hierarchical_sigmoid_op.cc 11.4 KB
Newer Older
Y
Yancey1989 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

W
weixing02 已提交
15
#include "paddle/fluid/operators/hierarchical_sigmoid_op.h"
16
#include <string>
W
weixing02 已提交
17
#include <vector>
Y
Yancey1989 已提交
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
namespace paddle {
namespace operators {

/**
 * Organize the classes into a binary tree. At each node, a sigmoid function
 * is used to calculate the probability of belonging to the right branch.
 * This idea is from "F. Morin, Y. Bengio (AISTATS 05):
 * Hierarchical Probabilistic Neural Network Language Model."
 *
 * Here we uses a simple way of making the binary tree.
 * Assuming the number of classes C = 6,
 * The classes are organized as a binary tree in the following way:
 *
 * @code{.py}
 * *-*-*- 2
 * | | |- 3
 * | |
 * | |-*- 4
 * |   |- 5
 * |
 * |-*- 0
 *   |- 1
 * @endcode
 *
 * where * indicates an internal node, and each leaf node represents a class.
 * - Node 0 ... C-2 are internal nodes.
 * - Node C-1 ... 2C-2 are leaf nodes.
 * - Class c is represented by leaf node \f$c+C-1\f$.
 *
 * We assign an id for each node:
 * - the id of root be 0.
 * - the left child of a node i is 2*i+1.
 * - the right child of a node i is 2*i+2.
 *
 * It's easy to see that:
 * - the parent of node i is \f$\left\lfloor(i-1)/2\right\rfloor\f$.
 * - the j-th level ancestor of node i is
 * \f$\left\lfloor(i+1)/2^{j+1}\right\rfloor - 1\f$.
 * - A node i is a left child of its parent if \f$(i-1)\%2==0\f$.
 *
 */

class HierarchicalSigmoidOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override {
64 65 66 67 68 69
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "hsigmoid");
    OP_INOUT_CHECK(ctx->HasInput("Label"), "Input", "Label", "hsigmoid");
    OP_INOUT_CHECK(ctx->HasInput("W"), "Input", "W", "hsigmoid");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "hsigmoid");
    OP_INOUT_CHECK(ctx->HasOutput("PreOut"), "Output", "PreOut", "hsigmoid");

70 71
    auto with_prefetch = ctx->Attrs().Get<bool>("remote_prefetch");
    if (with_prefetch) {
72
      OP_INOUT_CHECK(ctx->HasOutput("W_Out"), "Output", "W_Out", "hsigmoid");
73
    }
Y
Yancey1989 已提交
74
    const int64_t batch_size = ctx->GetInputDim("X")[0];
Y
Yancey1989 已提交
75
    std::vector<int64_t> output_shape({batch_size, 1});
Y
Yancey1989 已提交
76
    ctx->SetOutputDim("Out", framework::make_ddim(output_shape));
J
JiabinYang 已提交
77
    ctx->ShareLoD("X", /*->*/ "Out");
Y
Yancey1989 已提交
78
  }
Y
Yancey1989 已提交
79 80

 protected:
W
weixing02 已提交
81
  framework::OpKernelType GetExpectedKernelType(
Y
Yancey1989 已提交
82
      const framework::ExecutionContext& ctx) const override {
83 84
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace());
Y
Yancey1989 已提交
85
  }
Y
Yancey1989 已提交
86 87
};

88 89 90 91
/*
 * Inputs: X, W, Label, PathTable, PathCode, Bias
 * Outputs: Out, PreOut, W_out
 */
W
weixing02 已提交
92
template <typename AttrType>
Y
Yancey1989 已提交
93 94
class HierarchicalSigmoidOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
W
weixing02 已提交
95
  void Make() override {
Y
Yancey1989 已提交
96
    AddInput("X",
J
JiabinYang 已提交
97
             "(LoDTensor, required) The input tensor with shape [N, D], "
G
guosheng 已提交
98
             "where N is the size of mini-batch, and D is the feature size.");
Y
Yancey1989 已提交
99
    AddInput("W",
J
JiabinYang 已提交
100
             "(LoDTensor, required), The parameters of hierarchical "
G
guosheng 已提交
101
             "sigmoid operator, each of them is a 2-D tensor, the shape is"
102
             "[K, D]. Which K is the num of non-leaf node in Path Tree");
W
weixing02 已提交
103
    AddInput("Label",
J
JiabinYang 已提交
104
             "(LoDTensor, required), The labels of training data. It's a"
G
guosheng 已提交
105
             "tensor with shape [N, 1].");
106
    AddInput("PathTable",
J
JiabinYang 已提交
107
             "(LoDTensor, optional), The Path Table from root to current word"
108 109
             "it should have shape like [N, L], L is the length of the Path")
        .AsDispensable();
J
JiabinYang 已提交
110
    AddInput(
J
JiabinYang 已提交
111
        "PathCode",
J
JiabinYang 已提交
112 113 114
        "(LoDTensor, optional), The Code on each Node of the Path from root "
        "to current word"
        "it should have shape like [N, L], L is the length of the Path")
115
        .AsDispensable();
Y
Yancey1989 已提交
116
    AddInput("Bias",
J
JiabinYang 已提交
117
             "(LoDTensor, optional), The bias is a tensor with shape or "
118
             "[num_classes, 1]"
119 120
             "[num_classes - 1, 1].")
        .AsDispensable();
J
JiabinYang 已提交
121 122 123 124
    AddOutput(
        "Out",
        "(LoDTensor, required) The output of hierarchical sigmoid operator."
        "The shape is [N, 1].");
W
weixing02 已提交
125
    AddOutput("PreOut",
J
JiabinYang 已提交
126
              "(LoDTensor, required) A intermedia 2-D tensor with shape "
G
guosheng 已提交
127 128
              "[batch_size, code_length], where code_length represents the "
              "maximum path length from root to leaf nodes.")
W
weixing02 已提交
129
        .AsIntermediate();
130 131
    AddOutput(
        "W_Out",
T
tianshuo78520a 已提交
132
        "(LoDTensor, optional) using input 'W' as Output to make it mutable"
133 134
        "When we are using prefetch")
        .AsIntermediate();
J
JiabinYang 已提交
135
    AddAttr<AttrType>("num_classes", "(int, optional), The number of classes")
Y
Yancey1989 已提交
136
        .SetDefault(2);
137 138 139
    // for parameter prefetch
    AddAttr<bool>("remote_prefetch", "").SetDefault(false);
    AddAttr<int>("trainer_id", "trainer id from 0 ~ worker_num.").SetDefault(0);
Q
Qiao Longfei 已提交
140 141 142
    AddAttr<std::vector<int64_t>>("height_sections",
                                  "Height for each output SelectedRows.")
        .SetDefault(std::vector<int64_t>({}));
143 144 145 146 147 148 149
    AddAttr<std::vector<std::string>>(
        "epmap",
        "(string vector, default 127.0.0.1:6164)"
        "Server endpoints in the order of input variables for mapping")
        .SetDefault({});
    AddAttr<std::vector<std::string>>(
        "table_names",
T
tianshuo78520a 已提交
150
        "(string vector, the split table names that will be fetched from "
151 152 153
        "parameter server)"
        "in the order of input variables for mapping")
        .SetDefault({});
Y
Yancey1989 已提交
154 155
    AddComment(R"DOC(
The hierarchical sigmoid operator organize the classes into a binary tree.
W
weixing02 已提交
156
At each node, a sigmoid function is used to calculate the probability of
W
weixing02 已提交
157 158
belonging to the right branch. This idea is from
"F. Morin, Y. Bengio (AISTATS 05):
Y
Yancey1989 已提交
159 160
Hierarchical Probabilistic Neural Network Language Model."
      )DOC");
J
JiabinYang 已提交
161 162 163 164
    AddAttr<bool>("is_sparse",
                  "(boolean, default false) "
                  "Sparse update.")
        .SetDefault(false);
Y
Yancey1989 已提交
165 166 167
  }
};

168 169 170 171
/*
 * Inputs: X, W, Label, PathTable, PathCode, PreOut, Out@GRAD
 * Outputs: X@GRAD, W@GRAD, Bias@GRAD
 */
H
hong 已提交
172 173
template <typename T>
class HierarchicalSigmoidGradMaker : public framework::SingleGradOpMaker<T> {
174
 public:
H
hong 已提交
175
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
176

177
  void Apply(GradOpPtr<T> op) const override {
178 179
    op->SetType(this->ForwardOpType() + "_grad");
    // Inputs: X, W, Label, PathTable, PathCode, PreOut, Out@GRAD
H
hong 已提交
180 181 182 183 184 185 186 187
    op->SetInput("X", this->Input("X"));
    op->SetInput("W", this->Input("W"));
    op->SetInput("Bias", this->Input("Bias"));
    op->SetInput("Label", this->Input("Label"));
    op->SetInput("PathTable", this->Input("PathTable"));
    op->SetInput("PathCode", this->Input("PathCode"));
    op->SetInput("PreOut", this->Output("PreOut"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
188 189

    // Outputs: X@GRAD, W@GRAD, Bias@GRAD
H
hong 已提交
190 191 192 193
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetOutput(framework::GradVarName("W"), this->InputGrad("W"));
    op->SetOutput(framework::GradVarName("Bias"), this->InputGrad("Bias"));
    op->SetAttrMap(this->Attrs());
194 195 196
  }
};

W
weixing02 已提交
197 198 199 200
class HierarchicalSigmoidGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override {
201 202 203 204 205 206 207 208 209
    OP_INOUT_CHECK(ctx->HasInput("W"), "Input", "W", "hsigmoid_grad");
    OP_INOUT_CHECK(ctx->HasInput("Label"), "Input", "Label", "hsigmoid_grad");
    OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")), "Input",
                   "Out@Grad", "hsigmoid_grad");
    OP_INOUT_CHECK(ctx->HasInput("PreOut"), "Input", "PreOut", "hsigmoid_grad");
    OP_INOUT_CHECK(ctx->HasOutput(framework::GradVarName("W")), "Output",
                   "W@Grad", "hsigmoid_grad");
    OP_INOUT_CHECK(ctx->HasOutput(framework::GradVarName("X")), "Output",
                   "X@Grad", "hsigmoid_grad");
210 211 212 213

    if (ctx->HasOutput(framework::GradVarName("Bias"))) {
      ctx->SetOutputDim(framework::GradVarName("Bias"),
                        ctx->GetInputDim("Bias"));
J
JiabinYang 已提交
214
    }
215
    ctx->SetOutputDim(framework::GradVarName("W"), ctx->GetInputDim("W"));
W
weixing02 已提交
216
    ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
J
JiabinYang 已提交
217
    ctx->ShareLoD("X", /*->*/ framework::GradVarName("X"));
W
weixing02 已提交
218 219 220 221 222
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
223 224
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace());
W
weixing02 已提交
225 226 227
  }
};

J
JiabinYang 已提交
228 229 230
class HierarchicalSigmoidGradOpGradVarTypeInference
    : public framework::VarTypeInference {
 public:
M
minqiyang 已提交
231 232
  void operator()(framework::InferVarTypeContext* ctx) const override {
    auto w_grad_var_name = ctx->Output(framework::GradVarName("W")).front();
233
    auto has_bias_grad_var = ctx->HasOutput(framework::GradVarName("Bias"));
234 235
    std::string bias_grad_var_name;
    bool hasBias = false;
236
    if (has_bias_grad_var) {
237
      hasBias = true;
M
minqiyang 已提交
238
      bias_grad_var_name = ctx->Output(framework::GradVarName("Bias")).front();
239
    }
M
minqiyang 已提交
240
    auto attr = ctx->GetAttr("is_sparse");
J
JiabinYang 已提交
241 242
    bool is_sparse = boost::get<bool>(attr);
    if (is_sparse) {
243 244
      VLOG(3) << "hierarchical_sigmoid_grad op " << framework::GradVarName("W")
              << " is set to SelectedRows";
M
minqiyang 已提交
245
      ctx->SetType(w_grad_var_name, framework::proto::VarType::SELECTED_ROWS);
J
JiabinYang 已提交
246
    } else {
247 248
      VLOG(3) << "hierarchical_sigmoid_grad op " << framework::GradVarName("W")
              << " is set to LoDTensor";
M
minqiyang 已提交
249
      ctx->SetType(w_grad_var_name, framework::proto::VarType::LOD_TENSOR);
250 251
    }
    if (hasBias) {
252 253
      VLOG(3) << "hierarchical_sigmoid_grad op "
              << framework::GradVarName("Bias") << " is set to LoDTensor";
M
minqiyang 已提交
254
      ctx->SetType(bias_grad_var_name, framework::proto::VarType::LOD_TENSOR);
J
JiabinYang 已提交
255
    }
M
minqiyang 已提交
256
    ctx->SetDataType(w_grad_var_name, ctx->GetDataType(ctx->Input("W")[0]));
J
JiabinYang 已提交
257 258 259
  }
};

260
DECLARE_NO_NEED_BUFFER_VARS_INFERER(
261 262
    HierarchicalSigmoidGradOpNoNeedBufferVarInference, "Bias");

Y
Yancey1989 已提交
263 264 265 266
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
H
hong 已提交
267 268 269 270 271
REGISTER_OPERATOR(
    hierarchical_sigmoid, ops::HierarchicalSigmoidOp,
    ops::HierarchicalSigmoidOpMaker<int>,
    ops::HierarchicalSigmoidGradMaker<paddle::framework::OpDesc>,
    ops::HierarchicalSigmoidGradMaker<paddle::imperative::OpBase>);
J
JiabinYang 已提交
272
REGISTER_OPERATOR(hierarchical_sigmoid_grad, ops::HierarchicalSigmoidGradOp,
273 274
                  ops::HierarchicalSigmoidGradOpGradVarTypeInference,
                  ops::HierarchicalSigmoidGradOpNoNeedBufferVarInference);
W
weixing02 已提交
275 276 277 278 279 280 281 282 283 284 285
REGISTER_OP_CPU_KERNEL(
    hierarchical_sigmoid,
    ops::HierarchicalSigmoidOpKernel<paddle::platform::CPUDeviceContext, float>,
    ops::HierarchicalSigmoidOpKernel<paddle::platform::CPUDeviceContext,
                                     double>);
REGISTER_OP_CPU_KERNEL(
    hierarchical_sigmoid_grad,
    ops::HierarchicalSigmoidGradOpKernel<paddle::platform::CPUDeviceContext,
                                         float>,
    ops::HierarchicalSigmoidGradOpKernel<paddle::platform::CPUDeviceContext,
                                         double>);