common.py 94.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import paddle
X
xiaoting 已提交
16
from paddle.fluid.layer_helper import LayerHelper
17 18 19 20
from paddle.fluid.layers.tensor import fill_constant
from ...tensor import concat
from ...tensor.creation import zeros
from paddle.static import Variable
21

22
# TODO: define the common functions to build a neural network
23 24
from ...tensor.manipulation import squeeze
from ...tensor.manipulation import unsqueeze
Y
Yang Zhang 已提交
25 26 27
from ...tensor import clip
from ...tensor import sum
from ...tensor import sqrt
28 29 30 31 32 33 34 35 36 37
from ...fluid.data_feeder import (
    check_variable_and_dtype,
    check_dtype,
    check_type,
)
from ...fluid.framework import (
    _in_legacy_dygraph,
    _non_static_mode,
    in_dygraph_mode,
)
Z
zhiboniu 已提交
38

39
from paddle import _C_ops, _legacy_C_ops
Z
zhiboniu 已提交
40 41 42
from paddle.framework import in_dynamic_mode
from paddle.tensor.creation import full
from paddle.framework import core
43
from paddle.fluid.framework import _in_legacy_dygraph
Z
zhiboniu 已提交
44
from paddle.static import default_main_program
45

46 47
__all__ = []

X
xiaoting 已提交
48

49 50 51
def unfold(x, kernel_sizes, strides=1, paddings=0, dilations=1, name=None):
    r"""

52
    Return a col buffer of sliding local blocks of input x, also known
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
    as im2col for batched 2D image tensors. For each block under the convolution filter,
    all element will be rearranged as a column. While the convolution filter sliding over
    the input feature map, a series of such columns will be formed.

    For each input :math:`x` with shape [N, C, H, W], the output shape [N, Cout, Lout]
    can be calculated as following.

    .. math::

        dkernel[0] &= dilations[0] \times (kernel\_sizes[0] - 1) + 1

        dkernel[1] &= dilations[1] \times (kernel\_sizes[1] - 1) + 1

        hout &= \frac{H + paddings[0] + paddings[2] - dkernel[0]}{strides[0]} + 1

        wout &= \frac{W + paddings[1] + paddings[3] - dkernel[1]}{strides[1]} + 1

        Cout &= C \times kernel\_sizes[0] \times kernel\_sizes[1]

        Lout &= hout \times wout


    Parameters:
        x(Tensor):              4-D Tensor, input tensor of format [N, C, H, W],
                                  data type can be float32 or float64
        kernel_sizes(int|list):   The size of convolution kernel, should be [k_h, k_w]
                                  or an integer k treated as [k, k].
        strides(int|list):        The strides, should be [stride_h, stride_w]
                                  or an integer stride treated as [sride, stride].
                                  For default, strides will be [1, 1].
        paddings(int|list):       The paddings of each dimension, should be
                                  [padding_top, padding_left, padding_bottom, padding_right]
                                  or [padding_h, padding_w] or an integer padding.
                                  If [padding_h, padding_w] was given, it will expanded to
                                  [padding_h, padding_w, padding_h, padding_w]. If an integer
                                  padding was given, [padding, padding, padding, padding] will
                                  be used. For default, paddings will be [0, 0, 0, 0]
        dilations(int|list):      the dilations of convolution kernel, should be
                                  [dilation_h, dilation_w], or an integer dilation treated as
                                  [dilation, dilation]. For default, it will be [1, 1].
        name(str, optional): The default value is None.
                             Normally there is no need for user to set this property.
                             For more information, please refer to :ref:`api_guide_Name`


    Returns:
99
        Tensor, The tensor corresponding to the sliding local blocks.
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
        The output shape is [N, Cout, Lout] as decriabled above.
        Cout is the  total number of values within each block,
        and Lout is the total number of such blocks.
        The data type of output is the same as the input :math:`x`

    Examples:

        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

            x = paddle.randn((100,3,224,224))
            y = F.unfold(x, [3, 3], 1, 1, 1)
    """

    helper = LayerHelper("unfold", **locals())

    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'unfold')

120
    assert len(x.shape) == 4, "input should be the format of [N, C, H, W]"
121 122 123 124

    if isinstance(kernel_sizes, int):
        kernel_sizes = [kernel_sizes, kernel_sizes]
    else:
125 126 127
        assert isinstance(kernel_sizes, list) and (
            len(kernel_sizes) == 2
        ), "kernel_sizes should either be an integer or a list of two integers"
128 129 130 131

    if isinstance(strides, int):
        strides = [strides, strides]
    else:
132 133 134
        assert isinstance(strides, list) and (
            len(strides) == 2
        ), "strides should either be an integer or a list of two integers"
135 136 137 138

    if isinstance(dilations, int):
        dilations = [dilations, dilations]
    else:
139 140 141
        assert isinstance(dilations, list) and (
            len(dilations) == 2
        ), "dilations should either be an integer or a list of two integers"
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156

    if isinstance(paddings, int):
        paddings = [paddings] * 4
    elif isinstance(paddings, list):
        if len(paddings) == 2:
            paddings = paddings * 2
        elif len(paddings) == 4:
            pass
        else:
            raise ValueError(
                "paddings should either be an integer or a list of 2 or 4 integers"
            )
    else:
        raise ValueError(
            "Unexpected type of paddings, it should be either an integer or a list"
157 158
            "of 2 or 4 integers"
        )
159 160

    if in_dygraph_mode():
161
        return _C_ops.unfold(x, kernel_sizes, strides, paddings, dilations)
162 163

    out = helper.create_variable_for_type_inference(dtype=x.dtype)
164 165 166 167 168 169 170 171 172 173 174
    helper.append_op(
        type="unfold",
        inputs={"X": x},
        outputs={"Y": out},
        attrs={
            "kernel_sizes": kernel_sizes,
            "strides": strides,
            "paddings": paddings,
            "dilations": dilations,
        },
    )
175 176 177
    return out


178 179 180 181 182 183 184 185 186 187
def interpolate(
    x,
    size=None,
    scale_factor=None,
    mode='nearest',
    align_corners=False,
    align_mode=0,
    data_format='NCHW',
    name=None,
):
X
xiaoting 已提交
188
    """
S
swtkiwi 已提交
189

190
    This API resizes a batch of images.
191

192 193
    The input must be a 3-D Tensor of the shape (num_batches, channels, in_w)
    or 4-D (num_batches, channels, in_h, in_w), or a 5-D Tensor of the shape
X
xiaoting 已提交
194
    (num_batches, channels, in_d, in_h, in_w) or (num_batches, in_d, in_h, in_w, channels),
195 196
    Where in_w is width of the input tensor, in_h is the height of the input tensor,
    in_d is the depth of the intput tensor.
X
xiaoting 已提交
197
    and the resizing only applies on the three dimensions(depth, height and width).
X
xiaoting 已提交
198

X
xiaoting 已提交
199
    Supporting resample methods:
200 201 202 203 204 205 206

    - 'linear' : Linear interpolation
    - 'bilinear' : Bilinear interpolation
    - 'trilinear' : Trilinear interpolation
    - 'nearest' : Nearest neighbor interpolation
    - 'bicubic' : Bicubic interpolation
    - 'area': Area interpolation
207

208 209 210
    Linear interpolation is the method of using a line connecting two known quantities
    to determine the value of an unknown quantity between the two known quantities.

X
xiaoting 已提交
211 212 213 214 215 216 217 218 219 220 221 222 223 224
    Nearest neighbor interpolation is to perform nearest neighbor interpolation
    in both the 3rd dimension(in height direction) and the 4th dimension(in width
    direction) on input tensor.

    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
    again in the other direction.

    Trilinear interpolation is an extension of linear interpolation for
    interpolating functions of three variables (e.g. D-direction,
    H-direction and W-direction in this op) on a rectilinear 3D grid.
    The linear interpolation is performed on three directions.
X
xiaoting 已提交
225
    align_corners and align_mode are optional parameters,the calculation method
X
xiaoting 已提交
226 227 228 229 230 231 232
    of interpolation can be selected by them.

    Bicubic interpolation is an extension of cubic interpolation for interpolating
    data points on a two-dimensional regular grid. The interpolated surface is
    smoother than corresponding surfaces obtained by bilinear interpolation or
    nearest-neighbor interpolation.

233 234
    Area interpolation is to perform area interpolation
    in both the 3rd dimension(in height direction) , the 4th dimension(in width
235 236
    direction) and the 5th dimension(in depth direction) on input tensor. Set to
    area will directly call `paddle.nn.functional.adaptive_avg_pool1d` or
237 238
    `paddle.nn.functional.adaptive_avg_pool2d` or `paddle.nn.functional.adaptive_avg_pool3d`.

X
xiaoting 已提交
239 240 241 242
    Example:

    .. code-block:: text

243
        # For scale_factor:
X
xiaoting 已提交
244 245 246 247 248
            if align_corners = True && out_size > 1 :
              scale_factor = (in_size-1.0)/(out_size-1.0)
            else:
              scale_factor = float(in_size/out_size)

249
        # Linear interpolation:
250 251 252 253 254 255 256 257 258
            if:
                align_corners = False , align_mode = 0
                input : (N,C,W_in)
                output: (N,C,W_out) where:
                W_out = (W_{in}+0.5) * scale_{factor} - 0.5
            else:
                input : (N,C,W_in)
                output: (N,C,W_out) where:
                W_out = W_{in} * scale_{factor}
259

260
        # Nearest neighbor interpolation:
X
xiaoting 已提交
261

X
xiaoting 已提交
262 263 264 265 266
              align_corners = False
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = floor (H_{in} * scale_{factor})
              W_out = floor (W_{in} * scale_{factor})
267

268
        # Bilinear interpolation:
X
xiaoting 已提交
269 270 271 272 273 274 275 276 277 278 279 280
          if:
              align_corners = False , align_mode = 0
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
          else:
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}

281
        # Bicubic interpolation:
X
xiaoting 已提交
282 283 284 285 286 287 288 289 290 291 292 293
          if:
              align_corners = False
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
          else:
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}

294
        # Trilinear interpolation:
X
xiaoting 已提交
295 296 297 298 299 300 301 302 303 304 305 306 307 308
          if:
              align_corners = False , align_mode = 0
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
              D_out = (D_{in}+0.5) * scale_{factor} - 0.5
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
          else:
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
              D_out = D_{in} * scale_{factor}
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}

309 310
    For details of linear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Linear_interpolation.
311

X
xiaoting 已提交
312 313
    For details of nearest neighbor interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation.
314

X
xiaoting 已提交
315 316
    For details of bilinear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Bilinear_interpolation.
317

X
xiaoting 已提交
318 319
    For details of trilinear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Trilinear_interpolation.
320

X
xiaoting 已提交
321 322
    For details of bicubic interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Bicubic_interpolation
323

X
xiaoting 已提交
324
    Parameters:
X
xiaoting 已提交
325
        x (Tensor): 3-D, 4-D or 5-D Tensor, its data type is float32, float64, or uint8,
X
xiaoting 已提交
326
                          its data format is specified by :attr:`data_format`.
X
xiaoting 已提交
327
        size (list|tuple|Tensor|None): Output shape of image resize
328 329
             layer, the shape is (out_w, ) when input is a 3-D Tensor, the shape is (out_h, out_w)
             when input is a 4-D Tensor and is (out_d, out_h, out_w) when input is a 5-D Tensor.
330
             Default: None. If a list/tuple, each element can be an integer or a Tensor of shape: [1].
X
xiaoting 已提交
331
             If a Tensor, its dimensions size should be a 1.
332 333 334
        scale_factor (float|Tensor|list|tuple|None): The multiplier for the input height or width. At
             least one of :attr:`size` or :attr:`scale_factor` must be set.
             And :attr:`size` has a higher priority than :attr:`scale_factor`.Has to match input size if it is either a list or a tuple or a Tensor.
X
xiaoting 已提交
335
             Default: None.
336
        mode (str): The resample method. It supports 'linear', 'area', 'nearest', 'bilinear',
337
                       'bicubic' and 'trilinear' currently. Default: 'nearest'
X
xiaoting 已提交
338 339
        align_corners(bool) :  An optional bool, If True, the centers of the 4 corner pixels of the
                               input and output tensors are aligned, preserving the values at the
X
xiaoting 已提交
340
                               corner pixels.This only has an effect when 'linear', 'bilinear', 'bicubic' or 'trilinear'.
341 342 343 344
                               Default: False
        align_mode(int)  :  An optional for linear/bilinear/trilinear interpolation. Refer to the formula in the example above,
                            it can be \'0\' for src_idx = scale_factor*(dst_indx+0.5)-0.5 , can be \'1\' for
                            src_idx = scale_factor*dst_index.
X
xiaoting 已提交
345
        data_format (str, optional): Specify the data format of the input, and the data format of the output
346
            will be consistent with that of the input. An optional string from:`NCW`, `NWC`,  `"NCHW"`, `"NHWC"`, `"NCDHW"`,
X
xiaoting 已提交
347 348 349
            `"NDHWC"`. The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`. When it is `"NCHW"`, the data is stored
            in the order of: `[batch_size, input_channels, input_depth, input_height, input_width]`.
350 351 352
        name(str, optional): The default value is None.
                             Normally there is no need for user to set this property.
                             For more information, please refer to :ref:`api_guide_Name`
X
xiaoting 已提交
353
    Returns:
354
        A 3-D Tensor of the shape (num_batches, channels, out_w) or (num_batches, out_w, channels),
X
xiaoting 已提交
355 356
        A 4-D Tensor of the shape (num_batches, channels, out_h, out_w) or (num_batches, out_h, out_w, channels),
        or 5-D Tensor of the shape (num_batches, channels, out_d, out_h, out_w) or (num_batches, out_d, out_h, out_w, channels).
357

358

X
xiaoting 已提交
359 360 361
    Examples:
        .. code-block:: python

362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
            import paddle
            import paddle.nn.functional as F

            input_data = paddle.randn(shape=(2,3,6,10)).astype(paddle.float32)
            output_1 = F.interpolate(x=input_data, size=[12,12])
            print(output_1.shape)
            # [2L, 3L, 12L, 12L]

            # given scale
            output_2 = F.interpolate(x=input_data, scale_factor=[2,1])
            print(output_2.shape)
            # [2L, 3L, 12L, 10L]

            # bilinear interp
            output_3 = F.interpolate(x=input_data, scale_factor=[2,1], mode="bilinear")
            print(output_2.shape)
            # [2L, 3L, 12L, 10L]
X
xiaoting 已提交
379
    """
380 381 382 383 384 385 386 387 388 389
    data_format = data_format.upper()
    resample = mode.upper()
    resample_type = mode.lower()

    resample_methods = [
        'LINEAR',
        'BILINEAR',
        'TRILINEAR',
        'NEAREST',
        'BICUBIC',
390
        'AREA',
391
    ]
X
xiaoting 已提交
392 393
    if resample not in resample_methods:
        raise ValueError(
394
            "The 'resample' of image_resize can only be 'area', 'linear', 'bilinear', 'trilinear', "
395 396
            " 'bicubic' or 'nearest' currently."
        )
X
xiaoting 已提交
397

X
xiaoting 已提交
398
    if resample in ['LINEAR'] and len(x.shape) != 3:
399
        raise ValueError("'linear' only support 3-D tensor.")
400

401 402 403 404 405
    if resample in ['NEAREST'] and len(x.shape) != 4 and len(x.shape) != 5:
        raise ValueError("'NEAREST' only support 4-D  or 5-D tensor.")

    if resample in ['BILINEAR', 'BICUBIC'] and len(x.shape) != 4:
        raise ValueError("'bilinear' and 'bicubic' only support 4-D tensor.")
X
xiaoting 已提交
406
    if resample == 'TRILINEAR' and len(x.shape) != 5:
407 408 409 410
        raise ValueError("'trilinear'only support 5-D tensor.")

    if size is None and scale_factor is None:
        raise ValueError("One of size and scale_factor must not be None.")
X
xiaoting 已提交
411 412 413

    if not isinstance(align_corners, bool):
        raise TypeError("Attr align_corners should be a bool value")
414

X
xiaoting 已提交
415 416
    if align_mode != 0 and align_mode != 1:
        raise ValueError("align_mode can only be 0 or 1")
X
xiaoting 已提交
417 418 419 420
    if align_corners != 0 and resample == 'NEAREST':
        raise ValueError(
            "align_corners option can only be set with the interpolating modes: linear | bilinear | bicubic | trilinear"
        )
421

X
xiaoting 已提交
422
    if resample == 'AREA':
423 424 425 426 427
        if (
            isinstance(size, list)
            or isinstance(size, tuple)
            or isinstance(size, Variable)
        ):
X
xiaoting 已提交
428 429 430 431 432 433 434 435
            if len(size) == 0:
                raise ValueError("output size can not be empty")
        if len(x.shape) == 3:
            return paddle.nn.functional.adaptive_avg_pool1d(x, size)
        elif len(x.shape) == 4:
            return paddle.nn.functional.adaptive_avg_pool2d(x, size)
        elif len(x.shape) == 5:
            return paddle.nn.functional.adaptive_avg_pool3d(x, size)
436

X
xiaoting 已提交
437
    helper = LayerHelper('{}_interp_v2'.format(resample_type), **locals())
438
    dtype = helper.input_dtype(input_param_name='x')
X
xiaoting 已提交
439
    if len(x.shape) == 3 and data_format not in ['NCW', 'NWC']:
440
        raise ValueError(
441 442 443 444
            "Got wrong value for param `data_format`: "
            + data_format
            + " received but only `NCW` or `NWC` supported for 3-D input."
        )
X
xiaoting 已提交
445
    elif len(x.shape) == 4 and data_format not in ['NCHW', 'NHWC']:
X
xiaoting 已提交
446
        raise ValueError(
447 448 449 450
            "Got wrong value for param `data_format`: "
            + data_format
            + " received but only `NCHW` or `NHWC` supported for 4-D input."
        )
X
xiaoting 已提交
451
    elif len(x.shape) == 5 and data_format not in ['NCDHW', 'NDHWC']:
X
xiaoting 已提交
452
        raise ValueError(
453 454 455 456
            "Got wrong value for param `data_format`: "
            + data_format
            + " received but only `NCDHW` or `NDHWC` supported for 5-D input."
        )
X
xiaoting 已提交
457 458

    def _is_list_or_turple_(data):
459
        return isinstance(data, list) or isinstance(data, tuple)
X
xiaoting 已提交
460

461
    if data_format == 'NCHW' or data_format == 'NCDHW' or data_format == 'NCW':
X
xiaoting 已提交
462
        data_layout = 'NCHW'
463
    if data_format == 'NHWC' or data_format == 'NDHWC' or data_format == 'NWC':
X
xiaoting 已提交
464 465
        data_layout = 'NHWC'

X
xiaoting 已提交
466 467 468 469
    if resample == 'NEAREST':
        align_corners = False

    inputs = {"X": x}
X
xiaoting 已提交
470 471 472 473 474 475 476
    attrs = {
        "out_d": -1,
        "out_h": -1,
        "out_w": -1,
        "interp_method": resample_type,
        "align_corners": align_corners,
        "align_mode": align_mode,
477
        "data_layout": data_layout,
X
xiaoting 已提交
478 479
    }

480 481
    out_shape = size
    scale = scale_factor
482 483
    if out_shape is not None and scale is not None:
        raise ValueError("Only one of size or scale_factor should be defined.")
X
xiaoting 已提交
484
    if out_shape is not None:
Z
zhiboniu 已提交
485
        if isinstance(out_shape, Variable) and not in_dynamic_mode():
X
xiaoting 已提交
486 487 488
            out_shape.stop_gradient = True
            inputs['OutSize'] = out_shape
        else:
Z
zhiboniu 已提交
489
            if in_dynamic_mode():
490 491
                if isinstance(out_shape, Variable):
                    out_shape = list(out_shape.numpy())
X
xiaoting 已提交
492 493
                else:
                    out_shape = list(out_shape)
494 495 496
                for i, dim in enumerate(out_shape):
                    if isinstance(dim, Variable):
                        out_shape[i] = dim.numpy()[0]
X
xiaoting 已提交
497
            if not (_is_list_or_turple_(out_shape)):
498
                raise TypeError("size should be a list or tuple or Variable.")
X
xiaoting 已提交
499 500 501 502 503 504
            # Validate the shape
            contain_var = False
            for dim_idx, dim_size in enumerate(out_shape):
                if isinstance(dim_size, Variable):
                    contain_var = True
                    continue
505 506 507
                assert (
                    dim_size > 0
                ), "Each dimension size given in out_shape must be greater than 0."
X
xiaoting 已提交
508 509 510 511 512 513 514 515 516 517

            if contain_var:
                new_size_tensor = []
                size_list = []
                for dim in out_shape:
                    if isinstance(dim, Variable):
                        dim.stop_gradient = True
                        new_size_tensor.append(dim)
                        size_list.append(-1)
                    else:
518
                        assert isinstance(dim, int)
X
xiaoting 已提交
519
                        temp_out = helper.create_variable_for_type_inference(
520 521 522 523 524
                            'int32'
                        )
                        fill_constant(
                            [1], 'int32', dim, force_cpu=True, out=temp_out
                        )
X
xiaoting 已提交
525 526 527 528
                        new_size_tensor.append(temp_out)
                        size_list.append(dim)
                inputs['SizeTensor'] = new_size_tensor

X
xiaoting 已提交
529
            if len(x.shape) == 3:
530 531
                if len(out_shape) != 1:
                    raise ValueError(
532 533
                        "size length should be 2 for input 3-D tensor"
                    )
534 535 536 537 538
                if contain_var:
                    attrs['out_w'] = size_list[0]
                else:
                    out_shape = list(map(int, out_shape))
                    attrs['out_w'] = out_shape[0]
X
xiaoting 已提交
539
            if len(x.shape) == 4:
X
xiaoting 已提交
540
                if len(out_shape) != 2:
541 542 543
                    raise ValueError(
                        "size length should be 2 for " "input 4-D tensor."
                    )
X
xiaoting 已提交
544 545 546 547 548 549 550
                if contain_var:
                    attrs['out_h'] = size_list[0]
                    attrs['out_w'] = size_list[1]
                else:
                    out_shape = list(map(int, out_shape))
                    attrs['out_h'] = out_shape[0]
                    attrs['out_w'] = out_shape[1]
X
xiaoting 已提交
551
            if len(x.shape) == 5:
X
xiaoting 已提交
552
                if len(out_shape) != 3:
553 554 555
                    raise ValueError(
                        "size length should be 3 for " "input 5-D tensor."
                    )
X
xiaoting 已提交
556 557 558 559 560 561 562 563 564 565 566
                if contain_var:
                    attrs['out_d'] = size_list[0]
                    attrs['out_h'] = size_list[1]
                    attrs['out_w'] = size_list[2]
                else:
                    out_shape = list(map(int, out_shape))
                    attrs['out_d'] = out_shape[0]
                    attrs['out_h'] = out_shape[1]
                    attrs['out_w'] = out_shape[2]

    else:
Z
zhiboniu 已提交
567
        if in_dynamic_mode() and isinstance(scale, Variable):
568
            scale = list(scale.numpy())
X
xiaoting 已提交
569 570 571 572 573 574
        if isinstance(scale, Variable):
            scale.stop_gradient = True
            inputs["Scale"] = scale
        elif isinstance(scale, float) or isinstance(scale, int):
            if scale <= 0:
                raise ValueError("Attr(scale) should be greater than zero.")
X
xiaoting 已提交
575 576 577 578
            scale_list = []
            for i in range(len(x.shape) - 2):
                scale_list.append(scale)
            attrs['scale'] = list(map(float, scale_list))
X
xiaoting 已提交
579
        elif isinstance(scale, list) or isinstance(scale, tuple):
X
xiaoting 已提交
580
            if len(scale) != len(x.shape) - 2:
581 582 583 584
                raise ValueError(
                    "scale_shape length should be {} for "
                    "input {}-D tensor.".format(len(x.shape) - 2, len(x.shape))
                )
X
xiaoting 已提交
585 586 587 588
            for value in scale:
                if value <= 0:
                    raise ValueError("Attr(scale) should be greater than zero.")
            attrs['scale'] = list(map(float, scale))
X
xiaoting 已提交
589 590
        else:
            raise TypeError(
591 592
                "Attr(scale)'s type should be float, int, list, tuple, or Tensor."
            )
X
xiaoting 已提交
593

Z
zhiboniu 已提交
594
    if in_dynamic_mode():
X
xiaoting 已提交
595 596 597 598 599 600 601
        attr_list = []
        for k, v in attrs.items():
            attr_list.append(k)
            attr_list.append(v)
        dy_attr = tuple(attr_list)

        if resample_type == "linear":
602
            if in_dygraph_mode():
603
                out = _C_ops.linear_interp(
604 605
                    x,
                    inputs['OutSize'] if 'OutSize' in inputs else None,
606 607
                    inputs['SizeTensor'] if 'SizeTensor' in inputs else None,
                    inputs['Scale'] if 'Scale' in inputs else None,
608 609 610 611 612 613 614 615 616
                    attrs['data_layout'],
                    attrs['out_d'],
                    attrs['out_h'],
                    attrs['out_w'],
                    attrs['scale'] if 'scale' in attrs else [],
                    attrs['interp_method'],
                    attrs['align_corners'],
                    attrs['align_mode'],
                )
617
            else:
618
                out = _legacy_C_ops.linear_interp_v2(x, *dy_attr)
619
        elif resample_type == "bilinear":
620
            if in_dygraph_mode():
621
                out = _C_ops.bilinear_interp(
622 623
                    x,
                    inputs['OutSize'] if 'OutSize' in inputs else None,
624 625
                    inputs['SizeTensor'] if 'SizeTensor' in inputs else None,
                    inputs['Scale'] if 'Scale' in inputs else None,
626 627 628 629 630 631 632 633 634
                    attrs['data_layout'],
                    attrs['out_d'],
                    attrs['out_h'],
                    attrs['out_w'],
                    attrs['scale'] if 'scale' in attrs else [],
                    attrs['interp_method'],
                    attrs['align_corners'],
                    attrs['align_mode'],
                )
635
            else:
636
                out = _legacy_C_ops.bilinear_interp_v2(x, *dy_attr)
637
        elif resample_type == "trilinear":
638
            if in_dygraph_mode():
639
                out = _C_ops.trilinear_interp(
640 641
                    x,
                    inputs['OutSize'] if 'OutSize' in inputs else None,
642 643
                    inputs['SizeTensor'] if 'SizeTensor' in inputs else None,
                    inputs['Scale'] if 'Scale' in inputs else None,
644 645 646 647 648 649 650 651 652
                    attrs['data_layout'],
                    attrs['out_d'],
                    attrs['out_h'],
                    attrs['out_w'],
                    attrs['scale'] if 'scale' in attrs else [],
                    attrs['interp_method'],
                    attrs['align_corners'],
                    attrs['align_mode'],
                )
653
            else:
654
                out = _legacy_C_ops.trilinear_interp_v2(x, *dy_attr)
655
        elif resample_type == "nearest":
656
            if in_dygraph_mode():
657
                out = _C_ops.nearest_interp(
658 659
                    x,
                    inputs['OutSize'] if 'OutSize' in inputs else None,
660 661
                    inputs['SizeTensor'] if 'SizeTensor' in inputs else None,
                    inputs['Scale'] if 'Scale' in inputs else None,
662 663 664 665 666 667 668 669 670
                    attrs['data_layout'],
                    attrs['out_d'],
                    attrs['out_h'],
                    attrs['out_w'],
                    attrs['scale'] if 'scale' in attrs else [],
                    attrs['interp_method'],
                    attrs['align_corners'],
                    attrs['align_mode'],
                )
671
            else:
672
                out = _legacy_C_ops.nearest_interp_v2(x, *dy_attr)
673
        elif resample_type == "bicubic":
674
            if in_dygraph_mode():
675
                out = _C_ops.bicubic_interp(
676 677
                    x,
                    inputs['OutSize'] if 'OutSize' in inputs else None,
678 679
                    inputs['SizeTensor'] if 'SizeTensor' in inputs else None,
                    inputs['Scale'] if 'Scale' in inputs else None,
680 681 682 683 684 685 686 687 688
                    attrs['data_layout'],
                    attrs['out_d'],
                    attrs['out_h'],
                    attrs['out_w'],
                    attrs['scale'] if 'scale' in attrs else [],
                    attrs['interp_method'],
                    attrs['align_corners'],
                    attrs['align_mode'],
                )
689
            else:
690
                out = _legacy_C_ops.bicubic_interp_v2(x, *dy_attr)
X
xiaoting 已提交
691
        return out
X
xiaoting 已提交
692
    out = helper.create_variable_for_type_inference(dtype)
693 694 695 696 697 698
    helper.append_op(
        type='{}_interp_v2'.format(resample_type),
        inputs=inputs,
        outputs={"Out": out},
        attrs=attrs,
    )
X
xiaoting 已提交
699
    return out
L
littletomatodonkey 已提交
700 701


702 703 704 705 706 707 708 709 710 711
def upsample(
    x,
    size=None,
    scale_factor=None,
    mode='nearest',
    align_corners=False,
    align_mode=0,
    data_format='NCHW',
    name=None,
):
X
xiaoting 已提交
712
    """
713
    This API resizes a batch of images.
714

X
xiaoting 已提交
715 716 717
    The input must be a 3-D Tensor of the shape (num_batches, channels, in_w)
    or 4-D (num_batches, channels, in_h, in_w), or a 5-D Tensor of the shape
    (num_batches, channels, in_d, in_h, in_w) or (num_batches, in_d, in_h, in_w, channels),
718 719
    Where in_w is width of the input tensor, in_h is the height of the input tensor,
    in_d is the depth of the intput tensor.
X
xiaoting 已提交
720 721 722 723 724 725 726 727
    and the resizing only applies on the three dimensions(depth, height and width).

    Supporting resample methods:
        'linear' : Linear interpolation
        'bilinear' : Bilinear interpolation
        'trilinear' : Trilinear interpolation
        'nearest' : Nearest neighbor interpolation
        'bicubic' : Bicubic interpolation
728 729 730
    Linear interpolation is the method of using a line connecting two known quantities
    to determine the value of an unknown quantity between the two known quantities.

X
xiaoting 已提交
731 732 733 734 735 736 737 738
    Nearest neighbor interpolation is to perform nearest neighbor interpolation
    in both the 3rd dimension(in height direction) and the 4th dimension(in width
    direction) on input tensor.
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
    again in the other direction.
739

X
xiaoting 已提交
740 741 742 743
    Bicubic interpolation is an extension of cubic interpolation for interpolating
    data points on a two-dimensional regular grid. The interpolated surface is
    smoother than corresponding surfaces obtained by bilinear interpolation or
    nearest-neighbor interpolation.
744

X
xiaoting 已提交
745 746 747
    Trilinear interpolation is an extension of linear interpolation for
    interpolating functions of three variables (e.g. D-direction,
    H-direction and W-direction in this op) on a rectilinear 3D grid.
748

X
xiaoting 已提交
749 750 751
    The linear interpolation is performed on three directions.
    align_corners and align_mode are optional parameters,the calculation method
    of interpolation can be selected by them.
752 753 754 755 756 757 758

    Area interpolation is to perform area interpolation
    in both the 3rd dimension(in height direction) , the 4th dimension(in width
    direction) and the 5th dimension(in depth direction) on input tensor. Set to
    area will directly call `paddle.nn.functional.adaptive_avg_pool1d` or
    `paddle.nn.functional.adaptive_avg_pool2d` or `paddle.nn.functional.adaptive_avg_pool3d`.

X
xiaoting 已提交
759 760
    Example:
    .. code-block:: text
761

X
xiaoting 已提交
762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789
        For scale_factor:
            if align_corners = True && out_size > 1 :
              scale_factor = (in_size-1.0)/(out_size-1.0)
            else:
              scale_factor = float(in_size/out_size)
        Linear interpolation:
            if:
                align_corners = False , align_mode = 0
                input : (N,C,W_in)
                output: (N,C,W_out) where:
                W_out = (W_{in}+0.5) * scale_{factor} - 0.5
            else:
                input : (N,C,W_in)
                output: (N,C,W_out) where:
                W_out = W_{in} * scale_{factor}
        Nearest neighbor interpolation:
          if:
              align_corners = False
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = floor (H_{in} * scale_{factor})
              W_out = floor (W_{in} * scale_{factor})
          else:
              align_corners = True
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
790

X
xiaoting 已提交
791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830
        Bilinear interpolation:
          if:
              align_corners = False , align_mode = 0
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
          else:
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
        Bicubic interpolation:
          if:
              align_corners = False
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
          else:
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
        Trilinear interpolation:
          if:
              align_corners = False , align_mode = 0
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
              D_out = (D_{in}+0.5) * scale_{factor} - 0.5
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
          else:
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
              D_out = D_{in} * scale_{factor}
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
    https://en.wikipedia.org/wiki/Linear_interpolation.
    For details of linear interpolation, please refer to Wikipedia:
831

X
xiaoting 已提交
832 833
    For details of nearest neighbor interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation.
834

X
xiaoting 已提交
835 836
    For details of bilinear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Bilinear_interpolation.
837

X
xiaoting 已提交
838 839
    For details of bicubic interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Bicubic_interpolation
840

X
xiaoting 已提交
841 842
    For details of trilinear interpolation, please refer to Wikipedia:
    https://en.wikipedia.org/wiki/Trilinear_interpolation.
843

X
xiaoting 已提交
844 845 846
    Parameters:
        x (Tensor): 3-D, 4-D or 5-D Tensor, its data type is float32, float64, or uint8,
                          its data format is specified by :attr:`data_format`.
847
        size (list|tuple|Tensor|None, optional): Output shape of image resize
848 849
             layer, the shape is (out_w, ) when input is a 3-D Tensor, the shape is (out_h, out_w)
             when input is a 4-D Tensor and is (out_d, out_h, out_w) when input is a 5-D Tensor.
850
             Default: None. If a list/tuple, each element can be an integer or a Tensor of shape: [1].
X
xiaoting 已提交
851
             If a Tensor , its dimensions size should be a 1.
852
        scale_factor (float|Tensor|list|tuple|None, optional): The multiplier for the input height or width. At
853
             least one of :attr:`size` or :attr:`scale_factor` must be set.
854
             And :attr:`size` has a higher priority than :attr:`scale_factor`.Has to match input size if
855
             it is either a list or a tuple or a Tensor.
X
xiaoting 已提交
856
             Default: None.
857
        mode (str, optional): The resample method. It supports 'linear', 'nearest', 'bilinear',
X
xiaoting 已提交
858
                       'bicubic' and 'trilinear' currently. Default: 'nearest'
859
        align_corners(bool, optional) :  An optional bool, If True, the centers of the 4 corner pixels of the
X
xiaoting 已提交
860 861 862
                               input and output tensors are aligned, preserving the values at the
                               corner pixels.
                               Default: False
863
        align_mode(int, optional)  :  An optional for linear/bilinear/trilinear interpolation. Refer to the formula in the example above,
X
xiaoting 已提交
864 865 866 867 868 869 870 871 872 873 874 875 876 877
                            it can be \'0\' for src_idx = scale_factor*(dst_indx+0.5)-0.5 , can be \'1\' for
                            src_idx = scale_factor*dst_index.
        data_format (str, optional): Specify the data format of the input, and the data format of the output
            will be consistent with that of the input. An optional string from:`NCW`, `NWC`, `"NCHW"`, `"NHWC"`, `"NCDHW"`,
            `"NDHWC"`. The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
            `[batch_size, input_channels, input_height, input_width]`. When it is `"NCHW"`, the data is stored
            in the order of: `[batch_size, input_channels, input_depth, input_height, input_width]`.
        name(str, optional): The default value is None.
                             Normally there is no need for user to set this property.
                             For more information, please refer to :ref:`api_guide_Name`
    Returns:
        A 3-D Tensor of the shape (num_batches, channels, out_w) or (num_batches, out_w, channels),
        A 4-D Tensor of the shape (num_batches, channels, out_h, out_w) or (num_batches, out_h, out_w, channels),
        or 5-D Tensor of the shape (num_batches, channels, out_d, out_h, out_w) or (num_batches, out_d, out_h, out_w, channels).
878

X
xiaoting 已提交
879
        Examples:
880
            .. code-block:: python
881

882 883
                import paddle
                import paddle.nn as nn
X
xiaoting 已提交
884

885 886
                input_data = paddle.randn(shape=(2,3,6,10)).astype(paddle.float32)
                upsample_out = paddle.nn.Upsample(size=[12,12])
887

888 889 890
                output = upsample_out(x=input_data)
                print(output.shape)
                # [2L, 3L, 12L, 12L]
X
xiaoting 已提交
891 892

    """
893 894 895
    return interpolate(
        x, size, scale_factor, mode, align_corners, align_mode, data_format
    )
X
xiaoting 已提交
896 897


898 899 900 901
def bilinear(x1, x2, weight, bias=None, name=None):
    """

    This layer performs bilinear on two inputs.
902
    See :ref:`api_nn_Bilinear` for details and output shape.
903 904

    Parameters:
905 906 907 908 909 910
        x1 (Tensor): the first input tensor, it's data type should be float32, float64.
        x2 (Tensor): the second input tensor, it's data type should be float32, float64.
        weight (Parameter): The learnable weights of this layer, shape is [out_features, in1_features, in2_features].
        bias (Parameter, optional): The learnable bias(Bias) of this layer, shape is [1, out_features]. If it is set to None, no bias will be added to the output units. The default value is None.
        name (str, optional): The default value is None. Normally there is no need for user
            to set this property. For more information, please refer to :ref:`api_guide_Name`. Default: None.
911 912

    Returns:
913
        Tensor: A 2-D Tensor of shape [batch_size, out_features].
914 915

    Examples:
916
        .. code-block:: python
917

918 919
            import paddle
            import paddle.nn.functional as F
920

921 922 923 924
            x1 = paddle.randn((5, 5)).astype(paddle.float32)
            x2 = paddle.randn((5, 4)).astype(paddle.float32)
            w = paddle.randn((1000, 5, 4)).astype(paddle.float32)
            b = paddle.randn((1, 1000)).astype(paddle.float32)
925

926 927 928
            result = F.bilinear(x1, x2, w, b)
            print(result.shape)
            # [5, 1000]
929 930
    """

931
    if in_dygraph_mode():
W
wanghuancoder 已提交
932
        return _C_ops.bilinear_tensor_product(x1, x2, weight, bias)
933 934
    elif _non_static_mode():
        return _legacy_C_ops.bilinear_tensor_product(x1, x2, weight, bias)
935 936 937 938 939 940 941 942 943 944 945

    check_variable_and_dtype(x1, 'x1', ['float32', 'float64'], 'bilinear')
    check_variable_and_dtype(x2, 'x2', ['float32', 'float64'], 'bilinear')

    inputs = {"X": x1, "Y": x2, "Weight": weight}
    if bias is not None:
        inputs["Bias"] = bias

    helper = LayerHelper("bilinear", **locals())
    out = helper.create_variable_for_type_inference(dtype=x1.dtype)

946 947 948
    helper.append_op(
        type="bilinear_tensor_product", inputs=inputs, outputs={"Out": out}
    )
949 950 951 952

    return out


953 954 955
def dropout(
    x, p=0.5, axis=None, training=True, mode="upscale_in_train", name=None
):
956 957 958 959 960 961 962 963
    """
    Dropout is a regularization technique for reducing overfitting by preventing
    neuron co-adaption during training. The dropout operator randomly sets the
    outputs of some units to zero, while upscale others according to the given
    dropout probability.

    Args:
        x (Tensor): The input tensor. The data type is float32 or float64.
964 965 966 967
        p (float|int, optional): Probability of setting units to zero. Default 0.5.
        axis (int|list|tuple, optional): The axis along which the dropout is performed. Default None.
        training (bool, optional): A flag indicating whether it is in train phrase or not. Default True.
        mode(str, optional): ['upscale_in_train'(default) | 'downscale_in_infer'].
968

969 970 971 972
            1. upscale_in_train(default), upscale the output at training time

                - train: out = input * mask / ( 1.0 - dropout_prob )
                - inference: out = input
973

974
            2. downscale_in_infer, downscale the output at inference
975

976 977
                - train: out = input * mask
                - inference: out = input * (1.0 - dropout_prob)
978

979
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
980 981 982 983

    Returns:
        A Tensor representing the dropout, has same shape and data type as `x` .

984

985 986
    Examples:
        We use ``p=0.5`` in the following description for simplicity.
987

988
        1. When ``axis=None`` , this is commonly used dropout, which dropout each element of x randomly.
989 990 991

        ..  code-block:: text

992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
            Let's see a simple case when x is a 2d tensor with shape 2*3:
            [[1 2 3]
             [4 5 6]]
            we generate mask with the same shape as x, which is 2*3. The value of mask is
            sampled from a Bernoulli distribution randomly. For example, we may get such mask:
            [[0 1 0]
             [1 0 1]]
            So the output is obtained from elementwise multiply of x and mask:
            [[0 2 0]
             [4 0 6]]
            Using default setting, i.e. ``mode='upscale_in_train'`` ,
            if in training phase, the final upscale output is:
            [[0 4 0 ]
             [8 0 12]]
            if in test phase, the output is the same as input:
            [[1 2 3]
             [4 5 6]]
            we can also set ``mode='downscale_in_infer'`` , then
            if in training phase, the final output is:
            [[0 2 0]
             [4 0 6]]
            if in test phase, the scale output is:
            [[0.5 1.  1.5]
             [2.  2.5 3. ]]

1017 1018


1019
        2. When ``axis!=None`` , this is useful for dropping whole channels from an image or sequence.
1020 1021 1022

        ..  code-block:: text

1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
            Let's see the simple case when x is a 2d tensor with shape 2*3 again:
            [[1 2 3]
             [4 5 6]]
            (1) If ``axis=0`` , this means the dropout is only performed in axis `0` .
                we generate mask with the shape 2*1. Only in axis `0` the value is randomly selected.
                For example, we may get such mask:
                [[1]
                 [0]]
                The output is obtained from elementwise multiply of x and mask. Doing that the mask will be
                broadcast from 2*1 to 2*3:
                [[1 1 1]
                 [0 0 0]]
                and the result after elementwise multiply is:
                [[1 2 3]
                 [0 0 0]]
                then we can do upscale or downscale according to the setting of other arguments.
            (2) If ``axis=1`` , this means the dropout is only performed in axis `1` .
                we generate mask with the shape 1*3. Only in axis `1` the value is randomly selected.
                For example, we may get such mask:
                [[1 0 1]]
                Doing elementwise multiply the mask will be broadcast from 1*3 to 2*3:
                [[1 0 1]
                 [1 0 1]]
                and the result after elementwise multiply is:
                [[1 0 3]
                 [4 0 6]]
            (3) What about ``axis=[0, 1]`` ? This means the dropout is performed in all axes of x,
                which is the same case as default setting ``axis=None`` .
1051
            (4) You may note that logically `axis=None` means the dropout is performed in none axis of x,
1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
                We generate mask with the shape 1*1. Whole input is randomly selected or dropped.
                For example, we may get such mask:
                [[0]]
                Doing elementwise multiply the mask will be broadcast from 1*1 to 2*3:
                [[0 0 0]
                 [0 0 0]]
                and the result after elementwise multiply is:
                [[0 0 0]
                 [0 0 0]]
                Actually this is not what we want because all elements may set to zero~
1062 1063 1064

        When x is a 4d tensor with shape `NCHW`, we can set ``axis=[0,1]`` and the dropout will be performed in channel `N` and `C`, `H` and `W` is tied, i.e. paddle.nn.dropout(x, p, axis=[0,1]) . Please refer to ``paddle.nn.functional.dropout2d`` for more details.
        Similarly, when x is a 5d tensor with shape `NCDHW`, we can set ``axis=[0,1]`` to perform dropout3d. Please refer to ``paddle.nn.functional.dropout3d`` for more details.
1065 1066

        .. code-block:: python
1067

1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
            import paddle

            x = paddle.to_tensor([[1,2,3], [4,5,6]]).astype(paddle.float32)
            y_train = paddle.nn.functional.dropout(x, 0.5)
            y_test = paddle.nn.functional.dropout(x, 0.5, training=False)
            y_0 = paddle.nn.functional.dropout(x, axis=0)
            y_1 = paddle.nn.functional.dropout(x, axis=1)
            y_01 = paddle.nn.functional.dropout(x, axis=[0,1])
            print(x)
            # Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[1., 2., 3.],
            #         [4., 5., 6.]])
            print(y_train)
            # Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[2. , 0. , 6. ],
            #         [8. , 0. , 12.]])
            print(y_test)
            # Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[1., 2., 3.],
            #         [4., 5., 6.]])
            print(y_0)
            # Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[0. , 0. , 0. ],
            #         [8. , 10., 12.]])
            print(y_1)
            # Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[2. , 0. , 6. ],
            #         [8. , 0. , 12.]])
            print(y_01)
            # Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[0. , 0. , 0. ],
            #         [8. , 0. , 12.]])
1100 1101

    """
1102 1103 1104 1105 1106
    if not isinstance(p, (float, int, Variable)):
        raise TypeError("p argument should be a number or Variable")

    if isinstance(p, (int, float)):
        # fast return for p == 0
1107 1108
        if p == 0:
            return x
1109 1110
        elif p < 0 or p > 1:
            raise ValueError("p argument should between 0 and 1")
1111 1112
    if mode not in ('downscale_in_infer', 'upscale_in_train'):
        raise ValueError(
1113 1114
            "mode argument should be 'downscale_in_infer' or 'upscale_in_train'"
        )
1115
    if axis and not isinstance(axis, (int, list, tuple)):
1116 1117 1118 1119
        raise TypeError("datatype of axis argument should be int or list")

    if axis == None:  # commonly used dropout
        seed = None
1120 1121 1122
        mode = (
            'downgrade_in_infer' if mode == 'downscale_in_infer' else mode
        )  # semantic transfer
1123

H
hong 已提交
1124
        if _non_static_mode():
1125 1126
            if default_main_program().random_seed != 0:
                seed = default_main_program().random_seed
H
hong 已提交
1127 1128

            if in_dygraph_mode():
1129 1130 1131 1132 1133 1134 1135 1136 1137
                out, mask = _C_ops.dropout(
                    x,
                    None,
                    p,
                    not training,
                    mode,
                    seed if seed is not None else 0,
                    seed is not None,
                )
H
hong 已提交
1138 1139

                return out
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
            out, mask = _legacy_C_ops.dropout(
                x,
                'dropout_prob',
                p,
                'is_test',
                not training,
                'fix_seed',
                seed is not None,
                'seed',
                seed if seed is not None else 0,
                'dropout_implementation',
                mode,
            )
1153 1154 1155
            return out

        helper = LayerHelper('dropout', **locals())
1156 1157 1158
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'dropout'
        )
1159 1160 1161

        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        mask = helper.create_variable_for_type_inference(
1162 1163
            dtype=core.VarDesc.VarType.UINT8, stop_gradient=True
        )
1164

1165 1166 1167
        def get_attrs(prog, dropout_prob, is_test, seed):
            if (seed is None or seed == 0) and prog.random_seed != 0:
                seed = prog.random_seed
1168

1169 1170 1171
            if isinstance(
                dropout_prob, Variable
            ) and not dropout_prob.shape != [1]:
1172
                raise TypeError(
1173 1174 1175 1176
                    "Required p.shape == [1] if type(p) is Variable, but received p.shape = {}".format(
                        p.shape
                    )
                )
1177 1178 1179 1180 1181 1182 1183 1184 1185
            attrs = {
                'dropout_prob': dropout_prob,
                'is_test': is_test,
                'fix_seed': seed is not None,
                'seed': seed if seed is not None else 0,
                'dropout_implementation': mode,
            }
            return attrs

1186 1187
        attrs = get_attrs(helper.main_program, p, not training, seed)

1188 1189 1190 1191 1192 1193
        helper.append_op(
            type='dropout',
            inputs={'X': [x]},
            outputs={'Out': [out], 'Mask': [mask]},
            attrs=attrs,
        )
1194
        return out
1195
    else:  # sometimes called dropout_nd #TODO: optimize with c++
Z
zhiboniu 已提交
1196
        if not in_dynamic_mode():
1197 1198 1199 1200
            check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'dropout')
        dtype = x.dtype
        keep_prob = 1 - p
        if training:
1201 1202
            if in_dynamic_mode() and p == 1.0:
                return paddle.scale(x, scale=0.0)
1203

1204 1205 1206 1207 1208
            scale_input = (
                paddle.scale(x, scale=1 / keep_prob)
                if mode == 'upscale_in_train'
                else x
            )
1209

1210
            # get mask shape
1211
            input_shape = x.shape
Z
zhiboniu 已提交
1212
            if not in_dynamic_mode():
1213
                input_shape_tensor = paddle.shape(x)
1214
            drop_axes = [axis] if isinstance(axis, int) else list(axis)
1215
            if min(drop_axes) < 0 or max(drop_axes) > len(input_shape) - 1:
1216 1217 1218 1219 1220
                raise ValueError(
                    "axis value should be greater than or equal to 0 and less than dimensions of x:{}, but get axis value:{} ".format(
                        len(input_shape), max(drop_axes)
                    )
                )
1221 1222
            if len(drop_axes) > len(input_shape):
                raise ValueError(
1223 1224 1225 1226
                    "length of axis should not be greater than dimensions of x:{}, but get length of axis: {}".format(
                        len(input_shape), len(drop_axes)
                    )
                )
1227
            mask_shape = [1] * len(input_shape)
Z
zhiboniu 已提交
1228
            if not in_dynamic_mode():
1229 1230 1231 1232 1233
                for i in drop_axes:
                    mask_shape[i] = input_shape_tensor[i]
            else:
                for i in drop_axes:
                    mask_shape[i] = input_shape[i]
1234

1235 1236 1237 1238
            # get mask
            random_tensor = paddle.uniform(
                mask_shape, dtype='float32', min=0.0, max=1.0
            )
Z
zhiboniu 已提交
1239
            p = full(shape=[1], fill_value=p, dtype='float32')
1240
            keep_mask = paddle.greater_equal(random_tensor, p)
1241

1242 1243
            scale_input = paddle.cast(scale_input, dtype)
            keep_mask = paddle.cast(keep_mask, dtype)
1244 1245 1246
            ret = paddle.multiply(scale_input, keep_mask, name=name)
            return ret
        else:  # test
1247 1248 1249 1250 1251
            ret = (
                paddle.scale(x, scale=keep_prob)
                if mode == 'downscale_in_infer'
                else x
            )
1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267
            return ret


def dropout2d(x, p=0.5, training=True, data_format='NCHW', name=None):
    """
    Randomly zero out entire channels (in the batched input 4d tensor with the shape `NCHW` ,
    a channel is a 2D feature map with the shape `HW` ). Each channel will be zeroed out independently
    on every forward call with probability `p` using samples from a Bernoulli distribution.

    See ``paddle.nn.functional.dropout`` for more details.

    Args:
        x (Tensor):  The input is 4-D Tensor with shape [N, C, H, W] or [N, H, W, C].
                     The data type is float32 or float64.
        p (float): Probability of setting units to zero. Default 0.5.
        training (bool): A flag indicating whether it is in train phrase or not. Default True.
1268
        data_format (str, optional): Specify the data format of the input, and the data format of the output will be consistent with that of the input. An optional string from `NCHW` or `NHWC` . The default is `NCHW` . When it is `NCHW` , the data is stored in the order of: [batch_size, input_channels, input_height, input_width].
1269 1270 1271 1272 1273
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor representing the dropout2d, has same shape and data type as `x` .

1274

1275 1276
    Examples:
        .. code-block:: python
1277

1278 1279
            import paddle

1280
            x = paddle.randn(shape=(2, 3, 4, 5)).astype(paddle.float32)
1281 1282 1283 1284
            y_train = paddle.nn.functional.dropout2d(x)  #train
            y_test = paddle.nn.functional.dropout2d(x, training=False) #test
            for i in range(2):
                for j in range(3):
1285 1286 1287 1288
                    print(x[i,j,:,:])
                    print(y_train[i,j,:,:]) # may all 0
                    print(y_test[i,j,:,:])

1289 1290 1291
    """
    input_shape = x.shape
    if len(input_shape) != 4:
1292 1293 1294 1295 1296
        raise ValueError(
            "dimensions of x should be 4, but received {} != 4".format(
                len(input_shape)
            )
        )
1297 1298 1299 1300

    if data_format not in ["NCHW", "NHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
1301 1302
            "Attr(data_format): %s." % str(data_format)
        )
1303

1304 1305 1306 1307 1308 1309 1310 1311
    return dropout(
        x,
        p=p,
        axis=[0, 1] if data_format == 'NCHW' else [0, 3],
        training=training,
        mode="upscale_in_train",
        name=name,
    )
1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326


def dropout3d(x, p=0.5, training=True, data_format='NCDHW', name=None):
    """
    Randomly zero out entire channels (in the batched input 5d tensor with the shape `NCDHW` ,
    a channel is a 3D feature map with the shape `DHW` ). Each channel will be zeroed out independently
    on every forward call with probability `p` using samples from a Bernoulli distribution.

    See ``paddle.nn.functional.dropout`` for more details.

    Args:
        x (Tensor):  The input is 5-D Tensor with shape [N, C, D, H, W] or [N, D, H, W, C].
                     The data type is float32 or float64.
        p (float): Probability of setting units to zero. Default 0.5.
        training (bool): A flag indicating whether it is in train phrase or not. Default True.
1327
        data_format (str, optional): Specify the data format of the input, and the data format of the output will be consistent with that of the input. An optional string from ``NCDHW`` or ``NDHWC``. The default is ``NCDHW`` . When it is ``NCDHW`` , the data is stored in the order of: [batch_size, input_channels, input_depth, input_height, input_width].
1328 1329 1330 1331 1332
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor representing the dropout3d, has same shape and data type with `x` .

1333

1334 1335
    Examples:
        .. code-block:: python
1336

1337
            import paddle
1338

1339 1340 1341 1342 1343 1344
            x = paddle.randn(shape=(2, 3, 4, 5, 6)).astype(paddle.float32)
            y_train = paddle.nn.functional.dropout3d(x)  #train
            y_test = paddle.nn.functional.dropout3d(x, training=False) #test
            print(x[0,0,:,:,:])
            print(y_train[0,0,:,:,:]) # may all 0
            print(y_test[0,0,:,:,:])
1345 1346 1347 1348 1349

    """

    input_shape = x.shape
    if len(input_shape) != 5:
1350 1351 1352 1353 1354
        raise ValueError(
            "dimensions of x should be 5, but received {} != 5".format(
                len(input_shape)
            )
        )
1355 1356 1357 1358

    if data_format not in ["NCDHW", "NDHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received "
1359 1360
            "Attr(data_format): %s." % str(data_format)
        )
1361

1362 1363 1364 1365 1366 1367 1368 1369
    return dropout(
        x,
        p=p,
        axis=[0, 1] if data_format == 'NCDHW' else [0, 4],
        training=training,
        mode="upscale_in_train",
        name=name,
    )
1370 1371


1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389
def alpha_dropout(x, p=0.5, training=True, name=None):
    """
    Alpha Dropout is a type of Dropout that maintains the self-normalizing property.
    For an input with zero mean and unit standard deviation, the output of Alpha Dropout
    maintains the original mean and standard deviation of the input.
    Alpha Dropout fits well to SELU activate function by randomly setting activations to the negative saturation value.

    Args:
        x (Tensor): The input tensor. The data type is float32 or float64.
        p (float | int): Probability of setting units to zero. Default 0.5.
        training (bool): A flag indicating whether it is in train phrase or not. Default True.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        A Tensor representing the dropout, has same shape and data type as `x`.

    Examples:
        .. code-block:: python
1390

1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403
            import paddle

            x = paddle.to_tensor([[-1, 1], [-1, 1]]).astype(paddle.float32)
            y_train = paddle.nn.functional.alpha_dropout(x, 0.5)
            y_test = paddle.nn.functional.alpha_dropout(x, 0.5, training=False)
            print(y_train)
            # Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[-0.10721093, -0.77919382],
            #         [-0.10721093,  1.66559887]]) (randomly)
            print(y_test)
            # Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[-1.,  1.],
            #         [-1.,  1.]])
1404 1405 1406 1407 1408 1409
    """
    if not isinstance(p, (float, int)):
        raise TypeError("p argument should be a float or int")
    if p < 0 or p > 1:
        raise ValueError("p argument should between 0 and 1")

Z
zhiboniu 已提交
1410
    if not in_dynamic_mode():
1411 1412 1413
        check_variable_and_dtype(
            x, 'x', ['float32', 'float64'], 'alpha_dropout'
        )
1414 1415

    if training:
1416
        if p == 1:
1417 1418
            return paddle.scale(x, scale=0.0)
        # get transformation params
1419 1420 1421
        alpha = 1.6732632423543772848170429916717
        scale = 1.0507009873554804934193349852946
        alpha_p = -alpha * scale
1422
        a = ((1 - p) * (1 + p * alpha_p**2)) ** -0.5
1423 1424 1425 1426 1427
        b = -a * alpha_p * p

        dtype = x.dtype
        input_shape = x.shape

1428 1429 1430 1431
        # get mask
        random_tensor = paddle.uniform(
            input_shape, dtype='float32', min=0.0, max=1.0
        )
Z
zhiboniu 已提交
1432
        p = full(shape=[1], fill_value=p, dtype='float32')
1433 1434 1435
        keep_mask = paddle.greater_equal(random_tensor, p)
        keep_mask = paddle.cast(keep_mask, dtype)
        drop_mask = paddle.subtract(
1436 1437
            full(shape=input_shape, fill_value=1.0, dtype=dtype), keep_mask
        )
1438

1439
        # apply mask
Z
zhiboniu 已提交
1440
        b = full(shape=[1], fill_value=b, dtype=dtype)
1441 1442 1443 1444
        y = paddle.add(
            paddle.multiply(x, keep_mask),
            paddle.scale(drop_mask, scale=alpha_p),
        )
1445
        res = paddle.add(paddle.scale(y, scale=a), b, name=name)
1446 1447 1448 1449 1450
        return res
    else:  # test
        return x


L
littletomatodonkey 已提交
1451 1452 1453
def pad(x, pad, mode='constant', value=0, data_format="NCHW", name=None):
    """
    Pad tensor according to 'pad' and 'mode'.
L
littletomatodonkey 已提交
1454 1455 1456
    If mode is 'constant' and length of pad is twice as length of x dimension,
    then the padding will be started from the first dimension and moved back onto x
    according to 'pad' and 'value'.
L
littletomatodonkey 已提交
1457 1458 1459 1460 1461
    If mode is 'reflect', pad[0] and pad[1] must be no greater
    than width-1. The height and depth dimension has the same condition.

    Parameters:
        x (Tensor): The input tensor with data type float32/double/int32/int64_t.
1462
        pad (Tensor|list[int]|tuple[int]): The padding size with data type int.
1463
            If mode is 'constant' and length of pad is twice as length of x dimension, then x will
1464 1465
            be padded from the first  dimension to the last dimension.
            Else: 1. If input dimension is 3, then the pad has the form (pad_left,
1466 1467
            pad_right). 2. If the input dimension is 4, then the pad has the form (pad_left, pad_right,
            pad_top, pad_bottom). 3. If the input dimension is 5, then the pad has the form
L
littletomatodonkey 已提交
1468
            (pad_left, pad_right, pad_top, pad_bottom, pad_front, pad_back).
1469 1470 1471 1472 1473 1474 1475 1476
        mode (str, optional): Four modes: 'constant' (default), 'reflect', 'replicate', 'circular'. Default is 'constant'

           - 'constant' mode, uses a constant value to pad the input tensor.
           - 'reflect' mode, uses reflection of the input boundaries to pad the input tensor.
           - 'replicate' mode, uses input boundaries to pad the input tensor.
           - 'circular' mode, uses circular input to pad the input tensor.

        value (float, optional): The value to fill the padded areas in 'constant' mode . Default is :math:`0.0`,
1477
        data_format (str, optional): An string from: "NCL", "NLC", NHWC", "NCHW", "NCDHW", "NDHWC". Specify the data format of
1478 1479
           the input data. Default is "NCHW",
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1480 1481

    Returns:
1482
        Tensor, a Tensor padded according to pad and mode and data type is same as input.
L
littletomatodonkey 已提交
1483

1484
    Example:
1485

L
littletomatodonkey 已提交
1486 1487 1488 1489 1490 1491
        .. code-block:: text

            x = [[[[[1., 2., 3.],
                    [4., 5., 6.]]]]]

            Case 0:
1492 1493 1494 1495 1496 1497 1498 1499 1500
                pad = [0, 0, 0, 0, 0, 0, 1, 1, 0, 0],
                mode = 'constant'
                value = 0
                Out = [[[[[0., 0., 0.],
                          [1., 2., 3.],
                          [4., 5., 6.],
                          [0., 0., 0.]]]]]

            Case 1:
L
littletomatodonkey 已提交
1501 1502 1503 1504 1505 1506 1507 1508
                pad = [2, 2, 1, 1, 0, 0],
                mode = 'constant'
                value = 0
                Out = [[[[[0. 0. 0. 0. 0. 0. 0.]
                          [0. 0. 1. 2. 3. 0. 0.]
                          [0. 0. 4. 5. 6. 0. 0.]
                          [0. 0. 0. 0. 0. 0. 0.]]]]]

1509
            Case 2:
L
littletomatodonkey 已提交
1510 1511 1512 1513 1514 1515 1516
                pad = [2, 2, 1, 1, 0, 0],
                mode = 'reflect'
                Out = [[[[[6. 5. 4. 5. 6. 5. 4.]
                          [3. 2. 1. 2. 3. 2. 1.]
                          [6. 5. 4. 5. 6. 5. 4.]
                          [3. 2. 1. 2. 3. 2. 1.]]]]]

1517
            Case 3:
L
littletomatodonkey 已提交
1518 1519 1520 1521 1522 1523 1524
                pad = [2, 2, 1, 1, 0, 0],
                mode = 'replicate'
                Out = [[[[[1. 1. 1. 2. 3. 3. 3.]
                          [1. 1. 1. 2. 3. 3. 3.]
                          [4. 4. 4. 5. 6. 6. 6.]
                          [4. 4. 4. 5. 6. 6. 6.]]]]]

1525
            Case 4:
L
littletomatodonkey 已提交
1526 1527 1528 1529 1530 1531 1532
                pad = [2, 2, 1, 1, 0, 0],
                mode = 'circular'
                Out = [[[[[5. 6. 4. 5. 6. 4. 5.]
                          [2. 3. 1. 2. 3. 1. 2.]
                          [5. 6. 4. 5. 6. 4. 5.]
                          [2. 3. 1. 2. 3. 1. 2.]]]]]

1533
    Examples:
L
littletomatodonkey 已提交
1534
        .. code-block:: python
L
littletomatodonkey 已提交
1535

L
littletomatodonkey 已提交
1536 1537
            import paddle
            import paddle.nn.functional as F
1538

L
littletomatodonkey 已提交
1539 1540
            # example 1
            x_shape = (1, 1, 3)
1541
            x = paddle.arange(paddle.prod(paddle.to_tensor(x_shape)), dtype="float32").reshape(x_shape) + 1
1542
            y = F.pad(x, [0, 0, 0, 0, 2, 3], value=1, mode='constant', data_format="NCL")
L
littletomatodonkey 已提交
1543
            print(y)
L
littletomatodonkey 已提交
1544
            # [[[1. 1. 1. 2. 3. 1. 1. 1.]]]
1545

L
littletomatodonkey 已提交
1546
            # example 2
1547
            x_shape = (1, 1, 3)
1548
            x = paddle.arange(paddle.prod(paddle.to_tensor(x_shape)), dtype="float32").reshape(x_shape) + 1
1549 1550 1551
            y = F.pad(x, [2, 3], value=1, mode='constant', data_format="NCL")
            print(y)
            # [[[1. 1. 1. 2. 3. 1. 1. 1.]]]
1552

1553
            # example 3
L
littletomatodonkey 已提交
1554
            x_shape = (1, 1, 2, 3)
1555
            x = paddle.arange(paddle.prod(paddle.to_tensor(x_shape)), dtype="float32").reshape(x_shape) + 1
L
littletomatodonkey 已提交
1556 1557
            y = F.pad(x, [1, 2, 1, 1], value=1, mode='circular')
            print(y)
L
littletomatodonkey 已提交
1558 1559 1560 1561 1562
            # [[[[6. 4. 5. 6. 4. 5.]
            #    [3. 1. 2. 3. 1. 2.]
            #    [6. 4. 5. 6. 4. 5.]
            #    [3. 1. 2. 3. 1. 2.]]]]
    """
1563 1564 1565 1566 1567 1568 1569 1570
    assert mode in [
        'reflect',
        'replicate',
        'constant',
        'circular',
    ], "mode should be one of constant, reflect, replicate, circular, but got {}.".format(
        mode
    )
L
littletomatodonkey 已提交
1571 1572

    data_format = data_format.upper()
1573 1574
    assert data_format in ["NCL", "NCHW", "NCDHW", "NLC", "NHWC", "NDHWC"], (
        "data_format should be in one of [NCL, NCHW, NCDHW, NLC, NHWC, NDHWC], "
L
littletomatodonkey 已提交
1575
        "but got {}".format(data_format)
1576
    )
L
littletomatodonkey 已提交
1577 1578 1579

    x_dim = len(x.shape)

1580 1581 1582 1583 1584
    if (
        mode == "constant"
        and isinstance(pad, (list, tuple))
        and len(pad) == x_dim * 2
    ):
1585 1586
        paddings = pad
        pad_value = value
1587 1588

        if in_dygraph_mode():
1589
            out = _C_ops.pad(x, paddings, float(pad_value))
1590 1591
            return out

1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605
        check_variable_and_dtype(
            x,
            'x',
            [
                'float16',
                'float32',
                'float64',
                'int32',
                'int64',
                'complex64',
                'complex128',
            ],
            "pad",
        )
1606

1607 1608 1609 1610
        check_type(pad_value, 'pad_value', (float, int, Variable), 'pad')
        if isinstance(pad_value, int):
            pad_value = float(pad_value)

1611 1612 1613
        helper = LayerHelper('pad', **locals())
        dtype = helper.input_dtype(input_param_name='x')
        out = helper.create_variable_for_type_inference(dtype)
1614 1615 1616 1617 1618 1619
        helper.append_op(
            type='pad',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'paddings': paddings, 'pad_value': pad_value},
        )
1620
        return out
L
littletomatodonkey 已提交
1621

1622
    assert x_dim in [
1623 1624 1625
        3,
        4,
        5,
1626 1627 1628 1629 1630 1631 1632
    ], "input tesor dimension must be in [3, 4, 5] but got {}".format(x_dim)

    supported_format_map = {
        3: ["NCL", "NLC"],
        4: ["NCHW", "NHWC"],
        5: ["NCDHW", "NDHWC"],
    }
1633 1634 1635 1636 1637
    assert (
        data_format in supported_format_map[x_dim]
    ), "input tensor dimension is {}, it's data format should be in {} but got {}".format(
        x_dim, supported_format_map[x_dim], data_format
    )
1638

L
littletomatodonkey 已提交
1639 1640 1641 1642 1643 1644
    unsqueezed_dim = []

    if isinstance(pad, Variable):
        if data_format in ["NCL", "NCHW", "NCDHW"]:
            data_format = "NCDHW"
            if x_dim == 3:
1645
                pad = concat([zeros((4,), dtype="int32"), pad], axis=0)
L
littletomatodonkey 已提交
1646
                unsqueezed_dim = [3, 4]
1647
                x = unsqueeze(x, axis=unsqueezed_dim)
L
littletomatodonkey 已提交
1648
            elif x_dim == 4:
1649
                pad = concat([pad, zeros((2,), dtype="int32")], axis=0)
L
littletomatodonkey 已提交
1650
                unsqueezed_dim = [2]
1651
                x = unsqueeze(x, axis=unsqueezed_dim)
L
littletomatodonkey 已提交
1652 1653 1654
        elif data_format in ["NLC", "NHWC", "NDHWC"]:
            data_format = "NDHWC"
            if x_dim == 3:
1655
                pad = concat([zeros((4,), dtype="int32"), pad], axis=0)
L
littletomatodonkey 已提交
1656
                unsqueezed_dim = [2, 3]
1657
                x = unsqueeze(x, axis=unsqueezed_dim)
L
littletomatodonkey 已提交
1658
            elif x_dim == 4:
1659
                pad = concat([pad, zeros((2,), dtype="int32")], axis=0)
L
littletomatodonkey 已提交
1660
                unsqueezed_dim = [1]
1661
                x = unsqueeze(x, axis=unsqueezed_dim)
L
littletomatodonkey 已提交
1662
    else:
1663
        pad = list(pad)
L
littletomatodonkey 已提交
1664 1665 1666 1667 1668
        if data_format in ["NCL", "NCHW", "NCDHW"]:
            data_format = "NCDHW"
            if x_dim == 3:
                pad = [0, 0, 0, 0] + pad
                unsqueezed_dim = [3, 4]
1669
                x = unsqueeze(x, axis=unsqueezed_dim)
L
littletomatodonkey 已提交
1670 1671 1672
            elif x_dim == 4:
                pad = pad + [0, 0]
                unsqueezed_dim = [2]
1673
                x = unsqueeze(x, axis=unsqueezed_dim)
L
littletomatodonkey 已提交
1674 1675 1676 1677 1678
        elif data_format in ["NLC", "NHWC", "NDHWC"]:
            data_format = "NDHWC"
            if x_dim == 3:
                pad = [0, 0, 0, 0] + pad
                unsqueezed_dim = [2, 3]
1679
                x = unsqueeze(x, axis=unsqueezed_dim)
L
littletomatodonkey 已提交
1680 1681 1682
            elif x_dim == 4:
                pad = pad + [0, 0]
                unsqueezed_dim = [1]
1683
                x = unsqueeze(x, axis=unsqueezed_dim)
L
littletomatodonkey 已提交
1684

J
Jiabin Yang 已提交
1685
    if in_dygraph_mode():
L
littletomatodonkey 已提交
1686
        if isinstance(pad, Variable):
J
Jiabin Yang 已提交
1687
            pad = pad.numpy().tolist()
1688
        out = _C_ops.pad3d(x, pad, mode, value, data_format)
J
Jiabin Yang 已提交
1689
    else:
1690
        if _in_legacy_dygraph():
J
Jiabin Yang 已提交
1691 1692
            if isinstance(pad, Variable):
                pad = pad.numpy().tolist()
1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705
            out = _legacy_C_ops.pad3d(
                x,
                "paddings",
                pad,
                "mode",
                mode,
                "value",
                value,
                "data_format",
                data_format,
                "name",
                name,
            )
1706
        else:
J
Jiabin Yang 已提交
1707 1708 1709 1710 1711 1712 1713
            attrs = {'mode': mode, 'value': value, 'data_format': data_format}
            inputs = {'X': [x]}
            if isinstance(pad, Variable):
                inputs['Paddings'] = [pad]
                attrs['paddings'] = []
            else:
                attrs['paddings'] = pad
L
littletomatodonkey 已提交
1714

J
Jiabin Yang 已提交
1715
            helper = LayerHelper('pad3d', **locals())
L
littletomatodonkey 已提交
1716

J
Jiabin Yang 已提交
1717 1718
            dtype = helper.input_dtype(input_param_name='input')
            out = helper.create_variable_for_type_inference(dtype)
1719 1720 1721
            helper.append_op(
                type='pad3d', inputs=inputs, outputs={"Out": out}, attrs=attrs
            )
L
littletomatodonkey 已提交
1722 1723

    if len(unsqueezed_dim) != 0:
1724
        out = squeeze(out, axis=unsqueezed_dim)
L
littletomatodonkey 已提交
1725 1726 1727 1728

    return out


1729 1730 1731 1732 1733 1734 1735 1736 1737
def zeropad2d(x, padding, data_format="NCHW", name=None):
    """
    Pads the input tensor boundaries with zero according to 'pad'.

    Args:
        x(Tensor): The input tensor with data type float16/float32/float64/int32/int64.
        padding(int | Tensor | List[int] | Tuple[int]): The padding size with data type int.
            The input dimension should be 4 and pad has the form (pad_left, pad_right,
            pad_top, pad_bottom).
1738
        data_format(str, optional): An string from: "NHWC", "NCHW". Specify the data format of
1739 1740 1741 1742
            the input data. Default: "NCHW".
        name(str, optional): The default value is None. Normally there is no need for user
            to set this property.

1743
    Returns:
1744
        Tensor, padded with 0 according to pad and data type is same as input.
1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np
            import paddle.nn.functional as F

            x_shape = (1, 1, 2, 3)
            x = paddle.arange(np.prod(x_shape), dtype="float32").reshape(x_shape) + 1
            y = F.zeropad2d(x, [1, 2, 1, 1])
            # [[[[0. 0. 0. 0. 0. 0.]
            #    [0. 1. 2. 3. 0. 0.]
            #    [0. 4. 5. 6. 0. 0.]
            #    [0. 0. 0. 0. 0. 0.]]]]
    """

1762 1763 1764 1765 1766 1767 1768 1769
    return pad(
        x,
        pad=padding,
        mode='constant',
        value=0,
        data_format=data_format,
        name=name,
    )
1770 1771


Y
Yang Zhang 已提交
1772
def cosine_similarity(x1, x2, axis=1, eps=1e-8):
L
littletomatodonkey 已提交
1773
    """
Y
Yang Zhang 已提交
1774
    Compute cosine similarity between x1 and x2 along axis.
L
littletomatodonkey 已提交
1775 1776 1777 1778

    Parameters:
        x1 (Tensor): First input. float32/double.
        x2 (Tensor): Second input. float32/double.
1779 1780
        axis (int, optional): Dimension of vectors to compute cosine similarity. Default is 1.
        eps(float, optional): Small value to avoid division by zero. Default is 1e-8.
1781 1782

    Returns:
1783
        Tensor, a Tensor representing cosine similarity between x1 and x2 along axis.
L
littletomatodonkey 已提交
1784 1785 1786

    Examples:
        .. code-block:: text
1787

L
littletomatodonkey 已提交
1788 1789 1790 1791 1792 1793 1794 1795 1796
            Case 0:
                x1 = [[0.8024077  0.9927354  0.27238318 0.8344984 ]
                     [0.48949873 0.5797396  0.65444374 0.66510963]
                     [0.1031398  0.9614342  0.08365563 0.6796464 ]
                     [0.10760343 0.7461209  0.7726148  0.5801006 ]]
                x2 = [[0.62913156 0.1536727  0.9847992  0.04591406]
                     [0.9098952  0.15715368 0.8671125  0.3156102 ]
                     [0.4427798  0.54136837 0.5276275  0.32394758]
                     [0.3769419  0.8535014  0.48041078 0.9256797 ]]
Y
Yang Zhang 已提交
1797
                axis = 1
L
littletomatodonkey 已提交
1798 1799 1800 1801 1802
                eps = 1e-8
                Out: [0.5275037  0.8368967  0.75037485 0.9245899]

    Code Examples:
        .. code-block:: python
1803

L
littletomatodonkey 已提交
1804 1805 1806
            import paddle
            import paddle.nn as nn

1807 1808 1809 1810
            paddle.seed(1)
            x1 = paddle.randn(shape=[2, 3])
            x2 = paddle.randn(shape=[2, 3])

Y
Yang Zhang 已提交
1811
            result = paddle.nn.functional.cosine_similarity(x1, x2, axis=0)
L
littletomatodonkey 已提交
1812
            print(result)
1813
            # [0.97689527,  0.99996042, -0.55138415]
1814

L
littletomatodonkey 已提交
1815
    """
1816 1817 1818
    w12 = sum(paddle.multiply(x1, x2), axis=axis)
    w1 = sum(paddle.multiply(x1, x1), axis=axis)
    w2 = sum(paddle.multiply(x2, x2), axis=axis)
Y
Yang Zhang 已提交
1819
    n12 = sqrt(clip(w1 * w2, min=eps * eps))
L
littletomatodonkey 已提交
1820 1821
    cos_sim = w12 / n12
    return cos_sim
1822 1823 1824


def linear(x, weight, bias=None, name=None):
1825
    r"""
1826

1827 1828
    Fully-connected linear transformation operator. For each input :math:`X` ,
    the equation is:
1829 1830 1831

    .. math::

1832
        Out = XW + b
1833

1834
    where :math:`W` is the weight and :math:`b` is the bias.
1835

1836 1837 1838 1839
    If the weight is a 2-D tensor of shape :math:`[in\_features, out\_features]` ,
    input should be a multi-dimensional tensor of shape
    :math:`[batch\_size, *, in\_features]` , where :math:`*` means any number of
    additional dimensions. The linear operator multiplies input tensor with
1840
    weight and produces an output tensor of shape :math:`[batch\_size, *, out\_features]` ,
1841 1842
    If :math:`bias` is not None, the bias should be a 1-D tensor of shape
    :math:`[out\_features]` and will be added to the output.
1843

1844 1845 1846 1847 1848 1849 1850
    Parameters:
        x (Tensor): Input tensor. The data type should be float16, float32 or float64.
        weight (Tensor): Weight tensor. The data type should be float16, float32 or float64.
        bias (Tensor, optional): Bias tensor. The data type should be float16, float32 or float64.
                                 If it is set to None, no bias will be added to the output units.
        name (str, optional): Normally there is no need for user to set this parameter.
                              For detailed information, please refer to :ref:`api_guide_Name` .
1851 1852

    Returns:
1853 1854
        Tensor, the shape is :math:`[batch\_size, *, out\_features]` and the
        data type is the same with input :math:`x` .
1855 1856 1857

    Examples:
        .. code-block:: python
1858

1859
          import paddle
1860

1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873
          x = paddle.randn((3, 2), dtype="float32")
          # x: [[-0.32342386 -1.200079  ]
          #     [ 0.7979031  -0.90978354]
          #     [ 0.40597573  1.8095392 ]]
          weight = paddle.full(shape=[2, 4], fill_value="0.5", dtype="float32", name="weight")
          # weight: [[0.5 0.5 0.5 0.5]
          #          [0.5 0.5 0.5 0.5]]
          bias = paddle.ones(shape=[4], dtype="float32", name="bias")
          # bias: [1. 1. 1. 1.]
          y = paddle.nn.functional.linear(x, weight, bias)
          # y: [[0.23824859 0.23824859 0.23824859 0.23824859]
          #     [0.9440598  0.9440598  0.9440598  0.9440598 ]
          #     [2.1077576  2.1077576  2.1077576  2.1077576 ]]
1874
    """
J
Jiabin Yang 已提交
1875
    if in_dygraph_mode():
1876
        # TODO(jiabin): using addmm for fast forward route
1877
        return _C_ops.linear(x, weight, bias)
1878
    else:
J
Jiabin Yang 已提交
1879
        if _in_legacy_dygraph():
1880 1881 1882
            pre_bias = _legacy_C_ops.matmul_v2(
                x, weight, 'trans_x', False, 'trans_y', False
            )
1883

J
Jiabin Yang 已提交
1884 1885
            if bias is None:
                return pre_bias
1886

1887
            return _legacy_C_ops.elementwise_add(pre_bias, bias)
1888
        else:
J
Jiabin Yang 已提交
1889 1890 1891
            helper = LayerHelper('linear', **locals())
            dtype = x.dtype

1892 1893 1894 1895 1896 1897
            check_variable_and_dtype(
                x, 'x', ['float16', 'float32', 'float64'], 'linear'
            )
            check_dtype(
                dtype, 'dtype', ['float16', 'float32', 'float64'], 'linear'
            )
J
Jiabin Yang 已提交
1898 1899 1900 1901

            inputs = {'X': [x], 'Y': [weight]}
            attrs = {'trans_x': False, 'trans_y': False}
            tmp = helper.create_variable_for_type_inference(dtype)
1902 1903 1904 1905 1906 1907
            helper.append_op(
                type='matmul_v2',
                inputs=inputs,
                outputs={'Out': tmp},
                attrs=attrs,
            )
J
Jiabin Yang 已提交
1908 1909
            if bias is not None:
                res = helper.create_variable_for_type_inference(dtype)
1910 1911 1912 1913 1914 1915
                helper.append_op(
                    type='elementwise_add',
                    inputs={'X': [tmp], 'Y': [bias]},
                    outputs={'Out': [res]},
                    attrs={'axis': len(x.shape) - 1},
                )
J
Jiabin Yang 已提交
1916 1917 1918
            else:
                res = tmp
            return res
1919 1920 1921


def label_smooth(label, prior_dist=None, epsilon=0.1, name=None):
1922
    r"""
1923
    Label smoothing is a mechanism to regularize the classifier layer and is called
1924 1925 1926 1927
    label-smoothing regularization (LSR).Label smoothing is proposed to encourage
    the model to be less confident, since optimizing the log-likelihood of the
    correct label directly may cause overfitting and reduce the ability of the
    model to adapt.
1928

1929
    Label smoothing replaces the ground-truth label :math:`y` with the weighted sum
1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Parameters:
        label(Tensor): The input variable containing the label data. The
                        label data should use one-hot representation. It's
                        a multidimensional tensor with a shape of
                        :math:`[N_1, ..., Depth]`, where Depth is class number. The dtype can be "float32" and "float64".
        prior_dist(Tensor, optional): The prior distribution to be used to smooth
                        labels. If not provided, an uniform distribution
                        is used. It's a multidimensional tensor with a shape of
                        :math:`[1, class\_num]` . The default value is None.
        epsilon(float, optional): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution. The default value is
                        0.1.
        name(str, optional): The default value is None. Normally there is no need for user
                        to set this property. For more information, please refer to
                        :ref:`api_guide_Name`.

    Returns:
        Tensor: The tensor containing the smoothed labels.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np
1967

1968 1969 1970 1971 1972 1973
            x_data = np.array([[[0, 1, 0],
                                [ 1,  0, 1]]]).astype("float32")
            print(x_data.shape)
            paddle.disable_static()
            x = paddle.to_tensor(x_data, stop_gradient=False)
            output = paddle.nn.functional.label_smooth(x)
1974
            print(output)
1975

1976 1977 1978
            #[[[0.03333334 0.93333334 0.03333334]
            #  [0.93333334 0.03333334 0.93333334]]]
    """
1979
    if epsilon > 1.0 or epsilon < 0.0:
1980 1981
        raise ValueError("The value of epsilon must be between 0 and 1.")

1982
    if in_dygraph_mode():
1983
        return _C_ops.label_smooth(label, prior_dist, float(epsilon))
1984

1985
    elif paddle.in_dynamic_mode():
1986 1987 1988
        return _legacy_C_ops.label_smooth(
            label, prior_dist, 'epsilon', float(epsilon)
        )
1989

1990 1991 1992
    check_variable_and_dtype(
        label, 'label', ['float32', 'float64'], 'label_smooth'
    )
1993 1994 1995 1996

    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
    smooth_label = helper.create_variable_for_type_inference(label.dtype)
1997 1998 1999 2000 2001 2002 2003 2004
    helper.append_op(
        type="label_smooth",
        inputs={"X": label, "PriorDist": prior_dist}
        if prior_dist
        else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)},
    )
2005
    return smooth_label
2006 2007


G
Guoxia Wang 已提交
2008
def class_center_sample(label, num_classes, num_samples, group=None):
2009 2010
    """
    Class center sample method is proposed from the paper PartialFC that only sample a subset of the class centers.
2011
    The process of sampling subset class centers is straightforward:
2012 2013 2014 2015

    1. First select the positive class centers;
    2. Then randomly sample negative class centers.

2016
    Specifically, given a label tensor, shape [batch_size], select all the positive class centers and randomly
2017 2018 2019 2020
    sample negative class centers, then remap the input label tensor using the sampled class centers.

    For more information, Partial FC: Training 10 Million Identities on a Single Machine
    arxiv: https://arxiv.org/abs/2010.05222
2021

2022
    .. hint::
2023
        If the number of the positive class centers is greater than the input num_samples, it keeps all the positive
2024
        class centers and the shape of sampled_class_center will be [num_positive_class_centers].
2025

2026 2027
        The API supports CPU, single GPU and multi GPU.

2028 2029 2030 2031
        For data parallel mode, set ``group=False``.

        For model parallel mode, set ``group=None`` or the group instance return by paddle.distributed.new_group.

2032
    Args:
G
Guoxia Wang 已提交
2033 2034
        label (Tensor): 1-D tensor with shape [N], each label in [0, num_classes)
        num_classes (int): A positive integer to specify the number of classes at local rank.
2035
            Note that num_classes of each GPU can be different.
G
Guoxia Wang 已提交
2036
        num_samples (int): A positive integer to specify the number of class center to sample.
2037
        group (Group, optional): The group instance return by paddle.distributed.new_group
2038 2039
            or ``None`` for global default group or ``False`` for data parallel (do not communication cross ranks).
            Default is ``None``.
2040 2041 2042 2043 2044 2045 2046 2047

    Returns:
        Tuple of two ``Tensor`` : (remapped_label, sampled_class_center), remapped label using sampled class center,
        sampled class center from [0, num_classes).

    Examples:

    .. code-block:: python
G
Guoxia Wang 已提交
2048
        :name: code-example1
2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070

        # CPU or single GPU
        import paddle
        num_classes = 20
        batch_size = 10
        num_samples = 6
        label = paddle.randint(low=0, high=num_classes, shape=[batch_size], dtype='int64')
        remapped_label, sampled_class_index = paddle.nn.functional.class_center_sample(label, num_classes, num_samples)

        print(label)
        print(remapped_label)
        print(sampled_class_index)

        # the output is
        #Tensor(shape=[10], dtype=int64, place=CPUPlace, stop_gradient=True,
        #       [11, 5 , 1 , 3 , 12, 2 , 15, 19, 18, 19])
        #Tensor(shape=[10], dtype=int64, place=CPUPlace, stop_gradient=True,
        #       [4, 3, 0, 2, 5, 1, 6, 8, 7, 8])
        #Tensor(shape=[9], dtype=int64, place=CPUPlace, stop_gradient=True,
        #       [1 , 2 , 3 , 5 , 11, 12, 15, 18, 19])

    .. code-block:: python
G
Guoxia Wang 已提交
2071
        :name: code-example2
2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102

        # required: distributed
        # Multi GPU, test_class_center_sample.py
        import paddle
        import paddle.distributed as dist
        strategy = dist.fleet.DistributedStrategy()
        dist.fleet.init(is_collective=True, strategy=strategy)
        batch_size = 10
        num_samples = 6
        rank_id = dist.get_rank()
        # num_classes of each GPU can be different, e.g num_classes_list = [10, 8]
        num_classes_list = [10, 10]
        num_classes = paddle.sum(paddle.to_tensor(num_classes_list))
        label = paddle.randint(low=0, high=num_classes.item(), shape=[batch_size], dtype='int64')
        label_list = []
        dist.all_gather(label_list, label)
        label = paddle.concat(label_list, axis=0)
        remapped_label, sampled_class_index = paddle.nn.functional.class_center_sample(label, num_classes_list[rank_id], num_samples)

        print(label)
        print(remapped_label)
        print(sampled_class_index)

        #python -m paddle.distributed.launch --gpus=0,1 test_class_center_sample.py
        # rank 0 output:
        #Tensor(shape=[20], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
        #       [10, 17, 15, 11, 9 , 12, 18, 18, 17, 18, 19, 2 , 8 , 13, 11, 13, 9 , 10, 0 , 4 ])
        #Tensor(shape=[20], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
        #       [6 , 11, 10, 7 , 4 , 8 , 12, 12, 11, 12, 13, 1 , 3 , 9 , 7 , 9 , 4 , 6 , 0 , 2 ])
        #Tensor(shape=[6], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
        #       [0, 2, 4, 8, 9, 3])
2103

2104 2105 2106 2107 2108 2109 2110 2111
        # rank 1 output:
        #Tensor(shape=[20], dtype=int64, place=CUDAPlace(1), stop_gradient=True,
        #       [10, 17, 15, 11, 9 , 12, 18, 18, 17, 18, 19, 2 , 8 , 13, 11, 13, 9 , 10, 0 , 4 ])
        #Tensor(shape=[20], dtype=int64, place=CUDAPlace(1), stop_gradient=True,
        #       [6 , 11, 10, 7 , 4 , 8 , 12, 12, 11, 12, 13, 1 , 3 , 9 , 7 , 9 , 4 , 6 , 0 , 2 ])
        #Tensor(shape=[7], dtype=int64, place=CUDAPlace(1), stop_gradient=True,
        #       [0, 1, 2, 3, 5, 7, 8])
    """
2112
    if not (group is False or group is None or hasattr(group, 'is_member')):
2113 2114
        raise ValueError(
            'Expected group is False, None or instance of paddle.distributed.collective.Group \
2115 2116 2117 2118
             (got group: {})'.format(
                group
            )
        )
2119 2120 2121
        return

    if hasattr(group, 'is_member') and not group.is_member():
2122 2123
        return

2124
    ring_id = 0
2125 2126
    rank = 0
    nranks = 1
2127
    if group is not False:
2128 2129 2130
        if core.is_compiled_with_dist():
            parallel_env = paddle.distributed.ParallelEnv()
            global_rank = parallel_env.rank
2131 2132 2133 2134 2135
            rank = (
                global_rank
                if group is None
                else group.get_group_rank(global_rank)
            )
2136
            nranks = parallel_env.world_size if group is None else group.nranks
2137 2138 2139

    if num_samples > num_classes:
        raise ValueError(
2140 2141 2142 2143
            'Expected num_samples less than or equal to {}, got num_samples {}'.format(
                num_classes, num_samples
            )
        )
2144

G
Guoxia Wang 已提交
2145 2146 2147
    label_size = 1
    for dim in list(label.shape):
        label_size *= dim
2148
    if label_size != -1 and label_size < 1:
2149 2150 2151 2152 2153 2154
        raise ValueError(
            'Expected label_size > 0 \
             (got label_size: {})'.format(
                label_size
            )
        )
G
Guoxia Wang 已提交
2155 2156 2157

    label_dims = len(list(label.shape))
    if label_dims != 1:
2158 2159 2160 2161 2162 2163
        raise ValueError(
            'Expected label_dims == 1 \
             (got label_dims: {})'.format(
                label_dims
            )
        )
G
Guoxia Wang 已提交
2164 2165

    seed = None
2166 2167 2168
    if (seed is None or seed == 0) and default_main_program().random_seed != 0:
        seed = default_main_program().random_seed

2169
    if in_dygraph_mode():
2170 2171 2172 2173 2174 2175 2176 2177 2178 2179
        return _C_ops.class_center_sample(
            label,
            num_classes,
            num_samples,
            ring_id,
            rank,
            nranks,
            seed is not None,
            seed if seed is not None else 0,
        )
2180
    elif paddle.in_dynamic_mode():
2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200
        (
            remapped_label,
            sampled_class_center,
        ) = _legacy_C_ops.class_center_sample(
            label,
            'num_classes',
            num_classes,
            'num_samples',
            num_samples,
            'ring_id',
            ring_id,
            'nranks',
            nranks,
            'rank',
            rank,
            'fix_seed',
            seed is not None,
            'seed',
            seed if seed is not None else 0,
        )
2201 2202
        return remapped_label, sampled_class_center

2203 2204 2205
    check_variable_and_dtype(
        label, 'label', ['int64', 'int32'], 'class_center_sample'
    )
2206 2207 2208
    op_type = 'class_center_sample'
    helper = LayerHelper(op_type, **locals())
    remapped_label = helper.create_variable_for_type_inference(
2209 2210
        dtype=label.dtype
    )
2211
    sampled_class_center = helper.create_variable_for_type_inference(
2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230
        dtype=label.dtype
    )
    helper.append_op(
        type=op_type,
        inputs={'Label': label},
        outputs={
            'RemappedLabel': remapped_label,
            'SampledLocalClassCenter': sampled_class_center,
        },
        attrs={
            'num_classes': num_classes,
            'num_samples': num_samples,
            'ring_id': ring_id,
            'nranks': nranks,
            'rank': rank,
            'fix_seed': seed is not None,
            'seed': seed if seed is not None else 0,
        },
    )
2231
    return remapped_label, sampled_class_center
X
xiaoting 已提交
2232 2233


2234 2235 2236
def fold(
    x, output_sizes, kernel_sizes, strides=1, paddings=0, dilations=1, name=None
):
X
xiaoting 已提交
2237
    r"""
2238

2239
    Combines an array of sliding local blocks into a large containing
2240 2241
    tensor. also known as col2im when operated on batched 2D image tensor. Fold calculates each
    combined value in the resulting large tensor by summing all values from all containing blocks.
X
xiaoting 已提交
2242 2243 2244 2245 2246 2247


    For each input :math:`x` with shape [N, C_in , L], the output shape [N, C_out, H_out, W_out]
    can be calculated as following.

    .. math::
2248

2249 2250 2251
        H_{out} &= output\_size[0] \\
        W_{out} &= output\_size[1] \\
        C_{out} &= \frac{C_{in}}{kernel\_sizes[0]\times kernel\_sizes[1]} \\
X
xiaoting 已提交
2252 2253 2254 2255

    Parameters:
        x(Tensor):                3-D Tensor, input tensor of format [N, C, L],
                                  data type can be float32 or float64
X
xiaoting 已提交
2256
        output_sizes(int|list|tuple):       The size of output size, should be [output_size_h, output_size_w]
X
xiaoting 已提交
2257
                                  or an interger o treated as [o, o].
X
xiaoting 已提交
2258
        kernel_sizes(int|list|tuple):   The size of convolution kernel, should be [k_h, k_w]
X
xiaoting 已提交
2259
                                  or an integer k treated as [k, k].
2260
        strides(int|list|tuple, optional):        The strides, should be [stride_h, stride_w]
X
xiaoting 已提交
2261 2262
                                  or an integer stride treated as [sride, stride].
                                  For default, strides will be [1, 1].
2263
        paddings(int|list|tuple, optional):       The paddings of each dimension, should be
X
xiaoting 已提交
2264 2265 2266 2267 2268 2269
                                  [padding_top, padding_left, padding_bottom, padding_right]
                                  or [padding_h, padding_w] or an integer padding.
                                  If [padding_h, padding_w] was given, it will expanded to
                                  [padding_h, padding_w, padding_h, padding_w]. If an integer
                                  padding was given, [padding, padding, padding, padding] will
                                  be used. For default, paddings will be [0, 0, 0, 0]
2270
        dilations(int|list|tuple, optional):      the dilations of convolution kernel, should be
X
xiaoting 已提交
2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288
                                  [dilation_h, dilation_w], or an integer dilation treated as
                                  [dilation, dilation]. For default, it will be [1, 1].
        name(str, optional): The default value is None.
                             Normally there is no need for user to set this property.
                             For more information, please refer to :ref:`api_guide_Name`


    Returns:
        The tensor formed by combining a group of sliding local blocks
        The output shape is [N, Cout, H, W] as decriabled above.

    Examples:

        .. code-block:: python

            import paddle
            import paddle.nn.functional as F

X
xiaoting 已提交
2289 2290 2291
            x = paddle.randn([2,3*2*2,12])
            y = F.fold(x, output_sizes=[4, 5], kernel_sizes=2)
            # y.shape = [2,3,4,5]
X
xiaoting 已提交
2292 2293 2294 2295 2296 2297 2298

    """

    helper = LayerHelper("fold", **locals())

    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'fold')

2299
    assert len(x.shape) == 3, "input should be the format of [N, C, L]"
X
xiaoting 已提交
2300

X
xiaoting 已提交
2301
    def _is_list_or_turple_(data):
2302
        return isinstance(data, list) or isinstance(data, tuple)
X
xiaoting 已提交
2303

X
xiaoting 已提交
2304 2305 2306
    if isinstance(output_sizes, int):
        output_sizes = [output_sizes, output_sizes]
    else:
2307 2308 2309
        assert _is_list_or_turple_(output_sizes) and (
            len(output_sizes) == 2
        ), "output_sizes should either be an integer or a list/tuple of two integers"
X
xiaoting 已提交
2310 2311 2312 2313

    if isinstance(kernel_sizes, int):
        kernel_sizes = [kernel_sizes, kernel_sizes]
    else:
2314 2315 2316
        assert _is_list_or_turple_(kernel_sizes) and (
            len(kernel_sizes) == 2
        ), "kernel_sizes should either be an integer or a list/tuple of two integers"
X
xiaoting 已提交
2317 2318 2319 2320

    if isinstance(strides, int):
        strides = [strides, strides]
    else:
2321 2322 2323
        assert _is_list_or_turple_(strides) and (
            len(strides) == 2
        ), "strides should either be an integer or a list/tuple of two integers"
X
xiaoting 已提交
2324 2325 2326 2327

    if isinstance(dilations, int):
        dilations = [dilations, dilations]
    else:
2328 2329 2330
        assert _is_list_or_turple_(dilations) and (
            len(dilations) == 2
        ), "dilations should either be an integer or a list/tuple of two integers"
X
xiaoting 已提交
2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345

    if isinstance(paddings, int):
        paddings = [paddings] * 4
    elif isinstance(paddings, list):
        if len(paddings) == 2:
            paddings = paddings * 2
        elif len(paddings) == 4:
            pass
        else:
            raise ValueError(
                "paddings should either be an integer or a list of 2 or 4 integers"
            )
    else:
        raise ValueError(
            "Unexpected type of paddings, it should be either an integer or a list"
2346 2347
            "of 2 or 4 integers"
        )
X
xiaoting 已提交
2348

X
xiaoting 已提交
2349
    if in_dygraph_mode():
2350 2351 2352
        out = _C_ops.fold(
            x, output_sizes, kernel_sizes, strides, paddings, dilations
        )
X
xiaoting 已提交
2353
    elif in_dynamic_mode():
2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366
        out = _legacy_C_ops.fold(
            x,
            "output_sizes",
            output_sizes,
            "kernel_sizes",
            kernel_sizes,
            "strides",
            strides,
            "paddings",
            paddings,
            "dilations",
            dilations,
        )
X
xiaoting 已提交
2367 2368
    else:
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380
        helper.append_op(
            type="fold",
            inputs={"X": x},
            outputs={"Y": out},
            attrs={
                "output_sizes": output_sizes,
                "kernel_sizes": kernel_sizes,
                "strides": strides,
                "paddings": paddings,
                "dilations": dilations,
            },
        )
X
xiaoting 已提交
2381
    return out