
(
size_t
i
=
0
;
i
<
in_vars
.
size
();
i
++
)
{
auto
&
input_it
=
in_vars
[
i
]
->
Get
<
LoDTensor
>
();
if
(
input_it
.
numel
()
==
0
)
{
continue
;
}
mkldnn
::
stream
astream
(
mkldnn_engine
);
std
::
unordered_map
<
int
,
memory
>
args
;
for
(
size_t
i
=
0
;
i
<
srcs_mem
.
size
();
++
i
)
{
args
.
insert
({
MKLDNN_ARG_MULTIPLE_SRC
+
i
,
srcs_mem
.
at
(
i
)});
}
args
.
insert
({
MKLDNN_ARG_DST
,
*
dst_mem
});
const
T
*
input_data
=
input_it
.
data
<
T
>
();
sum_prim
.
execute
(
astream
,
args
);
astream
.
wait
();
auto
src_md
=
memory
::
desc
(
src_tz
,
memory
::
data_type
::
f32
,
input_format
);
auto
src_mem
=
memory
(
src_md
,
mkldnn_engine
,
to_void_cast
(
input_data
));
srcs_md
.
push_back
(
src_md
);
srcs_mem
.
push_back
(
src_mem
);
scales
.
push_back
(
1.0
);
}
if
(
in_place
)
{
reorder_p
->
execute
(
astream
,
*
dst_mem
,
*
target_mem
);
astream
.
wait
();
}
auto
dst_md
=
memory
::
desc
(
dst_tz
,
memory
::
data_type
::
f32
,
MKLDNNMemoryFormat
::
any
);
auto
sum_pd
=
sum
::
primitive_desc
(
dst_md
,
scales
,
srcs_md
,
mkldnn_engine
);
output
->
set_layout
(
DataLayout
::
kMKLDNN
)
;
output
->
set_format
(
output_format
);
}
else
{
// Fallback to naive version
SumKernel
<
CPUDeviceContext
,
T
>
reference_kernel
;
reference_kernel
.
Compute
(
ctx
);
std
::
shared_ptr
<
memory
>
dst_mem
;
if
(
in_place
)
{
dst_mem
.
reset
(
new
memory
(
sum_pd
.
dst_desc
(),
mkldnn_engine
));
}
else
{
dst_mem
.
reset
(
new
memory
(
sum_pd
.
dst_desc
(),
mkldnn_engine
,
output_data
)
);
}
auto
sum_prim
=
mkldnn
::
sum
(
sum_pd
);
output_format
=
platform
::
GetMKLDNNFormat
(
sum_pd
.
dst_desc
());
std
::
shared_ptr
<
mkldnn
::
reorder
>
reorder_p
;
std
::
shared_ptr
<
memory
>
target_mem
;
if
(
in_place
)
{
output_format
=
input_format
;
target_mem
.
reset
(
new
memory
({{
src_tz
},
memory
::
data_type
::
f32
,
output_format
},
mkldnn_engine
,
output_data
));
reorder_p
=
std
::
make_shared
<
reorder
>
(
*
dst_mem
,
*
target_mem
);
}
mkldnn
::
stream
astream
(
mkldnn_engine
);
std
::
unordered_map
<
int
,
memory
>
args
;
for
(
size_t
i
=
0
;
i
<
srcs_mem
.
size
();
++
i
)
{
args
.
insert
({
MKLDNN_ARG_MULTIPLE_SRC
+
i
,
srcs_mem
.
at
(
i
)});
}
args
.
insert
({
MKLDNN_ARG_DST
,
*
dst_mem
});
sum_prim
.
execute
(
astream
,
args
);
astream
.
wait
();
if
(
in_place
)
{
reorder_p
->
execute
(
astream
,
*
dst_mem
,
*
target_mem
);
astream
.
wait
();
}
output
->
set_layout
(
DataLayout
::
kMKLDNN
);
output
->
set_format
(
output_format
);
}
};
...
...
paddle/fluid/operators/sum_op.cc
浏览文件 @
ade50226
...
...
@@ -113,14 +113,6 @@ class SumOp : public framework::OperatorWithKernel {
framework
::
LibraryType
library
{
framework
::
LibraryType
::
kPlain
};
framework
::
DataLayout
layout
{
framework
::
DataLayout
::
kAnyLayout
};
#ifdef PADDLE_WITH_MKLDNN
if
(
library
==
framework
::
LibraryType
::
kPlain
&&
platform
::
CanMKLDNNBeUsed
(
ctx
))
{
library
=
framework
::
LibraryType
::
kMKLDNN
;
layout
=
framework
::
DataLayout
::
kMKLDNN
;
}
#endif
if
(
x_vars
[
0
]
->
IsType
<
framework
::
LoDTensor
>
())
{
int
dtype
=
-
1
;
for
(
size_t
idx
=
0
;
idx
<
x_vars
.
size
();
++
idx
)
{
...
...
@@ -141,6 +133,23 @@ class SumOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE_NE
(
dtype
,
-
1
,
"Sum operator should have at least one tensor"
);
#ifdef PADDLE_WITH_MKLDNN
if
(
library
==
framework
::
LibraryType
::
kPlain
&&
platform
::
CanMKLDNNBeUsed
(
ctx
)
&&
static_cast
<
framework
::
proto
::
VarType
::
Type
>
(
dtype
)
==
framework
::
proto
::
VarType
::
FP32
&&
ctx
.
OutputVar
(
"Out"
)
->
IsType
<
framework
::
LoDTensor
>
())
{
if
(
std
::
all_of
(
x_vars
.
begin
(),
x_vars
.
end
(),
[](
const
framework
::
Variable
*
v
)
{
return
v
->
IsType
<
framework
::
LoDTensor
>
();
}))
{
return
framework
::
OpKernelType
(
framework
::
proto
::
VarType
::
FP32
,
ctx
.
GetPlace
(),
framework
::
DataLayout
::
kMKLDNN
,
framework
::
LibraryType
::
kMKLDNN
);
}
}
#endif
return
framework
::
OpKernelType
(
static_cast
<
framework
::
proto
::
VarType
::
Type
>
(
dtype
),
ctx
.
GetPlace
(),
layout
,
library
);
...
...
python/paddle/fluid/tests/unittests/mkldnn/test_sum_mkldnn_op.py
浏览文件 @
ade50226
...
...
@@ -15,25 +15,26 @@
from
__future__
import
print_function
import
unittest
import
paddle.fluid.core
as
core
from
paddle.fluid.tests.unittests.test_sum_op
import
TestSumOp
import
numpy
as
np
import
paddle.fluid.op
as
fluid_op
class
TestMKLDNN
(
TestSumOp
):
class
Test
Sum
MKLDNN
(
TestSumOp
):
def
setUp
(
self
):
self
.
op_type
=
"sum"
self
.
init_
kernel
_type
()
self
.
init_
data
_type
()
self
.
use_mkldnn
=
True
x0
=
np
.
random
.
random
((
25
,
4
)).
astype
(
self
.
dtype
)
x1
=
np
.
random
.
random
((
25
,
4
)).
astype
(
self
.
dtype
)
x2
=
np
.
random
.
random
((
25
,
4
)).
astype
(
self
.
dtype
)
x0
=
np
.
random
.
random
((
25
,
8
)).
astype
(
self
.
dtype
)
x1
=
np
.
random
.
random
((
25
,
8
)).
astype
(
self
.
dtype
)
x2
=
np
.
random
.
random
((
25
,
8
)).
astype
(
self
.
dtype
)
self
.
inputs
=
{
"X"
:
[(
"x0"
,
x0
),
(
"x1"
,
x1
),
(
"x2"
,
x2
)]}
y
=
x0
+
x1
+
x2
self
.
outputs
=
{
'Out'
:
y
}
self
.
attrs
=
{
'use_mkldnn'
:
self
.
use_mkldnn
}
def
init_
kernel
_type
(
self
):
def
init_
data
_type
(
self
):
self
.
dtype
=
np
.
float32
def
test_check_output
(
self
):
...
...
@@ -45,5 +46,44 @@ class TestMKLDNN(TestSumOp):
self
.
check_grad
([
'x0'
],
'Out'
,
check_dygraph
=
False
)
class
TestMKLDNNSumInplaceOp
(
unittest
.
TestCase
):
def
setUp
(
self
):
self
.
op_type
=
"sum"
self
.
init_data_type
()
self
.
use_mkldnn
=
True
self
.
x0
=
np
.
random
.
random
((
25
,
8
)).
astype
(
self
.
dtype
)
self
.
x1
=
np
.
random
.
random
((
25
,
8
)).
astype
(
self
.
dtype
)
def
init_data_type
(
self
):
self
.
dtype
=
np
.
float32
def
test_check_output
(
self
):
place
=
core
.
CPUPlace
()
scope
=
core
.
Scope
()
out_var_name
=
"x0"
inputs
=
{
"X"
:
[(
"x0"
,
self
.
x0
),
(
"x1"
,
self
.
x1
)]}
for
input_key
in
inputs
:
for
per_input
in
inputs
[
input_key
]:
var_name
,
var_value
=
per_input
[
0
],
per_input
[
1
]
var
=
scope
.
var
(
var_name
)
tensor
=
var
.
get_tensor
()
tensor
.
set
(
var_value
,
place
)
sum_op
=
fluid_op
.
Operator
(
"sum"
,
X
=
[
"x0"
,
"x1"
],
Out
=
out_var_name
,
use_mkldnn
=
True
)
expected_out
=
np
.
array
(
self
.
x0
+
self
.
x1
)
sum_op
.
run
(
scope
,
place
)
out
=
scope
.
find_var
(
"x0"
).
get_tensor
()
out_array
=
np
.
array
(
out
)
self
.
assertTrue
(
np
.
allclose
(
expected_out
,
out_array
,
atol
=
1e-5
),
"Inplace sum_mkldnn_op output has diff with expected output"
)
def
test_check_grad
(
self
):
pass
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录