math.py 120.9 KB
Newer Older
W
WuHaobo 已提交
1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15 16
"""
math functions
"""
17
from __future__ import print_function
Y
Yang Zhang 已提交
18
import numpy as np
19

20 21 22 23 24 25
from paddle.common_ops_import import VarDesc
from paddle.common_ops_import import dygraph_only
from paddle.common_ops_import import OpProtoHolder
from paddle.common_ops_import import templatedoc
from paddle.common_ops_import import dygraph_utils

26
from paddle.tensor import cast
F
Feiyu Chan 已提交
27
from paddle.tensor.attribute import _complex_to_real_dtype
28
import paddle
29
from ..fluid import layers
30
from ..fluid.framework import core, _varbase_creator, in_dygraph_mode, Variable, convert_np_dtype_to_dtype_
L
Li Fuchen 已提交
31 32
from ..fluid.layer_helper import LayerHelper
from ..fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype, convert_dtype
33
from ..fluid.layers.layer_function_generator import _generate_doc_string_, generate_activation_fn, generate_layer_fn
34
from ..fluid.dygraph.inplace_utils import inplace_apis_in_dygraph_only
35 36 37

# TODO: define math functions
# yapf: disable
38 39 40 41
from ..fluid.layers import abs    # noqa: F401
from ..fluid.layers import acos    # noqa: F401
from ..fluid.layers import asin    # noqa: F401
from ..fluid.layers import ceil    # noqa: F401
42
from ..fluid.layers import ceil_    # noqa: F401
43 44 45 46 47
from ..fluid.layers import cos    # noqa: F401
from ..fluid.layers import tan    # noqa: F401
from ..fluid.layers import sinh    # noqa: F401
from ..fluid.layers import cosh    # noqa: F401
from ..fluid.layers import exp    # noqa: F401
48
from ..fluid.layers import exp_    # noqa: F401
R
ronnywang 已提交
49
from ..fluid.layers import expm1    # noqa: F401
50
from ..fluid.layers import floor    # noqa: F401
51
from ..fluid.layers import floor_    # noqa: F401
52 53
from ..fluid.layers import log    # noqa: F401
from ..fluid.layers import reciprocal    # noqa: F401
54
from ..fluid.layers import reciprocal_    # noqa: F401
55
from ..fluid.layers import round    # noqa: F401
56
from ..fluid.layers import round_    # noqa: F401
57
from ..fluid.layers import rsqrt    # noqa: F401
58
from ..fluid.layers import rsqrt_    # noqa: F401
59 60 61 62 63 64
from ..fluid.layers import scale    # noqa: F401
from ..fluid.layers import square    # noqa: F401
from ..fluid.layers import stanh    # noqa: F401
from ..fluid.layers import atan    # noqa: F401
from ..fluid.layers import erf    # noqa: F401
from ..fluid.layers import sqrt    # noqa: F401
65
from ..fluid.layers import sqrt_    # noqa: F401
66
from ..fluid.layers import sin    # noqa: F401
67
from ..fluid.layers import lgamma    # noqa: F401
68 69

from ..fluid.layers import multiplex    # noqa: F401
G
guofei 已提交
70
from ..fluid import layers
W
wanghuancoder 已提交
71
from paddle import _C_ops
72

73 74
__all__ = []

75 76 77 78 79 80 81 82 83 84 85 86 87
_supported_int_dtype_ = [
    VarDesc.VarType.UINT8,
    VarDesc.VarType.INT8,
    VarDesc.VarType.INT16,
    VarDesc.VarType.INT32,
    VarDesc.VarType.INT64,
]

_supported_float_dtype_ = [
    VarDesc.VarType.FP32,
    VarDesc.VarType.FP64,
]

88 89 90 91 92 93 94 95

@inplace_apis_in_dygraph_only
def scale_(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
    """
    Inplace version of ``scale`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_scale`.
    """
    _scale = scale.numpy().item(0) if isinstance(scale, Variable) else scale
W
wanghuancoder 已提交
96
    return _C_ops.scale_(x, 'scale',
97 98 99 100
                            float(_scale), 'bias',
                            float(bias), 'bias_after_scale', bias_after_scale)


101
def pow(x, y, name=None):
102
    """
103
    Compute the power of tensor elements. The equation is:
S
swtkiwi 已提交
104

105 106
    .. math::
        out = x^{y} 
107

108 109
    **Note**:
    ``paddle.pow`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
110 111


112 113
    Args:
        x (Tensor): An N-D Tensor, the data type is float32, float64, int32 or int64.
114
        y (float|int|Tensor): If it is an N-D Tensor, its data type should be the same as `x`.
115 116
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
    
117
    Returns:
118
        N-D Tensor. A location into which the result is stored. Its dimension and data type are the same as `x`.
119 120 121

    Examples:

122
        ..  code-block:: python
123 124 125

            import paddle

126 127 128 129 130 131 132 133 134 135 136 137
            x = paddle.to_tensor([1, 2, 3], dtype='float32')

            # example 1: y is a float or int
            res = paddle.pow(x, 2)
            print(res)
            # Tensor(shape=[3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [1., 4., 9.])
            res = paddle.pow(x, 2.5)
            print(res)
            # Tensor(shape=[3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [1.         , 5.65685415 , 15.58845711])

138
            # example 2: y is a Tensor
139
            y = paddle.to_tensor([2], dtype='float32')
140
            res = paddle.pow(x, y)
141 142 143
            print(res)
            # Tensor(shape=[3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [1., 4., 9.])
144 145

    """
146
    # in dynamic graph mode
W
WuHaobo 已提交
147
    if in_dygraph_mode():
148
        if isinstance(y, (int, float)):
W
wanghuancoder 已提交
149
            return _C_ops.pow(x, 'factor', y)
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
        elif isinstance(y, (paddle.Tensor, Variable)):
            return _elementwise_op_in_dygraph(
                x, y, axis=-1, act=None, op_name='elementwise_pow')
        else:
            raise TypeError('y must be scalar or tensor type, but received: %s '% (y.dtype))
    # in static graph mode
    else:
        if isinstance(y, (int, float)):
            helper = LayerHelper('pow', **locals())
            inputs = {'X': x}
            attrs = {'factor': y}
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
            helper.append_op(
                type='pow', inputs=inputs, outputs={'Out': out}, attrs=attrs)
            return out
        elif isinstance(y, (paddle.Tensor, Variable)):
            # TODO A potential speed improvement is supporting different types in C++ and removing the cast ops here
            helper = LayerHelper('elementwise_pow', **locals())
J
joejiong 已提交
168
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
169 170 171
            return _elementwise_op(LayerHelper('elementwise_pow', **locals()))
        else:
            raise TypeError('y must be scalar or tensor type, but received: %s '% (type(y)))
172 173 174



175 176 177 178 179 180 181
@dygraph_only
def _elementwise_op_in_dygraph(x,
                               y,
                               axis=-1,
                               act=None,
                               use_mkldnn=False,
                               op_name=None):
W
wanghuancoder 已提交
182
    op = getattr(_C_ops, op_name)
183 184 185 186 187 188 189 190 191 192 193 194
    out = op(x, y, 'axis', axis, 'use_mkldnn', use_mkldnn)

    return dygraph_utils._append_activation_in_dygraph(
        out, act, use_mkldnn=use_mkldnn)


def _elementwise_op(helper):
    op_type = helper.layer_type
    original_op_type = helper.kwargs.get('original_op_type', op_type)
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)

195 196
    out = helper.kwargs.get('out', None)

197 198 199
    assert x is not None, 'x cannot be None in {}'.format(original_op_type)
    assert y is not None, 'y cannot be None in {}'.format(original_op_type)
    check_variable_and_dtype(
W
will-jl944 已提交
200
        x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64', 'bool'],
201 202
        original_op_type)
    check_variable_and_dtype(
W
will-jl944 已提交
203
        y, 'y', ['float16', 'float32', 'float64', 'int32', 'int64', 'bool'],
204 205 206 207 208
        original_op_type)

    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
    name = helper.kwargs.get('name', None)
209 210 211 212 213 214

    if out is None:
        if name is None:
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
        else:
            out = helper.create_variable(name=name, dtype=x.dtype, persistable=False)
215 216 217 218 219 220 221 222 223 224 225

    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


Y
Yang Zhang 已提交
226
def add(x, y, name=None):
227
    """
228
    Examples:
229 230 231 232

    ..  code-block:: python

        import paddle
233 234
        x = paddle.to_tensor([2, 3, 4], 'float64')
        y = paddle.to_tensor([1, 5, 2], 'float64')
W
WuHaobo 已提交
235
        z = paddle.add(x, y)
236
        print(z)  # [3., 8., 6. ]
237 238

    """
239

240
    if in_dygraph_mode():
W
wanghuancoder 已提交
241
        return _C_ops.elementwise_add(x, y)
242

243
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))
244 245


246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
@inplace_apis_in_dygraph_only
def add_(x, y, name=None):
    """
    Inplace version of ``add`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_add`.
    """
    op_type = 'elementwise_add_'
    axis = -1

    out_shape = broadcast_shape(x.shape, y.shape)
    if out_shape != x.shape:
        raise ValueError("The shape of broadcast output {} is different from that of inplace tensor {} in the Inplace operation.".format(out_shape, x.shape))

    out = _elementwise_op_in_dygraph(
        x, y, axis=axis, op_name=op_type)
    return out


264 265
def subtract(x, y, name=None):
    """
W
Wei Shengyu 已提交
266
    Substract two tensors element-wise. The equation is:
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284

    .. math::
        out = x - y

    **Note**:
    ``paddle.subtract`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .

    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.

    Examples:

        .. code-block:: python
W
Wei Shengyu 已提交
285

286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
            import numpy as np
            import paddle

            x = paddle.to_tensor([[1, 2], [7, 8]])
            y = paddle.to_tensor([[5, 6], [3, 4]])
            res = paddle.subtract(x, y)
            print(res)
            #       [[-4, -4],
            #        [4, 4]]

            x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
            y = paddle.to_tensor([1, 0, 4])
            res = paddle.subtract(x, y)
            print(res)
            #       [[[ 0,  2, -1],
            #         [ 0,  2, -1]]]

            x = paddle.to_tensor([2, np.nan, 5], dtype='float32')
            y = paddle.to_tensor([1, 4, np.nan], dtype='float32')
            res = paddle.subtract(x, y)
            print(res)
            #       [ 1., nan, nan]

            x = paddle.to_tensor([5, np.inf, -np.inf], dtype='float64')
            y = paddle.to_tensor([1, 4, 5], dtype='float64')
            res = paddle.subtract(x, y)
            print(res)
            #       [   4.,  inf., -inf.]

    """
    op_type = 'elementwise_sub'
    axis = -1
    act = None
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name=op_type)
    return _elementwise_op(LayerHelper(op_type, **locals()))


325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
@inplace_apis_in_dygraph_only
def subtract_(x, y, name=None):
    """
    Inplace version of ``subtract`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_subtract`.
    """
    axis = -1
    act = None

    out_shape = broadcast_shape(x.shape, y.shape)
    if out_shape != x.shape:
        raise ValueError("The shape of broadcast output {} is different from that of inplace tensor {} in the Inplace operation.".format(out_shape, x.shape))

    out = _elementwise_op_in_dygraph(
        x, y, axis=axis, act=act, op_name='elementwise_sub_')
    return out


343
def divide(x, y, name=None):
344
    """
345
    Divide two tensors element-wise. The equation is:
346

347 348
    .. math::
        out = x / y
349

350 351
    **Note**:
    ``paddle.divide`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
352

353 354 355 356
    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
357

358
    Returns:
359
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.
360

361
    Examples:
362

363
        ..  code-block:: python
364

365
            import paddle
366

367 368
            x = paddle.to_tensor([2, 3, 4], dtype='float64')
            y = paddle.to_tensor([1, 5, 2], dtype='float64')
369
            z = paddle.divide(x, y)
370
            print(z)  # [2., 0.6, 2.]
371

372 373 374 375 376 377 378
    """
    op_type = 'elementwise_div'
    axis = -1
    act = None
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name=op_type)
379

380
    return _elementwise_op(LayerHelper(op_type, **locals()))
381 382


383 384 385
def floor_divide(x, y, name=None):
    """
    Floor divide two tensors element-wise. The equation is:
386

387 388
    .. math::
        out = x // y
389

390 391
    **Note**:
    ``paddle.floor_divide`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
392

393 394 395 396
    Args:
        x (Tensor): the input tensor, it's data type should be int32, int64.
        y (Tensor): the input tensor, it's data type should be int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
397

398 399
    Returns:
        N-D Tensor. A location into which the result is stored. It's dimension equals with $x$.
400

401
    Examples:
402

403
        ..  code-block:: python
404

405
            import paddle
406

407 408
            x = paddle.to_tensor([2, 3, 8, 7])
            y = paddle.to_tensor([1, 5, 3, 3])
409
            z = paddle.floor_divide(x, y)
410
            print(z)  # [2, 0, 2, 2]
411

412 413 414 415 416 417
    """
    op_type = 'elementwise_floordiv'
    axis = -1
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, op_name=op_type)
418

419
    return _elementwise_op(LayerHelper(op_type, **locals()))
420 421


422
def remainder(x, y, name=None):
423
    r"""
424 425 426
    Mod two tensors element-wise. The equation is:

    .. math::
427

428 429 430
        out = x \% y

    **Note**:
431
    ``paddle.remainder`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
432 433

    Args:
W
WangXi 已提交
434 435
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
436 437 438
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
439
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.
440 441 442 443 444 445 446

    Examples:

        ..  code-block:: python

            import paddle

447 448
            x = paddle.to_tensor([2, 3, 8, 7])
            y = paddle.to_tensor([1, 5, 3, 3])
449
            z = paddle.remainder(x, y)
W
WangXi 已提交
450
            print(z)  # [0, 3, 2, 1]
451 452 453

    """
    op_type = 'elementwise_mod'
454 455 456
    axis = -1
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
457
            x, y, axis=axis, op_name=op_type)
458 459 460 461

    return _elementwise_op(LayerHelper(op_type, **locals()))


462 463
mod = remainder  # noqa: F841
floor_mod = remainder  # noqa: F841
464 465


466
def multiply(x, y, name=None):
467
    """
468
    multiply two tensors element-wise. The equation is:
469

470 471
    .. math::
        out = x * y
472

473 474
    **Note**:
    ``paddle.multiply`` supports broadcasting. If you would like to know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .
475

476
    Args:
W
will-jl944 已提交
477 478
        x (Tensor): the input tensor, its data type should be one of float32, float64, int32, int64, bool.
        y (Tensor): the input tensor, its data type should be one of float32, float64, int32, int64, bool.
479
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
480

481
    Returns:
482
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.
483

484 485 486 487 488 489
    Examples:

        ..  code-block:: python

            import paddle

490 491
            x = paddle.to_tensor([[1, 2], [3, 4]])
            y = paddle.to_tensor([[5, 6], [7, 8]])
492
            res = paddle.multiply(x, y)
493
            print(res) # [[5, 12], [21, 32]]
494

495
            x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
496 497 498
            y = paddle.to_tensor([2])
            res = paddle.multiply(x, y)
            print(res) # [[[2, 4, 6], [2, 4, 6]]]
499 500 501 502

    """
    op_type = 'elementwise_mul'
    act = None
503
    axis = -1
504

505 506 507 508
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name=op_type)

509 510 511 512 513
    if x.dtype != y.dtype:
        raise TypeError(
            'Input tensors must be same type, but received type of x: %s, type of y: %s '
            % (x.dtype, y.dtype))

514 515
    return _elementwise_op(LayerHelper(op_type, **locals()))

516
def maximum(x, y, name=None):
517
    """
W
Wei Shengyu 已提交
518
    Compare two tensors and returns a new tensor containing the element-wise maxima. The equation is:
519

520 521
    .. math::
        out = max(x, y)
522

523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565
    **Note**:
    ``paddle.maximum`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .

    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.

    Examples:

        .. code-block:: python

            import numpy as np
            import paddle

            x = paddle.to_tensor([[1, 2], [7, 8]])
            y = paddle.to_tensor([[3, 4], [5, 6]])
            res = paddle.maximum(x, y)
            print(res)
            #    [[3, 4],
            #     [7, 8]]

            x = paddle.to_tensor([[1, 2, 3], [1, 2, 3]])
            y = paddle.to_tensor([3, 0, 4])
            res = paddle.maximum(x, y)
            print(res)
            #    [[3, 2, 4],
            #     [3, 2, 4]]

            x = paddle.to_tensor([2, 3, 5], dtype='float32')
            y = paddle.to_tensor([1, np.nan, np.nan], dtype='float32')
            res = paddle.maximum(x, y)
            print(res)
            #    [ 2., nan, nan]

            x = paddle.to_tensor([5, 3, np.inf], dtype='float32')
            y = paddle.to_tensor([1, -np.inf, 5], dtype='float32')
            res = paddle.maximum(x, y)
            print(res)
            #    [  5.,   3., inf.]
566 567
    """
    op_type = 'elementwise_max'
568
    axis = -1
569 570 571 572 573 574
    act = None
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name=op_type)
    return _elementwise_op(LayerHelper(op_type, **locals()))

575
def minimum(x, y, name=None):
576
    """
W
Wei Shengyu 已提交
577
    Compare two tensors and returns a new tensor containing the element-wise minima. The equation is:
578

579 580
    .. math::
        out = min(x, y)
581

582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624
    **Note**:
    ``paddle.minimum`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .

    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.

    Examples:

        .. code-block:: python

            import numpy as np
            import paddle

            x = paddle.to_tensor([[1, 2], [7, 8]])
            y = paddle.to_tensor([[3, 4], [5, 6]])
            res = paddle.minimum(x, y)
            print(res)
            #       [[1, 2],
            #        [5, 6]]

            x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
            y = paddle.to_tensor([3, 0, 4])
            res = paddle.minimum(x, y)
            print(res)
            #       [[[1, 0, 3],
            #         [1, 0, 3]]]

            x = paddle.to_tensor([2, 3, 5], dtype='float32')
            y = paddle.to_tensor([1, np.nan, np.nan], dtype='float32')
            res = paddle.minimum(x, y)
            print(res)
            #       [ 1., nan, nan]

            x = paddle.to_tensor([5, 3, np.inf], dtype='float64')
            y = paddle.to_tensor([1, -np.inf, 5], dtype='float64')
            res = paddle.minimum(x, y)
            print(res)
            #       [   1., -inf.,    5.]
625 626
    """
    op_type = 'elementwise_min'
627
    axis = -1
628 629 630 631 632
    act = None
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name=op_type)
    return _elementwise_op(LayerHelper(op_type, **locals()))
633

L
LJQ❤️ 已提交
634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755
def fmax(x, y, name=None):
    """
    Compares the elements at the corresponding positions of the two tensors and returns a new tensor containing the maximum value of the element.
    If one of them is a nan value, the other value is directly returned, if both are nan values, then the first nan value is returned.
    The equation is:

    .. math::
        out = fmax(x, y)

    **Note**:
    ``paddle.fmax`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .

    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.

    Examples:

        .. code-block:: python

            import numpy as np
            import paddle

            x = paddle.to_tensor([[1, 2], [7, 8]])
            y = paddle.to_tensor([[3, 4], [5, 6]])
            res = paddle.fmax(x, y)
            print(res)
            #    [[3, 4],
            #     [7, 8]]

            x = paddle.to_tensor([[1, 2, 3], [1, 2, 3]])
            y = paddle.to_tensor([3, 0, 4])
            res = paddle.fmax(x, y)
            print(res)
            #    [[3, 2, 4],
            #     [3, 2, 4]]

            x = paddle.to_tensor([2, 3, 5], dtype='float32')
            y = paddle.to_tensor([1, np.nan, np.nan], dtype='float32')
            res = paddle.fmax(x, y)
            print(res)
            #    [ 2., 3., 5.]

            x = paddle.to_tensor([5, 3, np.inf], dtype='float32')
            y = paddle.to_tensor([1, -np.inf, 5], dtype='float32')
            res = paddle.fmax(x, y)
            print(res)
            #    [  5.,   3., inf.]
    """
    op_type = 'elementwise_fmax'
    axis = -1
    act = None
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name=op_type)
    return _elementwise_op(LayerHelper(op_type, **locals()))

def fmin(x, y, name=None):
    """
    Compares the elements at the corresponding positions of the two tensors and returns a new tensor containing the minimum value of the element.
    If one of them is a nan value, the other value is directly returned, if both are nan values, then the first nan value is returned.
    The equation is:

    .. math::
        out = fmin(x, y)

    **Note**:
    ``paddle.fmin`` supports broadcasting. If you want know more about broadcasting, please refer to :ref:`user_guide_broadcasting` .

    Args:
        x (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        y (Tensor): the input tensor, it's data type should be float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        N-D Tensor. A location into which the result is stored. If x, y have different shapes and are "broadcastable", the resulting tensor shape is the shape of x and y after broadcasting. If x, y have the same shape,  its shape is the same as x and y.

    Examples:

        .. code-block:: python

            import numpy as np
            import paddle

            x = paddle.to_tensor([[1, 2], [7, 8]])
            y = paddle.to_tensor([[3, 4], [5, 6]])
            res = paddle.fmin(x, y)
            print(res)
            #       [[1, 2],
            #        [5, 6]]

            x = paddle.to_tensor([[[1, 2, 3], [1, 2, 3]]])
            y = paddle.to_tensor([3, 0, 4])
            res = paddle.fmin(x, y)
            print(res)
            #       [[[1, 0, 3],
            #         [1, 0, 3]]]

            x = paddle.to_tensor([2, 3, 5], dtype='float32')
            y = paddle.to_tensor([1, np.nan, np.nan], dtype='float32')
            res = paddle.fmin(x, y)
            print(res)
            #       [ 1., 3., 5.]

            x = paddle.to_tensor([5, 3, np.inf], dtype='float64')
            y = paddle.to_tensor([1, -np.inf, 5], dtype='float64')
            res = paddle.fmin(x, y)
            print(res)
            #       [   1., -inf.,    5.]
    """
    op_type = 'elementwise_fmin'
    axis = -1
    act = None
    if in_dygraph_mode():
        return _elementwise_op_in_dygraph(
            x, y, axis=axis, act=act, op_name=op_type)
    return _elementwise_op(LayerHelper(op_type, **locals()))

756 757
for func in [
        add,
758
        multiply
759
]:
760
    proto_dict = {'add': 'elementwise_add', 'multiply': 'elementwise_mul'}
761 762
    op_proto = OpProtoHolder.instance().get_op_proto(proto_dict[func.__name__])

Y
Yang Zhang 已提交
763 764 765 766 767 768 769
    additional_args_lines = [
        "name (string, optional): Name of the output. \
        Default is None. It's used to print debug info for developers. Details: \
        :ref:`api_guide_Name` "
    ]

    func.__doc__ = _generate_doc_string_(
770 771
        op_proto,
        additional_args_lines=additional_args_lines,
772
        skip_attrs_set={"x_data_format", "y_data_format", "axis",
773
            "use_quantizer", "mkldnn_data_type", "Scale_x", "Scale_y", "Scale_out"
774
        }) + """\n""" + str(func.__doc__)
775

Y
Yang Zhang 已提交
776

777
def sum(x, axis=None, dtype=None, keepdim=False, name=None):
778 779 780 781
    """
    Computes the sum of tensor elements over the given dimension.

    Args:
782
        x (Tensor): An N-D Tensor, the data type is bool, float16, float32, float64, int32 or int64.
783 784
        axis (int|list|tuple, optional): The dimensions along which the sum is performed. If
            :attr:`None`, sum all elements of :attr:`x` and return a
N
Noel 已提交
785
            Tensor with a single element, otherwise must be in the
786 787 788 789 790 791 792
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        dtype (str, optional): The dtype of output Tensor. The default value is None, the dtype
            of output is the same as input Tensor `x`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
793
            value is False.
794
        name (str, optional): The default value is None. Normally there is no need for
795 796 797
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`

    Returns:
798
        Tensor: Results of summation operation on the specified axis of input Tensor `x`,
799 800
        if `x.dtype='bool'`, `x.dtype='int32'`, it's data type is `'int64'`, 
        otherwise it's data type is the same as `x`.
801 802

    Raises:
803
        TypeError: The type of :attr:`axis` must be int, list or tuple.
804

805 806 807 808
    Examples:
        .. code-block:: python

            import paddle
809

810
            # x is a Tensor with following elements:
811 812 813
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the corresponding output tensor.
814 815
            x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
                                  [0.1, 0.2, 0.6, 0.7]])
816
            out1 = paddle.sum(x)  # [3.5]
817 818 819
            out2 = paddle.sum(x, axis=0)  # [0.3, 0.5, 1.1, 1.6]
            out3 = paddle.sum(x, axis=-1)  # [1.9, 1.6]
            out4 = paddle.sum(x, axis=1, keepdim=True)  # [[1.9], [1.6]]
820

821
            # y is a Tensor with shape [2, 2, 2] and elements as below:
822 823 824
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
            # Each example is followed by the corresponding output tensor.
825 826
            y = paddle.to_tensor([[[1, 2], [3, 4]], 
                                  [[5, 6], [7, 8]]])
827 828
            out5 = paddle.sum(y, axis=[1, 2]) # [10, 26]
            out6 = paddle.sum(y, axis=[0, 1]) # [16, 20]
829 830 831 832 833 834 835 836 837 838
            
            # x is a Tensor with following elements:
            #    [[True, True, True, True]
            #     [False, False, False, False]]
            # Each example is followed by the corresponding output tensor.
            x = paddle.to_tensor([[True, True, True, True],
                                  [False, False, False, False]])
            out7 = paddle.sum(x)  # [4]
            out8 = paddle.sum(x, axis=0)  # [1, 1, 1, 1]
            out9 = paddle.sum(x, axis=1)  # [4, 0]
839
    """
840 841 842 843 844 845 846 847 848 849 850
    if axis is not None and not isinstance(axis, (list, tuple)):
        axis = [axis]

    if not axis:
        reduce_all_flag = True
    else:
        if len(axis) == len(x.shape):
            reduce_all_flag = True
        else:
            reduce_all_flag = False

851 852 853 854 855 856 857 858 859
    def get_dtype(x, dtype):
        if dtype is not None:
            return (True, dtype)
        src_type = convert_dtype(x.dtype)
        if src_type in ['bool','int32', 'int64']:
            return (True, 'int64')
        return (False, src_type)

    dtype_flag, dtype = get_dtype(x, dtype)
860
    if in_dygraph_mode():
861
        axis = axis if axis != None and axis != [] else [0]
862
        if dtype_flag:
W
wanghuancoder 已提交
863
            return _C_ops.reduce_sum(x, 'dim', axis, 'keep_dim', keepdim,
864 865
                                       'reduce_all', reduce_all_flag, 'in_dtype',
                                       x.dtype, 'out_dtype',
866 867
                                       convert_np_dtype_to_dtype_(dtype))
        else:
W
wanghuancoder 已提交
868
            return _C_ops.reduce_sum(x, 'dim', axis, 'keep_dim', keepdim,
869
                                       'reduce_all', reduce_all_flag)
W
wanghuancoder 已提交
870 871 872 873 874 875 876

    attrs = {
        'dim': axis if axis != None and axis != [] and axis != () else [0],
        'keep_dim': keepdim,
        'reduce_all': reduce_all_flag
    }

877 878 879 880 881
    if dtype_flag:
        attrs.update({
            'in_dtype': x.dtype,
            'out_dtype': convert_np_dtype_to_dtype_(dtype)
        })
W
wanghuancoder 已提交
882

883
    check_variable_and_dtype(
884 885 886 887
        x, 'x', ['bool', 'float16', 'float32', 'float64',
                'int32', 'int64', 'complex64', 'complex128',
                u'bool', u'float16', u'float32', u'float64',
                u'int32', u'int64', u'complex64', u'complex128'], 'sum')
888

889 890
    check_type(axis, 'axis', (int, list, tuple, type(None)), 'sum')

891 892 893 894 895
    helper = LayerHelper('sum', **locals())
    if dtype_flag:
        out = helper.create_variable_for_type_inference(
            dtype=convert_np_dtype_to_dtype_(dtype))
    else:
896
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
897 898
    helper.append_op(
        type='reduce_sum',
899
        inputs={'X': x},
900 901 902
        outputs={'Out': out},
        attrs=attrs)
    return out
903

904

905
@templatedoc(op_type="sum")
S
Steffy-zxf 已提交
906
def add_n(inputs, name=None):
907
    """
S
Steffy-zxf 已提交
908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942
    This OP is used to sum one or more Tensor of the input.
    
    For example:

    .. code-block:: text
    
        Case 1:

            Input:
                input.shape = [2, 3]
                input = [[1, 2, 3],
                         [4, 5, 6]]

            Output:
                output.shape = [2, 3]
                output = [[1, 2, 3],
                          [4, 5, 6]]

        Case 2:
       
            Input:
                First input:
                    input1.shape = [2, 3]
                    Input1 = [[1, 2, 3],
                              [4, 5, 6]]

                The second input:
                    input2.shape = [2, 3]
                    input2 = [[7, 8, 9],
                              [10, 11, 12]]

                Output:
                    output.shape = [2, 3]
                    output = [[8, 10, 12],
                              [14, 16, 18]]
943 944

    Args:
945
        inputs (Tensor|list[Tensor]|tuple[Tensor]):  A Tensor or a list/tuple of Tensors. The shape and data type of the list/tuple elements should be consistent.
S
Steffy-zxf 已提交
946
            Input can be multi-dimensional Tensor, and data types can be: float32, float64, int32, int64.
947 948 949 950
        name(str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`

    Returns:
S
Steffy-zxf 已提交
951
        Tensor, the sum of input :math:`inputs` , its shape and data types are consistent with :math:`inputs`.
952 953 954 955 956 957

    Examples:
        .. code-block:: python

            import paddle

S
Steffy-zxf 已提交
958 959 960 961 962
            input0 = paddle.to_tensor([[1, 2, 3], [4, 5, 6]], dtype='float32')
            input1 = paddle.to_tensor([[7, 8, 9], [10, 11, 12]], dtype='float32')
            output = paddle.add_n([input0, input1])
            # [[8., 10., 12.], 
            #  [14., 16., 18.]]
963
    """
S
Steffy-zxf 已提交
964 965 966
    if in_dygraph_mode():
        if isinstance(inputs, Variable):
            inputs = [inputs]
W
wanghuancoder 已提交
967
        return _C_ops.sum(inputs, 'use_mkldnn', False)
968

S
Steffy-zxf 已提交
969 970
    helper = LayerHelper('add_n', **locals())
    check_type(inputs, 'inputs', (Variable, tuple, list), 'add_n')
971 972 973 974
    if isinstance(inputs, list) or isinstance(inputs, tuple):
        if len(inputs) > 0:
            for input in inputs:
                check_variable_and_dtype(input, "inputs", \
S
Steffy-zxf 已提交
975
                   ['float32', 'float64', 'int32', 'int64'], 'add_n')
976 977
    else:
        check_variable_and_dtype(inputs, "inputs", \
S
Steffy-zxf 已提交
978
                ['float32', 'float64', 'int32', 'int64'], 'add_n')
979 980


981 982 983 984 985 986 987 988 989 990 991
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('inputs'))
    helper.append_op(
        type='sum',
        inputs={'X': inputs},
        outputs={'Out': out},
        attrs={'use_mkldnn': False})

    return out


992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
def trunc(input, name=None):
    '''
    This API is used to returns a new tensor with the truncated integer values of input.
    
    Args:
        input (Tensor): The input tensor, it's data type should be int32, int64, float32, float64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
    
    Returns:
        Tensor: The output Tensor of trunc.
    
    Examples:
        .. code-block:: python

            import paddle

            input = paddle.rand([2,2],'float32')
            print(input)
            # Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         [[0.02331470, 0.42374918],
            #         [0.79647720, 0.74970269]])

            output = paddle.trunc(input)
            print(output)
            # Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         [[0., 0.],
            #         [0., 0.]]))
    '''
    if in_dygraph_mode():
W
wanghuancoder 已提交
1021
        return _C_ops.trunc(input)
1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
    else:
        inputs = {"X": input}
        attrs = {}

        helper = LayerHelper("trunc", **locals())
        check_variable_and_dtype(input, 'X', ['int32', 'int64', 'float32', 'float64'], 'trunc')
        out = helper.create_variable_for_type_inference(dtype=input.dtype)

        helper.append_op(
            type="trunc", inputs=inputs, attrs=attrs, outputs={"Out": out})
        return out



W
WuHaobo 已提交
1036
def mm(input, mat2, name=None):
1037
    """
S
swtkiwi 已提交
1038

1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.


    Also note that if the raw tensor :math:`x` or :math:`mat2` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
    removed after matrix multiplication.

    Args:
1050
        input (Tensor): The input tensor which is a Tensor.
N
Noel 已提交
1051
        mat2 (Tensor): The input tensor which is a Tensor.
1052 1053 1054 1055
        name(str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`

    Returns:
N
Noel 已提交
1056
        Tensor: The product Tensor.
1057 1058 1059 1060 1061

    Examples:
        .. code-block:: python

            import paddle
1062 1063 1064 1065 1066 1067 1068 1069
            input = paddle.arange(1, 7).reshape((3, 2)).astype('float32')
            mat2 = paddle.arange(1, 9).reshape((2, 4)).astype('float32')
            out = paddle.mm(input, mat2)
            print(out)
            #        [[11., 14., 17., 20.],
            #         [23., 30., 37., 44.],
            #         [35., 46., 57., 68.]])

N
Noel 已提交
1070

1071 1072
    """
    if in_dygraph_mode():
1073
        return _C_ops.matmul_v2(input, mat2)
1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110

    def __check_input(x, y):
        var_names = {'x': x, 'y': y}
        for name, val in var_names.items():
            check_variable_and_dtype(val, name,
                                     ['float16', 'float32', 'float64'], 'mm')
        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
            y_shape = y_shape + [1]

        # check the inner 2 dimensions
        if x_shape[-1] != y_shape[-2]:
            if not ((x_shape[-1] == -1) or (y_shape[-2] == -1)):
                raise ValueError(
                    "After performing an optional transpose, Input X's width should be "
                    "equal to Y's width for multiplication "
                    "prerequisites. But received X's shape: %s, Y's shape: %s\n"
                    % (x_shape, y_shape))

        if len(y_shape) > 2 and len(x_shape) > 2:
            for i, dim_x in enumerate(x_shape[:-2]):
                # don't check neg shape
                if dim_x < 0 or y_shape[i] < 0:
                    continue
                if dim_x != y_shape[i]:
                    raise ValueError(
                        "When the matrix is larger than 2 dimensions, the higher "
                        "dimensional values of the two matrices need to be equal. "
                        "But received x_shape[%d] != y_shape[%d]. X's shape: %s, "
                        "Y's shape: %s.\n" % (i, i, x_shape, y_shape))

    __check_input(input, mat2)

    helper = LayerHelper('mm', **locals())
W
WuHaobo 已提交
1111
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
1112
    helper.append_op(
1113
        type='matmul_v2', inputs={'X': input,
1114 1115
                               'Y': mat2}, outputs={'Out': out})
    return out
1116

1117

Y
yaoxuefeng 已提交
1118
def addmm(input, x, y, beta=1.0, alpha=1.0, name=None):
1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
    """
    **addmm**

    This operator is used to perform matrix multiplication for input $x$ and $y$.
    $input$ is added to the final result.
    The equation is:

    ..  math::
        Out = alpha * x * y + beta * input

    $Input$, $x$ and $y$ can carry the LoD (Level of Details) information, or not. But the output only shares the LoD information with input $input$.

    Args:
Y
yaoxuefeng 已提交
1132 1133 1134
        input (Tensor): The input Tensor to be added to the final result.
        x (Tensor): The first input Tensor for matrix multiplication.
        y (Tensor): The second input Tensor for matrix multiplication.
1135
        beta (float): Coefficient of $input$.
Y
yaoxuefeng 已提交
1136
        alpha (float): Coefficient of $x*y$.
1137 1138 1139
        name (str, optional): Name of the output. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Default is None.

    Returns:
Y
yaoxuefeng 已提交
1140
        Tensor: The output Tensor of addmm op.
1141 1142 1143

    Examples:
        ..  code-block:: python
Y
yaoxuefeng 已提交
1144
            
1145 1146
            import paddle

Y
yaoxuefeng 已提交
1147 1148 1149
            x = paddle.ones([2,2])
            y = paddle.ones([2,2])
            input = paddle.ones([2,2])
Y
yaoxuefeng 已提交
1150

Y
yaoxuefeng 已提交
1151
            out = paddle.addmm( input=input, x=x, y=y, beta=0.5, alpha=5.0 )
Y
yaoxuefeng 已提交
1152

N
Noel 已提交
1153
            print(out)
1154 1155 1156
            # [[10.5 10.5]
            # [10.5 10.5]]
    """
Y
yaoxuefeng 已提交
1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
    input_shape = input.shape
    x_shape = x.shape
    y_shape = y.shape
    if not len(input_shape) == len(x_shape) == len(y_shape) == 2:
        raise ValueError("The dimention of input, x, y should be 2 but receive input's shape: {}, x's shape: {}, y's shape: {}".format(input_shape, x_shape, y_shape))
    if input_shape[0] != x_shape[0]:
        if input_shape[0] != 1:
            raise ValueError( "When x's dimension[0] is not equal with input's dimension[0], input's dimension[0] must be 1 but got {}".format(input_shape[0]))
        if input_shape[1] != y_shape[1] and input_shape[1] != 1:
            raise ValueError( "When y's dimension[1] is not equal with input's dimension[1], input's dimension[1] must be 1 but got {}".format(input_shape[1]))
    if input_shape[1] != y_shape[1]:
        if input_shape[1] != 1:
            raise ValueError( "When y's dimension[1] is not equal with input's dimension[1], input's dimension[1] must be 1 but got {}".format(input_shape[1]))
        if input_shape[0] != x_shape[0] and input_shape[0] != 1:
            raise ValueError( "When x's dimension[0] is not equal with input's dimension[0], input's dimension[0] must be 1 but got {}".format(input_shape[0]))
    if x_shape[1] != y_shape[0]:
        raise ValueError("The input Variable x's width must be equal with Variable y' height. But received x's shape = {}, y's shape = {}.".format(x_shape, y_shape))



1177
    if in_dygraph_mode():
W
wanghuancoder 已提交
1178
        out = _C_ops.addmm(input, x, y, "Alpha", alpha, "Beta", beta)
1179 1180
        return out

1181 1182 1183 1184
    inputs = {'Input': input, "X": x, "Y": y}
    attrs = {'Alpha': alpha, 'Beta': beta}

    helper = LayerHelper("addmm", **locals())
Y
yaoxuefeng 已提交
1185
    check_variable_and_dtype(input, 'Input', ['float32', 'float64'], 'addmm')
1186 1187 1188 1189 1190 1191 1192
    check_variable_and_dtype(x, 'X', ['float32', 'float64'], 'addmm')
    check_variable_and_dtype(y, 'Y', ['float32', 'float64'], 'addmm')
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(
        type="addmm", inputs=inputs, attrs=attrs, outputs={"Out": out})
    return out
1193 1194


1195
def logsumexp(x, axis=None, keepdim=False, name=None):
1196
    r"""
1197
    This OP calculates the log of the sum of exponentials of ``x`` along ``axis`` .
1198

1199
    .. math::
1200
       logsumexp(x) = \\log\\sum exp(x)
1201

1202
    Args:
S
Shang Zhizhou 已提交
1203 1204
        x (Tensor): The input Tensor with data type float32 or float64, which 
            have no more than 4 dimensions.
1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220
        axis (int|list|tuple, optional): The axis along which to perform
            logsumexp calculations. ``axis`` should be int, list(int) or
            tuple(int). If ``axis`` is a list/tuple of dimension(s), logsumexp
            is calculated along all element(s) of ``axis`` . ``axis`` or
            element(s) of ``axis`` should be in range [-D, D), where D is the
            dimensions of ``x`` . If ``axis`` or element(s) of ``axis`` is
            less than 0, it works the same way as :math:`axis + D` . If
            ``axis`` is None, logsumexp is calculated along all elements of
            ``x``. Default is None.
        keepdim (bool, optional): Whether to reserve the reduced dimension(s)
            in the output Tensor. If ``keep_dim`` is True, the dimensions of
            the output Tensor is the same as ``x`` except in the reduced
            dimensions(it is of size 1 in this case). Otherwise, the shape of
            the output Tensor is squeezed in ``axis`` . Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
1221

1222
    Returns:
1223 1224
        Tensor, results of logsumexp along ``axis`` of ``x``, with the same data
        type as ``x``.
1225

1226
    Examples:
1227

1228
    .. code-block:: python
1229

1230 1231
        import paddle

1232
        x = paddle.to_tensor([[-1.5, 0., 2.], [3., 1.2, -2.4]])
1233 1234
        out1 = paddle.logsumexp(x) # [3.4691226]
        out2 = paddle.logsumexp(x, 1) # [2.15317821, 3.15684602]
1235 1236

    """
1237 1238 1239 1240 1241 1242 1243
    if isinstance(axis, int):
        axis = [axis]
    reduce_all = True if axis is None \
        or len(axis)==0 \
        or len(axis) == len(x.shape) else False
    if axis is None or len(axis) == 0:
        axis = [0]
1244

1245
    if in_dygraph_mode():
W
wanghuancoder 已提交
1246
        return _C_ops.logsumexp(x, 'axis', axis, 'keepdim', keepdim, 'reduce_all', reduce_all)
1247

1248 1249 1250
    check_variable_and_dtype(x, 'x',
                             ['float32', 'float64'],
                             'logsumexp')
1251

1252
    helper = LayerHelper('logsumexp', **locals())
1253
    attrs = {'axis': axis, 'keepdim': keepdim, 'reduce_all':reduce_all}
1254 1255 1256 1257
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type='logsumexp', inputs={'X': x}, outputs={'Out': out}, attrs=attrs)
    return out
1258

S
swtkiwi 已提交
1259

1260 1261
def inverse(x, name=None):
    """
1262 1263 1264 1265 1266
    Takes the inverse of the square matrix. A square matrix is a matrix with
    the same number of rows and columns. The input can be a square matrix
    (2-D Tensor) or batches of square matrices.

    Args:
1267
        x (Tensor): The input tensor. The last two
1268 1269 1270 1271 1272 1273 1274 1275
            dimensions should be equal. When the number of dimensions is
            greater than 2, it is treated as batches of square matrix. The data
            type can be float32 and float64.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information,
            please refer to :ref:`api_guide_Name`

    Returns:
1276
        Tensor: A Tensor holds the inverse of x. The shape and data type
1277
                        is the same as x.
1278 1279 1280 1281 1282

    Examples:
        .. code-block:: python

            import paddle
1283 1284

            mat = paddle.to_tensor([[2, 0], [0, 2]], dtype='float32')
1285 1286
            inv = paddle.inverse(mat)
            print(inv) # [[0.5, 0], [0, 0.5]]
1287 1288 1289

    """
    if in_dygraph_mode():
W
wanghuancoder 已提交
1290
        return _C_ops.inverse(x)
1291

1292 1293
    def _check_input(x):
        check_variable_and_dtype(x, 'x',
1294
                                 ['float32', 'float64'], 'inverse')
1295
        if len(x.shape) < 2:
1296 1297 1298
            raise ValueError(
                "The input of inverse is expected to be a Tensor whose number "
                "of dimensions is no less than 2. But reviced: %d, "
1299 1300
                "x's shape: %s." % (len(x.shape), x.shape))
    _check_input(x)
1301
    helper = LayerHelper('inverse', **locals())
1302
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
1303
    helper.append_op(
1304
        type='inverse', inputs={'Input': [x] }, outputs={'Output': [out]})
1305 1306 1307
    return out


1308
def max(x, axis=None, keepdim=False, name=None):
1309
    """
S
swtkiwi 已提交
1310

1311
    Computes the maximum of tensor elements over the given axis.
1312 1313

    Args:
1314
        x(Tensor): A tensor, the data type is float32,
1315
            float64, int32, int64.
1316
        axis(int|list|tuple, optional): The axis along which the maximum is computed.
1317
            If :attr:`None`, compute the maximum over all elements of
N
Noel 已提交
1318
            `x` and return a Tensor with a single element,
1319 1320 1321
            otherwise must be in the range :math:`[-x.ndim(x), x.ndim(x))`.
            If :math:`axis[i] < 0`, the axis to reduce is :math:`x.ndim + axis[i]`.
        keepdim(bool, optional): Whether to reserve the reduced dimension in the
1322
            output Tensor. The result tensor will have one fewer dimension
1323
            than the `x` unless :attr:`keepdim` is true, default
1324
            value is False.
1325
        name(str, optional): The default value is None.  Normally there is no need for
1326 1327 1328
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`

    Returns:
1329
        Tensor, results of maximum on the specified axis of input tensor,
1330
        it's data type is the same as `x`.
1331 1332 1333

    Examples:
        .. code-block:: python
1334

1335
            import paddle
1336

N
Noel 已提交
1337
            # data_x is a Tensor with shape [2, 4]
1338
            # the axis is a int element
1339 1340 1341

            x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
                                  [0.1, 0.2, 0.6, 0.7]])
1342
            result1 = paddle.max(x)
N
Noel 已提交
1343
            print(result1)
1344 1345
            #[0.9]
            result2 = paddle.max(x, axis=0)
W
Wei Shengyu 已提交
1346
            print(result2)
1347 1348
            #[0.2 0.3 0.6 0.9]
            result3 = paddle.max(x, axis=-1)
N
Noel 已提交
1349
            print(result3)
1350 1351
            #[0.9 0.7]
            result4 = paddle.max(x, axis=1, keepdim=True)
N
Noel 已提交
1352
            print(result4)
1353 1354 1355
            #[[0.9]
            # [0.7]]

N
Noel 已提交
1356
            # data_y is a Tensor with shape [2, 2, 2]
1357
            # the axis is list 
1358 1359 1360

            y = paddle.to_tensor([[[1.0, 2.0], [3.0, 4.0]],
                                  [[5.0, 6.0], [7.0, 8.0]]])
1361
            result5 = paddle.max(y, axis=[1, 2])
N
Noel 已提交
1362
            print(result5)
1363 1364
            #[4. 8.]
            result6 = paddle.max(y, axis=[0, 1])
N
Noel 已提交
1365
            print(result6)
1366
            #[7. 8.]
1367 1368
    """

1369
    if axis is not None and not isinstance(axis, list):
1370 1371 1372 1373 1374 1375 1376 1377
        if isinstance(axis, tuple):
            axis = list(axis)
        elif isinstance(axis, int):
            axis= [axis]
        else:
            raise TypeError(
                "The type of axis must be int, list or tuple, but received {}".format(type(axis)))

1378 1379 1380
    reduce_all = True if axis == None or axis == [] else False
    axis = axis if axis != None and axis != [] else [0]
    if in_dygraph_mode():
W
wanghuancoder 已提交
1381
        return _C_ops.reduce_max(x, 'dim', axis, 'keep_dim', keepdim,
1382
                                   'reduce_all', reduce_all)
1383

1384
    helper = LayerHelper('max', **locals())
1385
    check_variable_and_dtype(
1386
        x, 'x', ['float32', 'float64', 'int32', 'int64'], 'max')
1387

1388
    out = helper.create_variable_for_type_inference(
1389
            dtype=x.dtype)
1390 1391
    helper.append_op(
        type='reduce_max',
1392
        inputs={'X': x},
1393 1394
        outputs={'Out': out},
        attrs={
1395 1396
            'dim': axis,
            'keep_dim': keepdim,
1397 1398 1399 1400
            'reduce_all': reduce_all
        })
    return out

1401
def min(x, axis=None, keepdim=False, name=None):
1402
    """
S
swtkiwi 已提交
1403

1404
    Computes the minimum of tensor elements over the given axis
1405

1406
    Args:
1407
        x(Tensor): A tensor, the data type is float32, float64, int32, int64.
1408
        axis(int|list|tuple, optional): The axis along which the minimum is computed.
1409
            If :attr:`None`, compute the minimum over all elements of
N
Noel 已提交
1410
            `x` and return a Tensor with a single element,
1411 1412 1413
            otherwise must be in the range :math:`[-x.ndim, x.ndim)`.
            If :math:`axis[i] < 0`, the axis to reduce is :math:`x.ndim + axis[i]`.
        keepdim(bool, optional): Whether to reserve the reduced dimension in the
1414
            output Tensor. The result tensor will have one fewer dimension
1415
            than the `x` unless :attr:`keepdim` is true, default
1416
            value is False.
W
WuHaobo 已提交
1417
        name(str, optional): The default value is None.  Normally there is no need for 
1418
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
1419

1420
    Returns:
1421
        Tensor, results of minimum on the specified axis of input tensor,
1422
        it's data type is the same as input's Tensor.
1423

1424 1425 1426
    Examples:
        .. code-block:: python

1427
            import paddle
1428

1429
            # x is a tensor with shape [2, 4]
1430
            # the axis is a int element
1431 1432
            x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
                                  [0.1, 0.2, 0.6, 0.7]])
1433
            result1 = paddle.min(x)
N
Noel 已提交
1434
            print(result1)
1435 1436
            #[0.1]
            result2 = paddle.min(x, axis=0)
N
Noel 已提交
1437
            print(result2)
1438 1439
            #[0.1 0.2 0.5 0.7]
            result3 = paddle.min(x, axis=-1)
W
Wei Shengyu 已提交
1440
            print(result3)
1441 1442
            #[0.2 0.1]
            result4 = paddle.min(x, axis=1, keepdim=True)
N
Noel 已提交
1443
            print(result4)
1444 1445 1446
            #[[0.2]
            # [0.1]]

N
Noel 已提交
1447
            # y is a Tensor with shape [2, 2, 2]
1448
            # the axis is list 
1449 1450
            y = paddle.to_tensor([[[1.0, 2.0], [3.0, 4.0]],
                                  [[5.0, 6.0], [7.0, 8.0]]])
1451
            result5 = paddle.min(y, axis=[1, 2])
W
Wei Shengyu 已提交
1452
            print(result5)
1453 1454
            #[1. 5.]
            result6 = paddle.min(y, axis=[0, 1])
N
Noel 已提交
1455
            print(result6)
1456 1457
            #[1. 2.]
    """
1458

1459
    if axis is not None and not isinstance(axis, list):
1460 1461 1462 1463 1464 1465 1466
        if isinstance(axis, tuple):
            axis = list(axis)
        elif isinstance(axis, int):
            axis= [axis]
        else:
            raise TypeError(
                "The type of axis must be int, list or tuple, but received {}".format(type(axis)))
1467 1468
    reduce_all = True if axis == None or axis == [] else False
    axis = axis if axis != None and axis != [] else [0]
1469
    if in_dygraph_mode():
W
wanghuancoder 已提交
1470
        return _C_ops.reduce_min(x, 'dim', axis, 'keep_dim', keepdim,
1471
                                   'reduce_all', reduce_all)
1472 1473 1474 1475 1476 1477

    helper = LayerHelper('min', **locals())
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int32', 'int64'], 'min')

    out = helper.create_variable_for_type_inference(
1478
            dtype=x.dtype)
1479 1480
    helper.append_op(
        type='reduce_min',
1481
        inputs={'X': x},
1482 1483
        outputs={'Out': out},
        attrs={
1484 1485
            'dim': axis,
            'keep_dim': keepdim,
1486 1487 1488 1489 1490
            'reduce_all': reduce_all
        })
    return out


W
WuHaobo 已提交
1491
def log1p(x, name=None):
1492
    r"""
1493
    Calculates the natural log of the given input tensor, element-wise.
N
Noel 已提交
1494

1495 1496
    .. math::
        Out = \\ln(x+1)
S
Steffy-zxf 已提交
1497

1498
    Args:
S
Steffy-zxf 已提交
1499
        x (Tensor): Input Tensor. Must be one of the following types: float32, float64.
1500 1501 1502
        name(str, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
    Returns:
S
Steffy-zxf 已提交
1503
        Tensor, the natural log of the input Tensor computed element-wise.
1504

1505 1506
    Examples:
        .. code-block:: python
S
Steffy-zxf 已提交
1507

1508
            import paddle
S
Steffy-zxf 已提交
1509 1510 1511 1512

            data = paddle.to_tensor([[0], [1]], dtype='float32')
            res = paddle.log1p(data)
            # [[0.], [0.6931472]]
1513 1514 1515
    """

    if in_dygraph_mode():
W
wanghuancoder 已提交
1516
        return _C_ops.log1p(x)
1517 1518 1519 1520 1521

    check_variable_and_dtype(x, 'x', ['float32', 'float64'], "log1p")
    inputs = {'X': [x]}
    helper = LayerHelper('log1p', **locals())
    dtype = helper.input_dtype(input_param_name='x')
W
WuHaobo 已提交
1522
    out = helper.create_variable_for_type_inference(dtype)
1523 1524
    helper.append_op(type="log1p", inputs={"X": x}, outputs={"Out": out})
    return out
B
Bai Yifan 已提交
1525

J
joejiong 已提交
1526
def log2(x, name=None):
1527
    r"""
J
joejiong 已提交
1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564
    Calculates the log to the base 2 of the given input tensor, element-wise.

    .. math::

        Out = \\log_2x

    Args:
        x (Tensor): Input tensor must be one of the following types: float32, float64.
        name (str|None): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`


    Returns:
        Tensor: The log to the base 2 of the input Tensor computed element-wise.

    Examples:

        .. code-block:: python
        
            import paddle

            # example 1: x is a float
            x_i = paddle.to_tensor([[1.0], [2.0]])
            res = paddle.log2(x_i) # [[0.], [1.0]]

            # example 2: x is float32
            x_i = paddle.full(shape=[1], fill_value=2, dtype='float32')
            paddle.to_tensor(x_i)
            res = paddle.log2(x_i)
            print(res) # [1.0]

            # example 3: x is float64
            x_i = paddle.full(shape=[1], fill_value=2, dtype='float64')
            paddle.to_tensor(x_i)
            res = paddle.log2(x_i)
            print(res) # [1.0]
    """
    if in_dygraph_mode():
W
wanghuancoder 已提交
1565
        return _C_ops.log2(x)
J
joejiong 已提交
1566 1567 1568 1569 1570 1571 1572 1573

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], "log2")
    inputs = {'X': [x]}
    helper = LayerHelper('log2', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(type="log2", inputs={"X": x}, outputs={"Out": out})
    return out
W
WuHaobo 已提交
1574

J
joejiong 已提交
1575 1576

def log10(x, name=None):
1577
    r"""
J
joejiong 已提交
1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614
    Calculates the log to the base 10 of the given input tensor, element-wise.

    .. math::

        Out = \\log_10_x

    Args:
        x (Tensor): Input tensor must be one of the following types: float32, float64.
        name (str|None): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`


    Returns:
        Tensor: The log to the base 10 of the input Tensor computed element-wise.

    Examples:

        .. code-block:: python
        
            import paddle

            # example 1: x is a float
            x_i = paddle.to_tensor([[1.0], [10.0]])
            res = paddle.log10(x_i) # [[0.], [1.0]]

            # example 2: x is float32
            x_i = paddle.full(shape=[1], fill_value=10, dtype='float32')
            paddle.to_tensor(x_i)
            res = paddle.log10(x_i)
            print(res) # [1.0]

            # example 3: x is float64
            x_i = paddle.full(shape=[1], fill_value=10, dtype='float64')
            paddle.to_tensor(x_i)
            res = paddle.log10(x_i)
            print(res) # [1.0]
    """
    if in_dygraph_mode():
W
wanghuancoder 已提交
1615
        return _C_ops.log10(x)
J
joejiong 已提交
1616 1617 1618 1619 1620 1621 1622 1623 1624 1625

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], "log10")
    inputs = {'X': [x]}
    helper = LayerHelper('log10', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(type="log10", inputs={"X": x}, outputs={"Out": out})
    return out


Y
Yang Zhang 已提交
1626
def clip(x, min=None, max=None, name=None):
1627
    """
Y
Yang Zhang 已提交
1628
    This operator clip all elements in input into the range [ min, max ] and return
1629 1630 1631 1632
    a resulting tensor as the following equation:

    .. math::

1633
        Out = MIN(MAX(x, min), max)
1634 1635

    Args:
1636 1637
        x (Tensor): An N-D Tensor with data type float32, float64, int32 or int64.
        min (float|int|Tensor): The lower bound with type ``float`` , ``int`` or a ``Tensor``
1638
            with shape [1] and type ``int32``, ``float32``, ``float64``.
1639
        max (float|int|Tensor): The upper bound with type ``float``, ``int`` or a ``Tensor``
1640 1641 1642 1643 1644 1645
            with shape [1] and type ``int32``, ``float32``, ``float64``.
        name (str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns:
Y
Yang Zhang 已提交
1646
        Tensor: A Tensor with the same data type and data shape as input.
1647 1648 1649 1650 1651

    Examples:
        .. code-block:: python

            import paddle
N
Noel 已提交
1652

1653
            x1 = paddle.to_tensor([[1.2, 3.5], [4.5, 6.4]], 'float32')
Y
Yang Zhang 已提交
1654 1655
            out1 = paddle.clip(x1, min=3.5, max=5.0)
            out2 = paddle.clip(x1, min=2.5)
1656
            print(out1)
Y
Yang Zhang 已提交
1657 1658
            # [[3.5, 3.5]
            # [4.5, 5.0]]
1659
            print(out2)
Y
Yang Zhang 已提交
1660 1661
            # [[2.5, 3.5]
            # [[4.5, 6.4]
1662 1663
    """

1664 1665 1666 1667 1668 1669 1670 1671 1672 1673
    x_dtype = str(x.dtype)
    if x_dtype == 'paddle.int32':
        min_ = np.iinfo(np.int32).min
        max_ = np.iinfo(np.int32).max - 2**7
    elif x_dtype == 'paddle.int64':
        min_ = np.iinfo(np.int64).min
        max_ = np.iinfo(np.int64).max - 2**39
    else:
        min_ = float(np.finfo(np.float32).min)
        max_ = float(np.finfo(np.float32).max)
1674

W
WuHaobo 已提交
1675
    if in_dygraph_mode():
1676 1677 1678 1679
        if isinstance(min, Variable):
            min = min.numpy().item(0)
        if isinstance(max, Variable):
            max = max.numpy().item(0)
1680 1681
        min = min_ if min is None else min
        max = max_ if max is None else max
W
wanghuancoder 已提交
1682
        return _C_ops.clip(x, "min", min, "max", max)
W
WuHaobo 已提交
1683

1684
    if min is not None:
Y
Yang Zhang 已提交
1685
        check_type(min, 'min', (float, int, Variable), 'clip')
1686 1687
        if isinstance(min, Variable):
            check_dtype(min.dtype, 'min', ['float32', 'float64', 'int32'],
Y
Yang Zhang 已提交
1688
                        'clip', '(When the type of min in clip is Variable.)')
1689
    if max is not None:
Y
Yang Zhang 已提交
1690
        check_type(max, 'max', (float, int, Variable), 'clip')
1691 1692
        if isinstance(max, Variable):
            check_dtype(max.dtype, 'max', ['float32', 'float64', 'int32'],
Y
Yang Zhang 已提交
1693
                        'clip', '(When the type of max in clip is Variable.)')
1694

1695
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'], 'clip')
Y
Yang Zhang 已提交
1696 1697

    inputs = {'X': x}
1698
    attrs = {'min': min_, 'max': max_}
1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711

    if isinstance(min, Variable):
        min.stop_gradient = True
        inputs['Min'] = min
    elif min is not None:
        attrs['min'] = min

    if isinstance(max, Variable):
        max.stop_gradient = True
        inputs['Max'] = max
    elif max is not None:
        attrs['max'] = max

Y
Yang Zhang 已提交
1712
    helper = LayerHelper('clip', **locals())
W
WuHaobo 已提交
1713
    output = helper.create_variable_for_type_inference(
Y
Yang Zhang 已提交
1714
        dtype=helper.input_dtype('x'))
1715 1716 1717 1718
    helper.append_op(
        type='clip', inputs=inputs, outputs={'Out': [output]}, attrs=attrs)

    return output
F
Feiyu Chan 已提交
1719

W
WuHaobo 已提交
1720

1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734
@inplace_apis_in_dygraph_only
def clip_(x, min=None, max=None, name=None):
    """
    Inplace version of ``clip`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_clip`.
    """
    fmin = float(np.finfo(np.float32).min)
    fmax = float(np.finfo(np.float32).max)
    if isinstance(min, Variable):
        min = min.numpy().item(0)
    if isinstance(max, Variable):
        max = max.numpy().item(0)
    min = fmin if min is None else min
    max = fmax if max is None else max
W
wanghuancoder 已提交
1735
    return _C_ops.clip_(x, "min", min, "max", max)
1736 1737 1738



1739
def trace(x, offset=0, axis1=0, axis2=1, name=None):
L
Li Fuchen 已提交
1740
    """
1741
    **trace**
S
swtkiwi 已提交
1742

1743
    This OP computes the sum along diagonals of the input tensor x.
1744 1745

    If ``x`` is 2D, returns the sum of diagonal.
L
Li Fuchen 已提交
1746

1747
    If ``x`` has larger dimensions, then returns an tensor of diagonals sum, diagonals be taken from
1748
    the 2D planes specified by axis1 and axis2. By default, the 2D planes formed by the first and second axes
1749
    of the input tensor x.
L
Li Fuchen 已提交
1750

1751
    The argument ``offset`` determines where diagonals are taken from input tensor x:
L
Li Fuchen 已提交
1752 1753 1754 1755

    - If offset = 0, it is the main diagonal.
    - If offset > 0, it is above the main diagonal.
    - If offset < 0, it is below the main diagonal.
1756
    - Note that if offset is out of input's shape indicated by axis1 and axis2, 0 will be returned.
1757

L
Li Fuchen 已提交
1758
    Args:
1759
        x(Tensor): The input tensor x. Must be at least 2-dimensional. The input data type should be float32, float64, int32, int64.
1760 1761 1762
        offset(int, optional): Which diagonals in input tensor x will be taken. Default: 0 (main diagonals).
        axis1(int, optional): The first axis with respect to take diagonal. Default: 0.
        axis2(int, optional): The second axis with respect to take diagonal. Default: 1.
L
Li Fuchen 已提交
1763 1764 1765
        name (str, optional): Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Default: None.

    Returns:
1766
        Tensor: the output data type is the same as input data type.
L
Li Fuchen 已提交
1767 1768 1769 1770 1771

    Examples:
        .. code-block:: python

            import paddle
1772

1773 1774 1775
            case1 = paddle.randn([2, 3])
            case2 = paddle.randn([3, 10, 10])
            case3 = paddle.randn([3, 10, 5, 10])
1776 1777 1778
            data1 = paddle.trace(case1) # data1.shape = [1]
            data2 = paddle.trace(case2, offset=1, axis1=1, axis2=2) # data2.shape = [3]
            data3 = paddle.trace(case3, offset=-3, axis1=1, axis2=-1) # data2.shape = [3, 5]
L
Li Fuchen 已提交
1779 1780
    """
    def __check_input(input, offset, dim1, dim2):
1781
        check_dtype(x.dtype, 'Input',
L
Li Fuchen 已提交
1782 1783 1784
                    ['int32', 'int64', 'float16', 'float32', 'float64'],
                    'trace')

1785
        input_shape = list(x.shape)
L
Li Fuchen 已提交
1786
        assert len(input_shape) >= 2,                     \
1787 1788
                "The x must be at least 2-dimensional, "   \
                "But received Input x's dimensional: %s.\n" %  \
L
Li Fuchen 已提交
1789 1790
                len(input_shape)

1791 1792
        axis1_ = axis1 if axis1 >= 0 else len(input_shape) + axis1
        axis2_ = axis2 if axis2 >= 0 else len(input_shape) + axis2
L
Li Fuchen 已提交
1793

X
XiangGao 已提交
1794
        assert ((0 <= axis1_) and (axis1_ < len(input_shape))),     \
1795 1796
            "The argument axis1 is out of range (expected to be in range of [%d, %d], but got %d).\n"  \
            % (-(len(input_shape)), len(input_shape) - 1, axis1)
L
Li Fuchen 已提交
1797

X
XiangGao 已提交
1798
        assert ((0 <= axis2_) and (axis2_ < len(input_shape))),   \
1799 1800
            "The argument axis2 is out of range (expected to be in range of [%d, %d], but got %d).\n"   \
            % (-(len(input_shape)), len(input_shape) - 1, axis2)
L
Li Fuchen 已提交
1801 1802


1803 1804 1805
        assert  axis1_ != axis2_,   \
               "axis1 and axis2 cannot be the same axis." \
                "But received axis1 = %d, axis2 = %d\n"%(axis1, axis2)
L
Li Fuchen 已提交
1806

W
wanghuancoder 已提交
1807
    __check_input(input, offset, axis1, axis2)
X
XiangGao 已提交
1808 1809 1810 1811 1812
    if in_dygraph_mode():
        return _C_ops.trace(x, 'offset', offset, 'axis1', axis1, 'axis2', axis2)

    inputs = {'Input': [x]}
    attrs = {'offset': offset, 'axis1': axis1, 'axis2': axis2}
L
Li Fuchen 已提交
1813 1814
    helper = LayerHelper('trace', **locals())

1815
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
L
Li Fuchen 已提交
1816 1817 1818

    helper.append_op(
        type='trace',
1819
        inputs={'Input': [x]},
L
Li Fuchen 已提交
1820
        attrs={'offset': offset,
1821 1822
               'axis1': axis1,
               'axis2': axis2},
L
Li Fuchen 已提交
1823 1824 1825
        outputs={'Out': [out]})
    return out

1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890
def diagonal(x, offset=0, axis1=0, axis2=1, name=None):
    """
    This OP computes the diagonals of the input tensor x.

    If ``x`` is 2D, returns the diagonal.
    If ``x`` has larger dimensions, diagonals be taken from the 2D planes specified by axis1 and axis2. 
    By default, the 2D planes formed by the first and second axis of the input tensor x.

    The argument ``offset`` determines where diagonals are taken from input tensor x:

    - If offset = 0, it is the main diagonal.
    - If offset > 0, it is above the main diagonal.
    - If offset < 0, it is below the main diagonal.
    
    Args:
        x(Tensor): The input tensor x. Must be at least 2-dimensional. The input data type should be bool, int32, int64, float16, float32, float64.
        offset(int, optional): Which diagonals in input tensor x will be taken. Default: 0 (main diagonals).
        axis1(int, optional): The first axis with respect to take diagonal. Default: 0.
        axis2(int, optional): The second axis with respect to take diagonal. Default: 1.
        name (str, optional): Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Default: None.

    Returns:
        Tensor: a partial view of input tensor in specify two dimensions, the output data type is the same as input data type.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.rand([2,2,3],'float32')
            print(x)
            # Tensor(shape=[2, 2, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #        [[[0.45661032, 0.03751532, 0.90191704],
            #          [0.43760979, 0.86177313, 0.65221709]],

            #         [[0.17020577, 0.00259554, 0.28954273],
            #          [0.51795638, 0.27325270, 0.18117726]]])

            out1 = paddle.diagonal(x)
            print(out1)
            #Tensor(shape=[3, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [[0.45661032, 0.51795638],
            #        [0.03751532, 0.27325270],
            #        [0.90191704, 0.18117726]])

            out2 = paddle.diagonal(x, offset=0, axis1=2, axis2=1)
            print(out2)
            #Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [[0.45661032, 0.86177313],
            #        [0.17020577, 0.27325270]])

            out3 = paddle.diagonal(x, offset=1, axis1=0, axis2=1)
            print(out3)
            #Tensor(shape=[3, 1], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [[0.43760979],
            #        [0.86177313],
            #        [0.65221709]])

            out4 = paddle.diagonal(x, offset=0, axis1=1, axis2=2)
            print(out4)
            #Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [[0.45661032, 0.86177313],
            #        [0.17020577, 0.27325270]])
            
    """
W
wanghuancoder 已提交
1891
    if in_dygraph_mode():
W
wanghuancoder 已提交
1892
        return _C_ops.diagonal(x, 'offset', offset, 'axis1', axis1, 'axis2', axis2)
W
wanghuancoder 已提交
1893

1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933
    def __check_input(input, offset, dim1, dim2):
        check_dtype(x.dtype, 'Input',
                    ['bool', 'int32', 'int64', 'float16', 'float32', 'float64'],
                    'diagonal')

        input_shape = list(x.shape)
        assert len(input_shape) >= 2,                     \
                "The x must be at least 2-dimensional, "   \
                "But received Input x's dimensional: %s.\n" %  \
                len(input_shape)

        axis1_ = axis1 if axis1 >= 0 else len(input_shape) + axis1
        axis2_ = axis2 if axis2 >= 0 else len(input_shape) + axis2

        assert axis1_ < len(input_shape),     \
            "The argument axis1 is out of range (expected to be in range of [%d, %d], but got %d).\n"  \
            % (-(len(input_shape)), len(input_shape) - 1, axis1)

        assert axis2_ < len(input_shape),   \
            "The argument axis2 is out of range (expected to be in range of [%d, %d], but got %d).\n"   \
            % (-(len(input_shape)), len(input_shape) - 1, axis2)

        assert  axis1_ != axis2_,   \
               "axis1 and axis2 cannot be the same axis." \
                "But received axis1 = %d, axis2 = %d\n"%(axis1, axis2)

    __check_input(input, offset, axis1, axis2)
    helper = LayerHelper('diagonal', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(
        type='diagonal',
        inputs={'Input': [x]},
        attrs={'offset': offset,
               'axis1': axis1,
               'axis2': axis2},
               outputs={'Out': [out]})
    return out


F
Feiyu Chan 已提交
1934
@templatedoc(op_type="kron")
W
WuHaobo 已提交
1935
def kron(x, y, name=None):
S
swtkiwi 已提交
1936 1937 1938
    """

${comment}
F
Feiyu Chan 已提交
1939 1940

    Args:
N
Noel 已提交
1941
        x (Tensor): the fist operand of kron op, data type: float16, float32,
F
Feiyu Chan 已提交
1942
            float64, int32 or int64.
N
Noel 已提交
1943
        y (Tensor): the second operand of kron op, data type: float16,
1944
            float32, float64, int32 or int64. Its data type should be the same
F
Feiyu Chan 已提交
1945
            with x.
1946 1947
        name(str, optional): The default value is None.  Normally there is no
            need for user to set this property.  For more information, please
F
Feiyu Chan 已提交
1948 1949 1950
            refer to :ref:`api_guide_Name`.

    Returns:
N
Noel 已提交
1951
        Tensor: The output of kron op, data type: float16, float32, float64, int32 or int64. Its data is the same with x.
F
Feiyu Chan 已提交
1952 1953 1954

    Examples:
        .. code-block:: python
1955

1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966
            import paddle
            x = paddle.to_tensor([[1, 2], [3, 4]], dtype='int64')
            y = paddle.to_tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]], dtype='int64')
            out = paddle.kron(x, y)
            print(out)
            #        [[1, 2, 3, 2, 4, 6],
            #         [ 4,  5,  6,  8, 10, 12],
            #         [ 7,  8,  9, 14, 16, 18],
            #         [ 3,  6,  9,  4,  8, 12],
            #         [12, 15, 18, 16, 20, 24],
            #         [21, 24, 27, 28, 32, 36]])
F
Feiyu Chan 已提交
1967 1968
    """
    if in_dygraph_mode():
W
wanghuancoder 已提交
1969
        return _C_ops.kron(x, y)
F
Feiyu Chan 已提交
1970 1971 1972 1973 1974

    helper = LayerHelper('kron', **locals())
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'kron')
    check_variable_and_dtype(y, 'y', ['float16', 'float32', 'float64', 'int32', 'int64'], 'kron')

W
WuHaobo 已提交
1975
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
F
Feiyu Chan 已提交
1976 1977
    helper.append_op(type="kron", inputs={"X": x, "Y": y}, outputs={"Out": out})
    return out
1978 1979 1980 1981


def cumsum(x, axis=None, dtype=None, name=None):
    """
1982 1983 1984 1985
    The cumulative sum of the elements along a given axis. 
    
    **Note**:
    The first element of the result is the same of the first element of the input. 
1986 1987

    Args:
1988
        x (Tensor): The input tensor needed to be cumsumed.
1989 1990 1991 1992 1993
        axis (int, optional): The dimension to accumulate along. -1 means the last dimension. The default (None) is to compute the cumsum over the flattened array.
        dtype (str, optional): The data type of the output tensor, can be float32, float64, int32, int64. If specified, the input tensor is casted to dtype before the operation is performed. This is useful for preventing data type overflows. The default value is None. 
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
1994
        Tensor, the result of cumsum operator. 
1995 1996 1997 1998 1999

    Examples:
        .. code-block:: python
            
            import paddle
2000 2001 2002
            
            data = paddle.arange(12)
            data = paddle.reshape(data, (3, 4))
2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029

            y = paddle.cumsum(data)
            # [ 0  1  3  6 10 15 21 28 36 45 55 66]

            y = paddle.cumsum(data, axis=0)
            # [[ 0  1  2  3]
            #  [ 4  6  8 10]
            #  [12 15 18 21]]
            
            y = paddle.cumsum(data, axis=-1)
            # [[ 0  1  3  6]
            #  [ 4  9 15 22]
            #  [ 8 17 27 38]]

            y = paddle.cumsum(data, dtype='float64')
            print(y.dtype)
            # VarType.FP64
    """
    if axis is None:
        flatten = True
    else:
        flatten = False
    if dtype is not None and x.dtype != convert_np_dtype_to_dtype_(dtype):
        x = layers.cast(x, dtype)

    if in_dygraph_mode():
        if axis is None:
W
wanghuancoder 已提交
2030
            return _C_ops.cumsum(x, 'flatten', flatten)
2031
        else:
W
wanghuancoder 已提交
2032
            return _C_ops.cumsum(x, 'axis', axis, 'flatten', flatten)
2033 2034 2035 2036 2037 2038 2039 2040 2041

    check_type(x, 'x', (Variable), 'cumsum')
    locals_var = locals().copy()
    kwargs = dict()
    for name, val in locals_var.items():
        if val is not None:
            kwargs[name] = val
    _cum_sum_ = generate_layer_fn('cumsum')
    return _cum_sum_(**kwargs)
G
guofei 已提交
2042

H
hlygit66666 已提交
2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053
def cumprod(x, dim=None, dtype=None, name=None):
    """
    Compute the cumulative product of the input tensor x along a given dimension dim.

    **Note**:
    The first element of the result is the same as the first element of the input.

    Args:
        x (Tensor): the input tensor need to be cumproded.
        dim (int): the dimension along which the input tensor will be accumulated. It need to be in the range of [-x.rank, x.rank), where x.rank means the dimensions of the input tensor x and -1 means the last dimension.
        dtype (str, optional): The data type of the output tensor, can be float32, float64, int32, int64, complex64, complex128. If specified, the input tensor is casted to dtype before the operation is performed. This is useful for preventing data type overflows. The default value is None.
H
hlygit66666 已提交
2054
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
H
hlygit66666 已提交
2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103

    Returns:
        Tensor, the result of cumprod operator.

    Examples:
        .. code-block:: python

            import paddle

            data = paddle.arange(12)
            data = paddle.reshape(data, (3, 4))
            # [[ 0  1  2  3 ]
            #  [ 4  5  6  7 ]
            #  [ 8  9  10 11]]

            y = paddle.cumprod(data, dim=0)
            # [[ 0  1   2   3]
            #  [ 0  5  12  21]
            #  [ 0 45 120 231]]

            y = paddle.cumprod(data, dim=-1)
            # [[ 0   0   0    0]
            #  [ 4  20 120  840]
            #  [ 8  72 720 7920]]

            y = paddle.cumprod(data, dim=1, dtype='float64')
            # [[ 0.   0.   0.    0.]
            #  [ 4.  20. 120.  840.]
            #  [ 8.  72. 720. 7920.]]

            print(y.dtype)
            # paddle.float64

    """

    if dtype is not None and x.dtype != convert_np_dtype_to_dtype_(dtype):
        x = layers.cast(x, dtype)

    if in_dygraph_mode():
        return _C_ops.cumprod(x, 'dim', dim)

    check_variable_and_dtype(x, "x", ['complex64', 'complex128', 'float32', 'float64', 'int32', 'int64'], 'cumprod')
    check_type(dim, 'dim', int, 'cumprod')

    helper = LayerHelper('cumprod', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='cumprod', inputs={'X': x}, outputs={'Out': out}, attrs={'dim': dim})
    return out

J
Jack Zhou 已提交
2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119
def isfinite(x, name=None):
    """

    Return whether every element of input tensor is finite number or not.

    Args:
        x (Tensor): The input tensor, it's data type should be float16, float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        `Tensor`, the bool result which shows every element of `x` whether it is finite number or not.

    Examples:
        .. code-block:: python

            import paddle
N
Noel 已提交
2120

2121
            x = paddle.to_tensor([float('-inf'), -2, 3.6, float('inf'), 0, float('-nan'), float('nan')])
J
Jack Zhou 已提交
2122
            out = paddle.tensor.isfinite(x)
N
Noel 已提交
2123
            print(out)  # [False  True  True False  True False False]
J
Jack Zhou 已提交
2124 2125
    """
    if in_dygraph_mode():
W
wanghuancoder 已提交
2126
        return _C_ops.isfinite_v2(x)
J
Jack Zhou 已提交
2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148
    helper = LayerHelper("isfinite_v2", **locals())
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'isfinite')
    out = helper.create_variable_for_type_inference('bool')
    helper.append_op(type="isfinite_v2", inputs={"X": x}, outputs={"Out": out})
    return out

def isinf(x, name=None):
    """

    Return whether every element of input tensor is `+/-INF` or not.

    Args:
        x (Tensor): The input tensor, it's data type should be float16, float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        `Tensor`, the bool result which shows every element of `x` whether it is `+/-INF` or not.

    Examples:
        .. code-block:: python

            import paddle
2149
            x = paddle.to_tensor([float('-inf'), -2, 3.6, float('inf'), 0, float('-nan'), float('nan')])
J
Jack Zhou 已提交
2150
            out = paddle.tensor.isinf(x)
N
Noel 已提交
2151
            print(out)  # [ True False False  True False False False]
J
Jack Zhou 已提交
2152 2153
    """
    if in_dygraph_mode():
W
wanghuancoder 已提交
2154
        return _C_ops.isinf_v2(x)
J
Jack Zhou 已提交
2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176
    helper = LayerHelper("isinf_v2", **locals())
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'isinf')
    out = helper.create_variable_for_type_inference(dtype='bool')
    helper.append_op(type="isinf_v2", inputs={"X": x}, outputs={"Out": out})
    return out

def isnan(x, name=None):
    """

    Return whether every element of input tensor is `NaN` or not.

    Args:
        x (Tensor): The input tensor, it's data type should be float16, float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        `Tensor`, the bool result which shows every element of `x` whether it is `NaN` or not.

    Examples:
        .. code-block:: python

            import paddle
2177
            x = paddle.to_tensor([float('-inf'), -2, 3.6, float('inf'), 0, float('-nan'), float('nan')])
J
Jack Zhou 已提交
2178
            out = paddle.tensor.isnan(x)
N
Noel 已提交
2179
            print(out)  # [False False False False False  True  True]
J
Jack Zhou 已提交
2180 2181
    """
    if in_dygraph_mode():
W
wanghuancoder 已提交
2182
        return _C_ops.isnan_v2(x)
J
Jack Zhou 已提交
2183 2184 2185 2186 2187 2188 2189
    helper = LayerHelper("isnan_v2", **locals())
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64', 'int32', 'int64'], 'isnan')
    out = helper.create_variable_for_type_inference(dtype='bool')
    helper.append_op(type="isnan_v2", inputs={"X": x}, outputs={"Out": out})
    return out


G
guofei 已提交
2190 2191 2192 2193 2194
def prod(x, axis=None, keepdim=False, dtype=None, name=None):
    """
    Compute the product of tensor elements over the given axis.

    Args:
2195
        x(Tensor): The input tensor, its data type should be float32, float64, int32, int64.
G
guofei 已提交
2196 2197 2198 2199 2200 2201 2202 2203 2204
        axis(int|list|tuple, optional): The axis along which the product is computed. If :attr:`None`, 
            multiply all elements of `x` and return a Tensor with a single element, 
            otherwise must be in the range :math:`[-x.ndim, x.ndim)`. If :math:`axis[i]<0`, 
            the axis to reduce is :math:`x.ndim + axis[i]`. Default is None.
        dtype(str|np.dtype, optional): The desired date type of returned tensor, can be float32, float64, 
            int32, int64. If specified, the input tensor is casted to dtype before operator performed. 
            This is very useful for avoiding data type overflows. The default value is None, the dtype 
            of output is the same as input Tensor `x`.
        keepdim(bool, optional): Whether to reserve the reduced dimension in the output Tensor. The result 
2205
            tensor will have one fewer dimension than the input unless `keepdim` is true. Default is False.
G
guofei 已提交
2206 2207 2208 2209 2210 2211 2212 2213 2214
        name(string, optional): The default value is None. Normally there is no need for user to set this property.
            For more information, please refer to :ref:`api_guide_Name` .

    Returns:
        Tensor, result of product on the specified dim of input tensor.

    Raises:
        ValueError: The :attr:`dtype` must be float32, float64, int32 or int64.
        TypeError: The type of :attr:`axis` must be int, list or tuple.
J
Jack Zhou 已提交
2215
    
G
guofei 已提交
2216 2217 2218 2219 2220 2221
    Examples:
        .. code-block:: python

            import paddle

            # the axis is a int element
2222 2223
            x = paddle.to_tensor([[0.2, 0.3, 0.5, 0.9],
                                  [0.1, 0.2, 0.6, 0.7]])
G
guofei 已提交
2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239
            out1 = paddle.prod(x)
            # [0.0002268]

            out2 = paddle.prod(x, -1)
            # [0.027  0.0084]

            out3 = paddle.prod(x, 0)
            # [0.02 0.06 0.3  0.63]

            out4 = paddle.prod(x, 0, keepdim=True)
            # [[0.02 0.06 0.3  0.63]]

            out5 = paddle.prod(x, 0, dtype='int64')
            # [0 0 0 0]

            # the axis is list
2240 2241
            y = paddle.to_tensor([[[1.0, 2.0], [3.0, 4.0]],
                                  [[5.0, 6.0], [7.0, 8.0]]])
G
guofei 已提交
2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254
            out6 = paddle.prod(y, [0, 1])
            # [105. 384.]

            out7 = paddle.prod(y, (1, 2))
            # [  24. 1680.]

    """
    if dtype is not None:
        check_dtype(dtype, 'dtype', ['float32', 'float64', 'int32', 'int64'], 'prod')
        if x.dtype != convert_np_dtype_to_dtype_(dtype):
            x = layers.cast(x, dtype)

    return layers.reduce_prod(input=x, dim=axis, keep_dim=keepdim, name=name)
W
WangXi 已提交
2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273


def sign(x, name=None):
    """
    This OP returns sign of every element in `x`: 1 for positive, -1 for negative and 0 for zero.

    Args:
        x(Tensor): The input tensor. The data type can be float16, float32 or float64.
        name (str, optional): The default value is None. Normally there is no need for user to
            set this property. For more information, please refer to :ref:`api_guide_Name`

    Returns:
        Tensor: The output sign tensor with identical shape and data type to the input :attr:`x`.

    Examples:
        .. code-block:: python

          import paddle

2274
          x = paddle.to_tensor([3.0, 0.0, -2.0, 1.7], dtype='float32')
W
WangXi 已提交
2275 2276 2277 2278
          out = paddle.sign(x=x)
          print(out)  # [1.0, 0.0, -1.0, 1.0]
    """
    if in_dygraph_mode():
W
wanghuancoder 已提交
2279
        return _C_ops.sign(x)
W
WangXi 已提交
2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'sign')
    helper = LayerHelper("sign", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(type='sign', inputs={'X': [x]}, outputs={'Out': [out]})

    return out


def tanh(x, name=None):
2291
    r"""
W
WangXi 已提交
2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309
    Tanh Activation Operator.

    .. math::
        out = \\frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}

    Args:
        x (Tensor): Input of Tanh operator, an N-D Tensor, with data type float32, float64 or float16.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Output of Tanh operator, a Tensor with same data type and shape as input.

    Examples:

        .. code-block:: python

            import paddle

2310
            x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
W
WangXi 已提交
2311
            out = paddle.tanh(x)
N
Noel 已提交
2312
            print(out)
W
WangXi 已提交
2313 2314 2315
            # [-0.37994896 -0.19737532  0.09966799  0.29131261]
    """
    if in_dygraph_mode():
W
wanghuancoder 已提交
2316
        return _C_ops.tanh(x)
W
WangXi 已提交
2317 2318

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'tanh')
S
ShenLiang 已提交
2319
    check_type(x, 'x', (Variable), 'tanh')
W
WangXi 已提交
2320 2321 2322 2323
    helper = LayerHelper('tanh', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='tanh', inputs={'X': x}, outputs={'Out': out})
    return out
S
Steffy-zxf 已提交
2324

2325
@inplace_apis_in_dygraph_only
2326 2327 2328 2329 2330
def tanh_(x, name=None):
    r"""
    Inplace version of ``tanh`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_tanh`.
    """
W
wanghuancoder 已提交
2331
    return _C_ops.tanh_(x)
2332 2333


S
Steffy-zxf 已提交
2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357
def increment(x, value=1.0, name=None):
    """
    The OP is usually used for control flow to increment the data of :attr:`x` by an amount :attr:`value`.
    Notice that the number of elements in :attr:`x` must be equal to 1.

    Args:
        x (Tensor): A tensor that must always contain only one element, its data type supports float32, float64, int32 and int64.
        value(float, optional): The amount to increment the data of :attr:`x`. Default: 1.0.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, the elementwise-incremented tensor with the same shape and data type as :attr:`x`.

    Examples:
        .. code-block:: python

            import paddle

            data = paddle.zeros(shape=[1], dtype='float32')
            counter = paddle.increment(data)
            # [1.]

    """
    if in_dygraph_mode():
W
wanghuancoder 已提交
2358
        return _C_ops.increment(x, 'step', value)
S
Steffy-zxf 已提交
2359 2360 2361 2362 2363 2364 2365 2366 2367 2368

    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             'increment')
    helper = LayerHelper("increment", **locals())
    helper.append_op(
        type='increment',
        inputs={'X': [x]},
        outputs={'Out': [x]},
        attrs={'step': float(value)})
    return x
2369 2370 2371 2372 2373 2374 2375 2376 2377 2378


def all(x, axis=None, keepdim=False, name=None):
    """
    Computes the the ``logical and`` of tensor elements over the given dimension.

    Args:
        x (Tensor): An N-D Tensor, the input data type should be `bool`.
        axis (int|list|tuple, optional): The dimensions along which the ``logical and`` is compute. If
            :attr:`None`, and all elements of :attr:`x` and return a
N
Noel 已提交
2379
            Tensor with a single element, otherwise must be in the
2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
            value is False.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`

    Returns:
        Tensor: Results the ``logical and`` on the specified axis of input Tensor `x`,  it's data type is bool.

    Raises:
        ValueError: If the data type of `x` is not bool.
        TypeError: The type of :attr:`axis` must be int, list or tuple.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np
            
N
Noel 已提交
2402
            # x is a bool Tensor with following elements:
2403 2404
            #    [[True, False]
            #     [True, True]]
S
syyxsxx 已提交
2405
            x = paddle.assign(np.array([[1, 0], [1, 1]], dtype='int32'))
2406
            print(x)
S
syyxsxx 已提交
2407
            x = paddle.cast(x, 'bool')
2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421
            
            # out1 should be [False]
            out1 = paddle.all(x)  # [False]
            print(out1)
            
            # out2 should be [True, False]
            out2 = paddle.all(x, axis=0)  # [True, False]
            print(out2)
            
            # keep_dim=False, out3 should be [False, True], out.shape should be (2,)
            out3 = paddle.all(x, axis=-1)  # [False, True]
            print(out3)
            
            # keep_dim=True, out4 should be [[False], [True]], out.shape should be (2,1)
S
syyxsxx 已提交
2422 2423
            out4 = paddle.all(x, axis=1, keepdim=True)
            out4 = paddle.cast(out4, 'int32')  # [[False], [True]]
2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437
            print(out4)
            
    """
    if axis is not None and not isinstance(axis, (list, tuple)):
        axis = [axis]

    if not axis:
        reduce_all_flag = True
    else:
        if len(axis) == len(x.shape):
            reduce_all_flag = True
        else:
            reduce_all_flag = False

W
wanghuancoder 已提交
2438 2439
    if in_dygraph_mode():
        axis = axis if axis != None and axis != [] else [0]
W
wanghuancoder 已提交
2440
        return _C_ops.reduce_all(x, 'dim', axis, 'keep_dim', keepdim,
W
wanghuancoder 已提交
2441 2442
                                       'reduce_all', reduce_all_flag)

2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470
    attrs = {
        'dim': axis if axis != None and axis != [] and axis != () else [0],
        'keep_dim': keepdim,
        'reduce_all': reduce_all_flag
    }
    check_variable_and_dtype(x, 'x', ['bool'], 'all')


    check_type(axis, 'axis', (int, list, tuple, type(None)), 'all')

    helper = LayerHelper('all', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='reduce_all',
        inputs={'X': x},
        outputs={'Out': out},
        attrs=attrs)
    return out


def any(x, axis=None, keepdim=False, name=None):
    """
    Computes the the ``logical or`` of tensor elements over the given dimension.

    Args:
        x (Tensor): An N-D Tensor, the input data type should be `bool`.
        axis (int|list|tuple, optional): The dimensions along which the ``logical or`` is compute. If
            :attr:`None`, and all elements of :attr:`x` and return a
N
Noel 已提交
2471
            Tensor with a single element, otherwise must be in the
2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493
            range :math:`[-rank(x), rank(x))`. If :math:`axis[i] < 0`,
            the dimension to reduce is :math:`rank + axis[i]`.
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result Tensor will have one fewer dimension
            than the :attr:`x` unless :attr:`keepdim` is true, default
            value is False.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`

    Returns:
        Tensor: Results the ``logical or`` on the specified axis of input Tensor `x`,  it's data type is bool.

    Raises:
        ValueError: If the data type of `x` is not bool.
        TypeError: The type of :attr:`axis` must be int, list or tuple.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np
            
N
Noel 已提交
2494
            # x is a bool Tensor with following elements:
2495 2496
            #    [[True, False]
            #     [False, False]]
S
syyxsxx 已提交
2497
            x = paddle.assign(np.array([[1, 0], [1, 1]], dtype='int32'))
2498
            print(x)
S
syyxsxx 已提交
2499
            x = paddle.cast(x, 'bool')
2500 2501 2502 2503 2504
            
            # out1 should be [True]
            out1 = paddle.any(x)  # [True]
            print(out1)
            
2505 2506
            # out2 should be [True, True]
            out2 = paddle.any(x, axis=0)  # [True, True]
2507 2508
            print(out2)
            
2509 2510
            # keep_dim=False, out3 should be [True, True], out.shape should be (2,)
            out3 = paddle.any(x, axis=-1)  # [True, True]
2511 2512
            print(out3)
            
2513
            # keep_dim=True, result should be [[True], [True]], out.shape should be (2,1)
S
syyxsxx 已提交
2514
            out4 = paddle.any(x, axis=1, keepdim=True)
2515
            out4 = paddle.cast(out4, 'int32')  # [[True], [True]]
2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529
            print(out4)
            
    """
    if axis is not None and not isinstance(axis, (list, tuple)):
        axis = [axis]

    if not axis:
        reduce_all_flag = True
    else:
        if len(axis) == len(x.shape):
            reduce_all_flag = True
        else:
            reduce_all_flag = False

W
wanghuancoder 已提交
2530 2531
    if in_dygraph_mode():
        axis = axis if axis != None and axis != [] else [0]
W
wanghuancoder 已提交
2532
        return _C_ops.reduce_any(x, 'dim', axis, 'keep_dim', keepdim,
W
wanghuancoder 已提交
2533 2534
                                       'reduce_all', reduce_all_flag)

2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553
    attrs = {
        'dim': axis if axis != None and axis != [] and axis != () else [0],
        'keep_dim': keepdim,
        'reduce_all': reduce_all_flag
    }

    check_variable_and_dtype(x, 'x', ['bool'], 'any')


    check_type(axis, 'axis', (int, list, tuple, type(None)), 'any')

    helper = LayerHelper('any', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='reduce_any',
        inputs={'X': x},
        outputs={'Out': out},
        attrs=attrs)
    return out
L
Leo Chen 已提交
2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580

def broadcast_shape(x_shape, y_shape):
    """
    The function returns the shape of doing operation with broadcasting on tensors of x_shape and y_shape, please refer to :ref:`user_guide_broadcasting` for more details.

    Args:
        x_shape (list[int]|tuple[int]): A shape of tensor.
        y_shape (list[int]|tuple[int]): A shape of tensor.
        

    Returns:
        list[int], the result shape.

    Examples:
        .. code-block:: python

            import paddle

            shape = paddle.broadcast_shape([2, 1, 3], [1, 3, 1])
            # [2, 3, 3]
            
            # shape = paddle.broadcast_shape([2, 1, 3], [3, 3, 1])
            # ValueError (terminated with error message).

    """

    return core.broadcast_shape(x_shape, y_shape)
2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611

def conj(x, name=None):
    r"""
    This function computes the conjugate of the Tensor elementwisely.

    Args:
        x (Tensor): The input tensor which hold the complex numbers. 
            Optional data types are: complex64, complex128, float32, float64, int32 or int64.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`

    Returns:
        out (Tensor): The conjugate of input. The shape and data type is the same with input.
            If the elements of tensor is real type such as float32, float64, int32 or int64, the out is the same with input.

    Examples:
        .. code-block:: python

          import paddle
          data=paddle.to_tensor([[1+1j, 2+2j, 3+3j], [4+4j, 5+5j, 6+6j]])
          #Tensor(shape=[2, 3], dtype=complex64, place=CUDAPlace(0), stop_gradient=True,
          #       [[(1+1j), (2+2j), (3+3j)],
          #        [(4+4j), (5+5j), (6+6j)]])

          conj_data=paddle.conj(data)
          #Tensor(shape=[2, 3], dtype=complex64, place=CUDAPlace(0), stop_gradient=True,
          #       [[(1-1j), (2-2j), (3-3j)],
          #        [(4-4j), (5-5j), (6-6j)]])

    """
    if in_dygraph_mode():
W
wanghuancoder 已提交
2612
        return _C_ops.conj(x)
2613 2614 2615 2616 2617 2618 2619 2620 2621

    check_variable_and_dtype(x, "x", ['complex64', 'complex128', 'float32', 'float64', 'int32', 'int64'], 'conj')

    helper = LayerHelper('conj', **locals())
    out = helper.create_variable_for_type_inference(
            dtype=helper.input_dtype())

    helper.append_op(type='conj', inputs={'X': x}, outputs={'Out': [out]})
    return out
2622

Z
zyfncg 已提交
2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650
def digamma(x, name=None):
    r"""
    Calculates the digamma of the given input tensor, element-wise.

    .. math::
        Out = \Psi(x) = \frac{ \Gamma^{'}(x) }{ \Gamma(x) }

    Args:
        x (Tensor): Input Tensor. Must be one of the following types: float32, float64.
        name(str, optional): The default value is None.  Normally there is no need for 
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
    Returns:
        Tensor, the digamma of the input Tensor, the shape and data type is the same with input.

    Examples:
        .. code-block:: python

            import paddle

            data = paddle.to_tensor([[1, 1.5], [0, -2.2]], dtype='float32')
            res = paddle.digamma(data)
            print(res)
            # Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [[-0.57721591,  0.03648996],
            #        [ nan       ,  5.32286835]])
    """

    if in_dygraph_mode():
W
wanghuancoder 已提交
2651
        return _C_ops.digamma(x)
Z
zyfncg 已提交
2652 2653 2654 2655 2656 2657 2658

    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'digamma')
    helper = LayerHelper('digamma', **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(type='digamma', inputs={'X': x}, outputs={'Out': out})
    return out

2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681
def neg(x, name=None):
    """
    This function computes the negative of the Tensor elementwisely.

    Args:
        x (Tensor): Input of neg operator, an N-D Tensor, with data type float32, float64, int8, int16, int32, or int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): The negative of input Tensor. The shape and data type are the same with input Tensor.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([-0.4, -0.2, 0.1, 0.3])
            out = paddle.neg(x)
            print(out)
            # [0.4 0.2 -0.1 -0.3]
    """

    return layers.scale(x, scale=-1.0, bias=0.0, bias_after_scale=True, act=None, name=name)
R
ronnywang 已提交
2682

2683
def atan2(x, y, name=None):
R
ronnywang 已提交
2684
    r"""
2685
    Element-wise arctangent of x/y with consideration of the quadrant.
R
ronnywang 已提交
2686 2687 2688 2689

    Equation:
        .. math::

2690 2691 2692 2693 2694 2695 2696 2697
            atan2(x,y)=\left\{\begin{matrix}
            & tan^{-1}(\frac{x}{y}) & y > 0 \\
            & tan^{-1}(\frac{x}{y}) + \pi & x>=0, y < 0 \\
            & tan^{-1}(\frac{x}{y}) - \pi & x<0, y < 0 \\
            & +\frac{\pi}{2} & x>0, y = 0 \\
            & -\frac{\pi}{2} & x<0, y = 0 \\
            &\text{undefined} & x=0, y = 0
            \end{matrix}\right.
R
ronnywang 已提交
2698 2699

    Args:
2700 2701
        x (Tensor): An N-D Tensor, the data type is int32, int64, float16, float32, float64.
        y (Tensor): An N-D Tensor, must have the same type as `x`.
R
ronnywang 已提交
2702 2703 2704 2705 2706 2707 2708 2709
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the shape and data type is the same with input (The output data type is float64 when the input data type is int).

    Examples:
        .. code-block:: python

2710
            import paddle
R
ronnywang 已提交
2711

2712 2713 2714
            x = paddle.to_tensor([-1, +1, +1, -1]).astype('float32')
            #Tensor(shape=[4], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [-1,  1,  1, -1])
R
ronnywang 已提交
2715

2716 2717 2718
            y = paddle.to_tensor([-1, -1, +1, +1]).astype('float32')
            #Tensor(shape=[4], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [-1,  -1,  1, 1])
R
ronnywang 已提交
2719

2720 2721 2722
            out = paddle.atan2(x, y)
            #Tensor(shape=[4], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [-2.35619450,  2.35619450,  0.78539819, -0.78539819])
R
ronnywang 已提交
2723 2724 2725 2726

    """

    if in_dygraph_mode():
2727
        return _C_ops.atan2(x, y)
R
ronnywang 已提交
2728 2729
    else:
        check_variable_and_dtype(x, 'x', ['int32', 'int64', 'float16', 'float32', 'float64'], 'atan2')
2730
        check_variable_and_dtype(y, 'y', ['int32', 'int64', 'float16', 'float32', 'float64'], 'atan2')
R
ronnywang 已提交
2731 2732

        helper = LayerHelper('atan2', **locals())
2733
        inputs = {'X1' : x, 'X2' : y}
R
ronnywang 已提交
2734 2735 2736 2737
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
                type='atan2', inputs=inputs, outputs={'Out': out})
        return out
A
andyjpaddle 已提交
2738

W
wangzhen38 已提交
2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794
def logit(x, eps=None, name=None):
    r"""
    This function generates a new tensor with the logit of the elements of input x. x is clamped to [eps, 1-eps] when eps is not zero. When eps is zero and x < 0 or x > 1, the function will yields NaN.

    .. math::
 
        logit(x) = ln(\frac{x}{1 - x})

    where

    .. math::

        x_i=
            \left\{\begin{array}{rcl}
                x_i & &\text{if } eps == Default \\
                eps & &\text{if } x_i < eps \\
                x_i & &\text{if } eps <= x_i <= 1-eps \\
                1-eps & &\text{if } x_i > 1-eps
            \end{array}\right.

    Args:
        x (Tensor): The input Tensor with data type float32, float64.
        eps (float, optional):  the epsilon for input clamp bound. Default is None.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out(Tensor): A Tensor with the same data type and shape as ``x`` .

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([0.2635, 0.0106, 0.2780, 0.2097, 0.8095])
            out1 = paddle.logit(x)
            print(out1)
            # [-1.0277, -4.5365, -0.9544, -1.3269,  1.4468]  

    """

    if eps == None:
        eps = 0.0
    if in_dygraph_mode():
        return _C_ops.logit(x, 'eps', eps)

    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'], 'logit')
    helper = LayerHelper("logit", **locals())
    out = helper.create_variable_for_type_inference(x.dtype)
    helper.append_op(
        type='logit',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'eps': eps})
    return out

2795 2796 2797 2798 2799 2800 2801 2802 2803 2804
def lerp(x, y, weight, name=None):
    r"""
    Does a linear interpolation between x and y based on weight.

    Equation:
        .. math::

            lerp(x, y, weight) = x + weight * (y - x).

    Args:
2805 2806 2807
        x (Tensor): An N-D Tensor with starting points, the data type is float32, float64.
        y (Tensor): An N-D Tensor with ending points, the data type is float32, float64.
        weight (float|Tensor): The weight for the interpolation formula. When weight is Tensor, the data type is float32, float64.
2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the shape and data type is the same with input.

    Example:
        .. code-block:: python

            import paddle
            
            x = paddle.arange(1., 5., dtype='float32')
            y = paddle.empty([4], dtype='float32')
            y.fill_(10.)
            out = paddle.lerp(start, end, 0.5)
            # out: [5.5., 6., 6.5, 7.]

    """
    if in_dygraph_mode():
        check_type(weight, 'weight', (float, paddle.Tensor, Variable), 'lerp')
        if isinstance(weight, float):
            weight = paddle.to_tensor(weight, dtype=x.dtype)
        return _C_ops.lerp(x, y, weight)

2831 2832 2833
    if isinstance(weight, float):
        weight = paddle.full(shape=[1], fill_value=weight, dtype=x.dtype)

2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'lerp')
    check_variable_and_dtype(y, 'y', ['float32', 'float64'], 'lerp')
    check_variable_and_dtype(weight, 'weight', ['float32', 'float64'], 'lerp')

    helper = LayerHelper('lerp', **locals())
    inputs = {'X': x, 'Y': y, 'Weight': weight}
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(type='lerp', inputs=inputs, outputs={'Out': out})
    return out

@inplace_apis_in_dygraph_only
def lerp_(x, y, weight, name=None):
    r"""
    Inplace version of ``lerp`` API, the output Tensor will be inplaced with input ``x``.
    Please refer to :ref:`api_tensor_lerp`.
    """
    out_shape = broadcast_shape(x.shape, y.shape)
    check_type(weight, 'weight', (float, paddle.Tensor, Variable), 'lerp')
    if isinstance(weight, float):
        weight = paddle.to_tensor([weight], dtype=x.dtype)
    elif isinstance(weight, (paddle.Tensor, Variable)):
        out_shape = broadcast_shape(out_shape, weight.shape)
    if out_shape != x.shape:
        raise ValueError("The shape of broadcast output {} is different from that of inplace tensor {} in the Inplace operation.".format(out_shape, x.shape))
    return _C_ops.lerp_(x, y, weight)

2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970
def rad2deg(x, name=None):
    """
    Convert each of the elements of input x from angles in radians to degrees.
    
    Equation:
        .. math::

            rad2deg(x)=180/ \pi * x

    Args:
        x (Tensor): An N-D Tensor, the data type is float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the shape and data type is the same with input (The output data type is float32 when the input data type is int).

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np
            
            x1 = paddle.to_tensor([3.142, -3.142, 6.283, -6.283, 1.570, -1.570])
            result1 = paddle.rad2deg(x1)
            print(result1)
            # Tensor(shape=[6], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         [180.02334595, -180.02334595,  359.98937988, -359.98937988,
            #           9.95437622 , -89.95437622])

            x2 = paddle.to_tensor(np.pi/2)
            result2 = paddle.rad2deg(x2)
            print(result2)
            # Tensor(shape=[1], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         [90.])
                     
            x3 = paddle.to_tensor(1)
            result3 = paddle.rad2deg(x3)
            print(result3)
            # Tensor(shape=[1], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         [57.29578018])
    """
    rad2deg_scale = 180 / np.pi
    if in_dygraph_mode():
        if convert_dtype(x.dtype) in ['int32', 'int64']:
            x = cast(x, dtype="float32")
        return _C_ops.scale(x, 'scale', rad2deg_scale)
    else:
        check_variable_and_dtype(x, 'x', ['int32', 'int64', 'float32', 'float64'], 'rad2deg')
        helper = LayerHelper('rad2deg', **locals())
        out_cast = x
        if convert_dtype(x.dtype) in ['int32', 'int64']:
            out_cast = helper.create_variable_for_type_inference(dtype=paddle.float32)
            helper.append_op(
                    type='cast', inputs={'X':x}, outputs={'Out': out_cast}, attrs={'in_dtype': x.dtype,'out_dtype': paddle.float32})
        out = helper.create_variable_for_type_inference(dtype=out_cast.dtype)
        helper.append_op(
            type='scale', inputs={'X':out_cast}, outputs={'Out': out}, attrs={'scale': rad2deg_scale})
        return out

def deg2rad(x, name=None):
    """
    Convert each of the elements of input x from degrees to angles in radians.
    
    Equation:
        .. math::

            deg2rad(x)=\pi * x / 180

    Args:
        x (Tensor): An N-D Tensor, the data type is float32, float64, int32, int64.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the shape and data type is the same with input (The output data type is float32 when the input data type is int).

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np
            
            x1 = paddle.to_tensor([180.0, -180.0, 360.0, -360.0, 90.0, -90.0])
            result1 = paddle.deg2rad(x1)
            print(result1)
            # Tensor(shape=[6], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         [3.14159274, -3.14159274,  6.28318548, -6.28318548,  1.57079637,
            #           -1.57079637])

            x2 = paddle.to_tensor(180)
            result2 = paddle.deg2rad(x2)
            print(result2)
            # Tensor(shape=[1], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #         [3.14159274])
    """
    deg2rad_scale = np.pi / 180.0
    if in_dygraph_mode():
        if convert_dtype(x.dtype) in ['int32', 'int64']:
            x = cast(x, dtype="float32")
        return _C_ops.scale(x, 'scale', deg2rad_scale)
    else:
        check_variable_and_dtype(x, 'x', ['int32', 'int64', 'float32', 'float64'], 'deg2rad')
        helper = LayerHelper('deg2rad', **locals())
        out_cast = x
        if convert_dtype(x.dtype) in ['int32', 'int64']:
            out_cast = helper.create_variable_for_type_inference(dtype=paddle.float32)
            helper.append_op(
                    type='cast', inputs={'X':x}, outputs={'Out': out_cast}, attrs={'in_dtype': x.dtype,'out_dtype': paddle.float32})
        out = helper.create_variable_for_type_inference(dtype=out_cast.dtype)
        helper.append_op(
            type='scale', inputs={'X':out_cast}, outputs={'Out': out}, attrs={'scale': deg2rad_scale})
        return out
A
andyjpaddle 已提交
2971

T
Tao Luo 已提交
2972 2973 2974 2975 2976 2977 2978 2979
def gcd(x, y, name=None):
    """
    Computes the element-wise greatest common divisor (GCD) of input |x| and |y|.
    Both x and y must have integer types.
    
    Note:
        gcd(0,0)=0, gcd(0, y)=|y|

T
Tao Luo 已提交
2980 2981
        If x.shape != y.shape, they must be broadcastable to a common shape (which becomes the shape of the output).

T
Tao Luo 已提交
2982
    Args:
T
Tao Luo 已提交
2983 2984
        x (Tensor): An N-D Tensor, the data type is int8,int16,int32,int64,uint8. 
        y (Tensor): An N-D Tensor, the data type is int8,int16,int32,int64,uint8. 
T
Tao Luo 已提交
2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the data type is the same with input.

    Examples:
        .. code-block:: python

            import paddle
            
            x1 = paddle.to_tensor(12)
            x2 = paddle.to_tensor(20)
            paddle.gcd(x1, x2)
            # Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [4])

T
Tao Luo 已提交
3001
            x3 = paddle.arange(6)
T
Tao Luo 已提交
3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057
            paddle.gcd(x3, x2)
            # Tensor(shape=[6], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [20, 1 , 2 , 1 , 4 , 5])

            x4 = paddle.to_tensor(0)
            paddle.gcd(x4, x2)
            # Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [20])

            paddle.gcd(x4, x4)
            # Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [0])
            
            x5 = paddle.to_tensor(-20)
            paddle.gcd(x1, x5)
            # Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [4])
    """
    shape = paddle.broadcast_shape(x.shape, y.shape)
    x = paddle.broadcast_to(x, shape)
    y = paddle.broadcast_to(y, shape)
    x = paddle.abs(x)
    y = paddle.abs(y)

    def _gcd_cond_fn(x, y):
        return paddle.any(y != 0)

    def _gcd_body_fn(x, y):
        # paddle.mod will raise an error when any element of y is 0. To avoid
        # that, we change those zeros to ones. Their values don't matter because
        # they won't be used.
        y_not_equal_0 = (y != 0)
        y_safe = paddle.where(y_not_equal_0, y, paddle.ones(y.shape, y.dtype))
        x, y = (paddle.where(y_not_equal_0, y, x),
                  paddle.where(y_not_equal_0, paddle.mod(x, y_safe),paddle.zeros(y.shape, y.dtype)))
        return (paddle.where(x < y, y, x), paddle.where(x < y, x, y))

    if in_dygraph_mode():
        while _gcd_cond_fn(x, y):
            x, y = _gcd_body_fn(x, y)

        return x
    else:
        check_variable_and_dtype(x, 'x', ['int32', 'int64', 'int8', 'int16', 'uint8'], 'gcd')
        check_variable_and_dtype(y, 'y', ['int32', 'int64', 'int8', 'int16', 'uint8'], 'gcd')
        out, _ = paddle.static.nn.while_loop(_gcd_cond_fn, _gcd_body_fn, [x, y])
        return out

def lcm(x, y, name=None):
    """
    Computes the element-wise least common multiple (LCM) of input |x| and |y|.
    Both x and y must have integer types.
    
    Note:
        lcm(0,0)=0, lcm(0, y)=0

T
Tao Luo 已提交
3058 3059
        If x.shape != y.shape, they must be broadcastable to a common shape (which becomes the shape of the output).

T
Tao Luo 已提交
3060
    Args:
T
Tao Luo 已提交
3061 3062
        x (Tensor): An N-D Tensor, the data type is int8,int16,int32,int64,uint8. 
        y (Tensor): An N-D Tensor, the data type is int8,int16,int32,int64,uint8. 
T
Tao Luo 已提交
3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        out (Tensor): An N-D Tensor, the data type is the same with input.

    Examples:
        .. code-block:: python

            import paddle
            
            x1 = paddle.to_tensor(12)
            x2 = paddle.to_tensor(20)
            paddle.lcm(x1, x2)
            # Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [60])

T
Tao Luo 已提交
3079
            x3 = paddle.arange(6)
T
Tao Luo 已提交
3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106
            paddle.lcm(x3, x2)
            # Tensor(shape=[6], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [0, 20, 20, 60, 20, 20])

            x4 = paddle.to_tensor(0)
            paddle.lcm(x4, x2)
            # Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [0])

            paddle.lcm(x4, x4)
            # Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [0])
            
            x5 = paddle.to_tensor(-20)
            paddle.lcm(x1, x5)
            # Tensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [60])
    """
    d = paddle.gcd(x, y)
    # paddle.mod will raise an error when any element of y is 0. To avoid
    # that, we change those zeros to ones. Their values don't matter because
    # they won't be used.
    d_equal_0 = paddle.equal(d, 0)
    d_safe = paddle.where(d_equal_0, paddle.ones(d.shape, d.dtype), d)
    out = paddle.where(d_equal_0, paddle.zeros(d.shape, d.dtype), paddle.abs(x * y) // d_safe)
    return out

A
andyjpaddle 已提交
3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139
def diff(x, n=1, axis=-1, prepend=None, append=None, name=None):
    r"""
    Computes the n-th forward difference along the given axis.
    The first-order differences is computed by using the following formula: 

    .. math::

        out[i] = x[i+1] - x[i]
    
    Higher-order differences are computed by using paddle.diff() recursively. 
    Only n=1 is currently supported.

    Args:
        x(Tensor): The input tensor to compute the forward difference on
        n(int, optional): The number of times to recursively compute the difference. 
                          Only support n=1. Default:1
        axis(int, optional): The axis to compute the difference along. Default:-1
        prepend(Tensor, optional): The tensor to prepend to input along axis before computing the difference.
                                   It's dimensions must be equivalent to that of x, 
                                   and its shapes must match x's shape except on axis.
        append(Tensor, optional): The tensor to append to input along axis before computing the difference, 
                                   It's dimensions must be equivalent to that of x, 
                                   and its shapes must match x's shape except on axis.
        name(str|None): A name for this layer(optional). If set None, 
                        the layer will be named automatically.
    
    Returns:
        Tensor: The output tensor with same dtype with x.

    Examples:
        .. code-block:: python

            import paddle
3140

A
andyjpaddle 已提交
3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266
            x = paddle.to_tensor([1, 4, 5, 2])
            out = paddle.diff(x)
            print(out)
            # out:
            # [3, 1, -3]

            y = paddle.to_tensor([7, 9])
            out = paddle.diff(x, append=y)
            print(out)
            # out: 
            # [3, 1, -3, 5, 2]

            z = paddle.to_tensor([[1, 2, 3], [4, 5, 6]])
            out = paddle.diff(z, axis=0)
            print(out)
            # out:
            # [[3, 3, 3]]
            out = paddle.diff(z, axis=1)
            print(out)
            # out:
            # [[1, 1], [1, 1]]
    """

    if axis < 0:
        axis = axis + len(x.shape)
    if axis > len(x.shape):
        axis = len(x.shape)
    if axis < 0:
        axis = 0
    dtype = x.dtype
    axes = [axis]
    infer_flags = list(1 for i in range(len(axes)))
    if in_dygraph_mode():
        has_pend = False
        input_list = []
        if prepend is not None and append is not None:
            input_list = [prepend, x, append]
            has_pend = True
        elif prepend is not None:
            input_list = [prepend, x]
            has_pend = True
        elif append is not None:
            input_list = [x, append]
            has_pend = True
        if has_pend:
            new_input = _C_ops.concat(input_list, 'axis', axis)
        else:
            new_input = x

        attrs_1 = ()
        attrs_2 = ()

        dim_len = new_input.shape[axis]

        starts_1 = [0]
        attrs_1 += ('starts', starts_1)
        ends_1 = [dim_len - 1]
        attrs_1 += ('ends', ends_1)
        input_front = _C_ops.slice(new_input, None, None, 'axes', axes, \
            'infer_flags', infer_flags, *attrs_1)
        starts_2 = [1]
        attrs_2 += ('starts', starts_2)
        ends_2 = [dim_len]
        attrs_2 += ('ends', ends_2)
        input_back = _C_ops.slice(new_input, None, None, 'axes', axes, \
            'infer_flags', infer_flags, *attrs_2)

        if x.dtype == paddle.bool:
            op = getattr(_C_ops, "logical_xor")
            out = op(input_back, input_front)
        else:
            out = layers.elementwise_sub(input_back, input_front, axis=axis)
        return out
    else:
        check_variable_and_dtype(x, 'x', ['float32', 'float64', 'bool', 'int32', 'int64'], 'diff')
        check_type(axis, 'axis', (int), 'diff')
        helper = LayerHelper('diff', **locals())
        has_pend = False
        input_list = []
        if prepend is not None and append is not None:
            input_list = [prepend, x, append]
            has_pend = True
        elif prepend is not None:
            input_list = [prepend, x]
            has_pend = True
        elif append is not None:
            input_list = [x, append]
            has_pend = True

        if has_pend:
            new_input = helper.create_variable_for_type_inference(dtype)
            helper.append_op(
                type='concat', inputs={'X': input_list}, outputs={'Out': [new_input]}, attrs={'axis': axis}
            )
        else:
            new_input = x

        dim_len = new_input.shape[axis]
        attrs_1 = {'axes': axes}
        starts_1 = [0]
        ends_1 = [dim_len - 1]
        attrs_1['starts'] = starts_1
        attrs_1['ends'] = ends_1
        input_front = helper.create_variable_for_type_inference(dtype)
        helper.append_op(
            type='slice', inputs={'Input': new_input}, attrs=attrs_1, outputs={'Out': input_front}
        )
        attrs_2 = {'axes': axes}
        starts_2 = [1]
        ends_2 = [dim_len]
        attrs_2['starts'] = starts_2
        attrs_2['ends'] = ends_2
        input_back = helper.create_variable_for_type_inference(dtype)
        helper.append_op(
            type='slice', inputs={'Input': new_input}, attrs=attrs_2, outputs={'Out': input_back}
        )

        if dtype == paddle.bool:
            out = helper.create_variable_for_type_inference(dtype)
            helper.append_op(
                type='logical_xor', inputs={"X": input_back, "Y": input_front}, outputs={"Out": out}
            )
        else:
            out = layers.elementwise_sub(input_back, input_front, axis=axis)

        return out
F
Feiyu Chan 已提交
3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282

def angle(x, name=None):
    r"""
    Element-wise angle of complex numbers. For non-negative real numbers, the angle is 0 while 
    for negative real numbers, the angle is :math:`\pi`.

    Equation:
        .. math::

            angle(x)=arctan2(x.imag, x.real)

    Args:
        x (Tensor): An N-D Tensor, the data type is complex64, complex128, or float32, float64 .
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
3283
        Tensor: An N-D Tensor of real data type with the same precision as that of x's data type.
F
Feiyu Chan 已提交
3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([-2, -1, 0, 1]).unsqueeze(-1).astype('float32')
            y = paddle.to_tensor([-2, -1, 0, 1]).astype('float32')
            z = x + 1j * y
            print(z.numpy())
            # [[-2.-2.j -2.-1.j -2.+0.j -2.+1.j]
            #  [-1.-2.j -1.-1.j -1.+0.j -1.+1.j]
            #  [ 0.-2.j  0.-1.j  0.+0.j  0.+1.j]
            #  [ 1.-2.j  1.-1.j  1.+0.j  1.+1.j]]

            theta = paddle.angle(z)
            print(theta.numpy())
            # [[-2.3561945 -2.6779451  3.1415927  2.6779451]
            #  [-2.0344439 -2.3561945  3.1415927  2.3561945]
            #  [-1.5707964 -1.5707964  0.         1.5707964]
            #  [-1.1071488 -0.7853982  0.         0.7853982]]
    """

    if in_dygraph_mode():
        return _C_ops.angle(x)

    check_variable_and_dtype(x, 'x',
        ['float32', 'float64', 'complex64', 'complex128'], 'angle')
    op_type = "angle"
    helper = LayerHelper(op_type, **locals())
    inputs = {"X": x}
    out = helper.create_variable_for_type_inference(
        dtype=_complex_to_real_dtype(x.dtype))
    outputs = {"Out": out}
    helper.append_op(type=op_type, inputs=inputs, outputs=outputs)
    return out