test_zero_dim_tensor_xpu.py 84.2 KB
Newer Older
1
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16 17 18 19 20
# Note:
# 0D Tensor indicates that the tensor's dimension is 0
# 0D Tensor's shape is always [], numel is 1
# which can be created by paddle.rand([])

import os
21 22 23 24
import unittest

import numpy as np

25 26 27 28
import paddle
import paddle.nn.functional as F

paddle.set_device('xpu')
29
paddle.disable_static()
30 31 32 33 34 35

unary_api_list = [
    paddle.nn.functional.elu,
    paddle.nn.functional.gelu,
    paddle.nn.functional.hardsigmoid,
    paddle.nn.functional.hardswish,
36 37
    paddle.nn.functional.hardshrink,
    paddle.nn.functional.hardtanh,
38 39 40 41 42 43 44 45 46 47 48 49 50
    paddle.nn.functional.leaky_relu,
    paddle.nn.functional.log_sigmoid,
    paddle.nn.functional.relu,
    paddle.nn.functional.relu6,
    paddle.nn.functional.sigmoid,
    paddle.nn.functional.softplus,
    paddle.nn.functional.softshrink,
    paddle.nn.functional.softsign,
    paddle.nn.functional.swish,
    paddle.nn.functional.tanhshrink,
    paddle.nn.functional.thresholded_relu,
    paddle.stanh,
    paddle.nn.functional.celu,
51
    paddle.nn.functional.selu,
52 53 54
    paddle.nn.functional.mish,
    paddle.nn.functional.silu,
    paddle.nn.functional.tanh,
55
    paddle.nn.functional.dropout,
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
    paddle.cosh,
    paddle.sinh,
    paddle.abs,
    paddle.acos,
    paddle.asin,
    paddle.atan,
    paddle.ceil,
    paddle.cos,
    paddle.exp,
    paddle.floor,
    paddle.log,
    paddle.log1p,
    paddle.reciprocal,
    paddle.round,
    paddle.sin,
    paddle.sqrt,
    paddle.square,
    paddle.tanh,
    paddle.acosh,
    paddle.asinh,
    paddle.atanh,
    paddle.expm1,
    paddle.log10,
    paddle.log2,
    paddle.tan,
81 82 83 84 85 86 87 88 89 90 91 92 93
    paddle.erf,
    paddle.erfinv,
    paddle.rsqrt,
    paddle.sign,
    paddle.deg2rad,
    paddle.rad2deg,
    paddle.neg,
    paddle.logit,
    paddle.trunc,
    paddle.digamma,
    paddle.lgamma,
    paddle.poisson,
    paddle.bernoulli,
94 95
    paddle.nn.functional.softmax,
    paddle.nn.functional.log_softmax,
96 97
    paddle.nn.functional.gumbel_softmax,
    paddle.nn.functional.alpha_dropout,
98 99 100 101 102
]

inplace_api_list = [
    paddle.nn.functional.relu_,
    paddle.nn.functional.tanh_,
103 104 105 106 107
]


# Use to test zero-dim in unary API.
class TestUnaryAPI(unittest.TestCase):
108
    def test_dygraph_unary(self):
109 110 111 112
        for api in unary_api_list:
            x = paddle.rand([])
            x.stop_gradient = False
            out = api(x)
113

114
            out.retain_grads()
115 116 117 118
            out.backward()

            self.assertEqual(x.shape, [])
            self.assertEqual(out.shape, [])
119 120 121 122 123 124 125 126 127
            if x.grad is not None:
                self.assertEqual(x.grad.shape, [])
                self.assertEqual(out.grad.shape, [])

        for api in inplace_api_list:
            x = paddle.rand([])
            out = api(x)
            self.assertEqual(x.shape, [])
            self.assertEqual(out.shape, [])
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147


reduce_api_list = [
    paddle.sum,
    paddle.mean,
    paddle.nansum,
    paddle.nanmean,
    paddle.min,
    paddle.max,
    paddle.amin,
    paddle.amax,
    paddle.prod,
    paddle.logsumexp,
    paddle.all,
    paddle.any,
]


# Use to test zero-dim of reduce API
class TestReduceAPI(unittest.TestCase):
148
    def test_dygraph_reduce(self):
149
        for api in reduce_api_list:
150
            # 1) x is 0D
151 152 153 154
            if api in [paddle.all, paddle.any]:
                x = paddle.randint(0, 2, []).astype('bool')
            else:
                x = paddle.rand([])
155 156
            x.stop_gradient = False
            out = api(x, None)
157

158
            out.retain_grads()
159
            out.backward()
160

161 162
            self.assertEqual(x.shape, [])
            self.assertEqual(out.shape, [])
163
            np.testing.assert_allclose(out.numpy(), x.numpy())
164 165 166 167 168

            out_empty_list = api(x, [])
            self.assertEqual(out_empty_list, out)
            self.assertEqual(out_empty_list.shape, [])

169
            if x.grad is not None:
170 171
                self.assertEqual(x.grad.shape, [])
                self.assertEqual(out.grad.shape, [])
172 173
                np.testing.assert_allclose(x.grad.numpy(), np.array(1.0))
                np.testing.assert_allclose(out.grad.numpy(), np.array(1.0))
174

175 176 177 178 179 180 181 182 183 184 185 186 187 188
            out1 = api(x, 0)
            self.assertEqual(out1.shape, [])
            self.assertEqual(out1, out)
            out1.backward()

            out2 = api(x, -1)
            self.assertEqual(out2.shape, [])
            self.assertEqual(out2, out)
            out2.backward()

            if x.grad is not None:
                self.assertEqual(x.grad.shape, [])
                np.testing.assert_allclose(x.grad.numpy(), np.array(3.0))

189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
            # 2) x is ND, reduce to 0D
            if api in [paddle.all, paddle.any]:
                x = paddle.randint(0, 2, [3, 5]).astype('bool')
            else:
                x = paddle.rand([3, 5])
            x.stop_gradient = False
            out = api(x, None)
            out.retain_grads()
            out.backward()

            self.assertEqual(out.shape, [])
            if x.grad is not None:
                self.assertEqual(out.grad.shape, [])
                self.assertEqual(x.grad.shape, [3, 5])

            # 3) x is 1D, axis=0, reduce to 0D
            if api in [paddle.all, paddle.any]:
                x = paddle.randint(0, 2, [5]).astype('bool')
            else:
                x = paddle.rand([5])
            x.stop_gradient = False
            out = api(x, 0)
            out.retain_grads()
            out.backward()

            self.assertEqual(out.shape, [])
            if x.grad is not None:
                self.assertEqual(out.grad.shape, [])
                self.assertEqual(x.grad.shape, [5])
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237


binary_api_list = [
    {'func': paddle.add, 'cls_method': '__add__'},
    {'func': paddle.subtract, 'cls_method': '__sub__'},
    {'func': paddle.multiply, 'cls_method': '__mul__'},
    {'func': paddle.divide, 'cls_method': '__div__'},
    {'func': paddle.pow, 'cls_method': '__pow__'},
    {'func': paddle.equal, 'cls_method': '__eq__'},
    {'func': paddle.not_equal, 'cls_method': '__ne__'},
    {'func': paddle.greater_equal, 'cls_method': '__ge__'},
    {'func': paddle.greater_than, 'cls_method': '__gt__'},
    {'func': paddle.less_equal, 'cls_method': '__le__'},
    {'func': paddle.less_than, 'cls_method': '__lt__'},
    {'func': paddle.remainder, 'cls_method': '__mod__'},
    paddle.mod,
    paddle.floor_mod,
    paddle.logical_and,
    paddle.logical_or,
    paddle.logical_xor,
238 239
    paddle.maximum,
    paddle.minimum,
240 241 242 243
    paddle.fmax,
    paddle.fmin,
    paddle.complex,
    paddle.kron,
244 245
]

246
binary_int_api_list = [
247 248 249
    paddle.bitwise_and,
    paddle.bitwise_or,
    paddle.bitwise_xor,
250 251
    paddle.gcd,
    paddle.lcm,
252 253 254 255 256
]


# Use to test zero-dim of binary API
class TestBinaryAPI(unittest.TestCase):
257 258
    def test_dygraph_binary(self):
        for api in binary_api_list:
259
            # 1) x is 0D, y is 0D
260 261 262 263 264 265 266 267 268 269
            x = paddle.rand([])
            y = paddle.rand([])
            x.stop_gradient = False
            y.stop_gradient = False
            if isinstance(api, dict):
                out = api['func'](x, y)
                out_cls = getattr(paddle.Tensor, api['cls_method'])(x, y)
                np.testing.assert_array_equal(out_cls.numpy(), out.numpy())
            else:
                out = api(x, y)
270

271
            out.retain_grads()
272
            out.backward()
273 274 275 276

            self.assertEqual(x.shape, [])
            self.assertEqual(y.shape, [])
            self.assertEqual(out.shape, [])
277
            if x.grad is not None:
278 279 280 281
                self.assertEqual(x.grad.shape, [])
                self.assertEqual(y.grad.shape, [])
                self.assertEqual(out.grad.shape, [])

282
            # 2) x is ND, y is 0D
283 284 285 286 287 288 289 290 291 292
            x = paddle.rand([2, 3, 4])
            y = paddle.rand([])
            x.stop_gradient = False
            y.stop_gradient = False
            if isinstance(api, dict):
                out = api['func'](x, y)
                out_cls = getattr(paddle.Tensor, api['cls_method'])(x, y)
                np.testing.assert_array_equal(out_cls.numpy(), out.numpy())
            else:
                out = api(x, y)
293

294
            out.retain_grads()
295
            out.backward()
296 297 298 299

            self.assertEqual(x.shape, [2, 3, 4])
            self.assertEqual(y.shape, [])
            self.assertEqual(out.shape, [2, 3, 4])
300
            if x.grad is not None:
301 302 303 304
                self.assertEqual(x.grad.shape, [2, 3, 4])
                self.assertEqual(y.grad.shape, [])
                self.assertEqual(out.grad.shape, [2, 3, 4])

305
            # 3) x is 0D , y is ND
306 307 308 309 310 311 312 313 314 315
            x = paddle.rand([])
            y = paddle.rand([2, 3, 4])
            x.stop_gradient = False
            y.stop_gradient = False
            if isinstance(api, dict):
                out = api['func'](x, y)
                out_cls = getattr(paddle.Tensor, api['cls_method'])(x, y)
                np.testing.assert_array_equal(out_cls.numpy(), out.numpy())
            else:
                out = api(x, y)
316

317
            out.retain_grads()
318
            out.backward()
319 320 321 322

            self.assertEqual(x.shape, [])
            self.assertEqual(y.shape, [2, 3, 4])
            self.assertEqual(out.shape, [2, 3, 4])
323
            if x.grad is not None:
324 325 326 327 328 329 330
                self.assertEqual(x.grad.shape, [])
                self.assertEqual(y.grad.shape, [2, 3, 4])
                self.assertEqual(out.grad.shape, [2, 3, 4])

            # 4) x is 0D , y is scalar
            x = paddle.rand([])
            x.stop_gradient = False
331
            y = 0.5
332 333
            if isinstance(api, dict):
                out = getattr(paddle.Tensor, api['cls_method'])(x, y)
334

335
                out.retain_grads()
336 337 338
                out.backward()

                self.assertEqual(x.shape, [])
339
                self.assertEqual(out.shape, [])
340 341 342
                if x.grad is not None:
                    self.assertEqual(x.grad.shape, [])
                    self.assertEqual(out.grad.shape, [])
343

344
        for api in binary_int_api_list:
345
            # 1) x is 0D, y is 0D
346 347 348 349 350 351
            x_np = np.random.randint(-10, 10, [])
            y_np = np.random.randint(-10, 10, [])
            out_np = eval('np.%s(x_np, y_np)' % api.__name__)

            x = paddle.to_tensor(x_np)
            y = paddle.to_tensor(y_np)
352
            out = api(x, y)
353

354
            self.assertEqual(out.shape, [])
355
            np.testing.assert_array_equal(out.numpy(), out_np)
356

357
            # 2) x is ND, y is 0D
358 359 360 361 362 363
            x_np = np.random.randint(-10, 10, [3, 5])
            y_np = np.random.randint(-10, 10, [])
            out_np = eval('np.%s(x_np, y_np)' % api.__name__)

            x = paddle.to_tensor(x_np)
            y = paddle.to_tensor(y_np)
364
            out = api(x, y)
365

366
            self.assertEqual(out.shape, [3, 5])
367
            np.testing.assert_array_equal(out.numpy(), out_np)
368

369
            # 3) x is 0D , y is ND
370 371 372 373 374 375
            x_np = np.random.randint(-10, 10, [])
            y_np = np.random.randint(-10, 10, [3, 5])
            out_np = eval('np.%s(x_np, y_np)' % api.__name__)

            x = paddle.to_tensor(x_np)
            y = paddle.to_tensor(y_np)
376
            out = api(x, y)
377

378
            self.assertEqual(out.shape, [3, 5])
379
            np.testing.assert_array_equal(out.numpy(), out_np)
380 381


382 383
# Use to test zero-dim of Sundry API, which is unique and can not be classified
# with others. It can be implemented here flexibly.
384 385 386 387
class TestSundryAPI(unittest.TestCase):
    def setUp(self):
        self.x = paddle.rand([])

388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
    def test_getitem(self):
        # case1: When all axis have a scalar indice, output should be a 0-d Tensor;
        x = paddle.arange(2 * 3 * 4 * 5).reshape((2, 3, 4, 5))
        x.stop_gradient = False
        out = x[1, 2, 3, 4]
        out.retain_grads()
        out.backward()
        self.assertEqual(out.shape, [])
        np.testing.assert_allclose(out, np.array(119))
        self.assertEqual(out.grad.shape, [])
        np.testing.assert_allclose(out.grad, 1.0)
        self.assertEqual(x.grad.shape, [2, 3, 4, 5])
        x_grad_expected = np.zeros((2, 3, 4, 5))
        x_grad_expected[1, 2, 3, 4] = 1.0
        np.testing.assert_allclose(x.grad, x_grad_expected)

        # case2: When one axis has a 0-d Tensor indice, the output should be same as int indice.
        x = paddle.arange(2 * 3 * 4 * 5).reshape((2, 3, 4, 5))
        out1 = x[1, 2]
        out2 = x[
            paddle.full([], 1, dtype='int32'), paddle.full([], 2, dtype='int32')
        ]
        np.testing.assert_allclose(out1, out2)

        # case3: When all axis have a scalar indice (i.e. case1) and has None indice,
        # ndim of output should be same with numbers of None.
        x = paddle.arange(2 * 3 * 4 * 5).reshape((2, 3, 4, 5))
        out1 = x[1, 2, None, 3, 4]
        self.assertEqual(out1.shape, [1])
        np.testing.assert_allclose(out1, np.array([119]))
        out2 = x[1, None, 2, None, 3, 4]
        self.assertEqual(out2.shape, [1, 1])
        np.testing.assert_allclose(out2, np.array([[119]]))

        # case4: 1-D Tensor will be treated as vector, no axis decrease will happen.
        x = paddle.ones((2, 3, 4))
        indice = paddle.ones([1], dtype='int32')
        out1 = x[indice]
        self.assertEqual(out1.shape, [1, 3, 4])
        np.testing.assert_allclose(out1, np.ones((1, 3, 4)))
        out2 = x[indice, indice]
        self.assertEqual(out2.shape, [1, 4])
        np.testing.assert_allclose(out2, np.ones((1, 4)))

    def test_setitem(self):
        # case1: all axis have a scalar indice
        x = paddle.arange(2 * 3 * 4 * 5).reshape((2, 3, 4, 5))
        x.stop_gradient = False
        out = x * 2
        out[1, 2, 3, 4] = 10
        out.backward()

        self.assertEqual(out.shape, x.shape)
        np.testing.assert_allclose(out[1, 2, 3, 4], np.array(10))
        self.assertEqual(x.grad.shape, [2, 3, 4, 5])
        x_grad_expected = np.ones((2, 3, 4, 5)) * 2
        x_grad_expected[1, 2, 3, 4] = 0
        np.testing.assert_allclose(x.grad, x_grad_expected)

        # case2: 0-D Tensor indice in some axis
        # NOTE(zoooo0820): Now, int/slice with 0-D Tensor will still be
        # treated as combined indexing, which is not support backward.
        # There should have more test cases such as out[1, indice, :] = 0.5 when this
        # problem is fixed.
        x = paddle.randn((2, 3, 4, 5))
        x.stop_gradient = False
        indice = paddle.full([], 1, dtype='int32')
        out = x * 1
        out[indice, indice] = 0.5
        out.backward()

        self.assertEqual(out.shape, x.shape)
        np.testing.assert_allclose(out[1, 1], np.ones((4, 5)) * 0.5)
        x_grad_expected = np.ones((2, 3, 4, 5))
        x_grad_expected[1, 1] = 0
        np.testing.assert_allclose(x.grad, x_grad_expected)

        # case3:0-D Tensor indice in some axis, value is a Tensor
        # and there is broadcast
        x = paddle.randn((2, 3, 4, 5))
        x.stop_gradient = False
        v = paddle.ones((4, 5), dtype='float32') * 5
        v.stop_gradient = False
        indice = paddle.full([], 1, dtype='int32')
        out = x * 1
        out[indice] = v
        out.backward()

        self.assertEqual(out.shape, x.shape)
        np.testing.assert_allclose(out[1], np.ones((3, 4, 5)) * 5)
        x_grad_expected = np.ones((2, 3, 4, 5))
        x_grad_expected[1] = 0
        np.testing.assert_allclose(x.grad, x_grad_expected)
        value_grad_expected = np.ones((4, 5)) * 3
        np.testing.assert_allclose(v.grad, value_grad_expected)

        # case4: value is a 0-D tensor and there is broadcast
        x = paddle.randn((2, 3, 4, 5))
        x.stop_gradient = False
        v = paddle.ones([], dtype='float32') * 5
        v.stop_gradient = False
        out = x * 1
        indice = paddle.full([], 0, dtype='int32')
        out[indice] = v
        out.backward()

        self.assertEqual(out.shape, x.shape)
        self.assertEqual(v.grad.shape, [])
        np.testing.assert_allclose(out[0], np.ones((3, 4, 5)) * 5)
        x_grad_expected = np.ones((2, 3, 4, 5))
        x_grad_expected[0] = 0
        np.testing.assert_allclose(x.grad, x_grad_expected)
        value_grad_expected = np.ones(()) * 3 * 4 * 5
        np.testing.assert_allclose(v.grad, value_grad_expected)

        # case5: indice / value is 0-D Tensor, and there is no broadcast
        x = paddle.randn((2, 3, 4, 5))
        x.stop_gradient = False
        v = paddle.ones([], dtype='float32') * 2
        v.stop_gradient = False
        out = x * 1
        indice = paddle.full([], 0, dtype='int32')
        out[indice, indice, indice, indice] = v
        out.backward()

        self.assertEqual(out.shape, x.shape)
        self.assertEqual(v.grad.shape, [])
        np.testing.assert_allclose(out[0, 0, 0, 0], np.ones(()) * 2)
        x_grad_expected = np.ones((2, 3, 4, 5))
        x_grad_expected[0, 0, 0, 0] = 0
        np.testing.assert_allclose(x.grad, x_grad_expected)
        value_grad_expected = np.ones(())
        np.testing.assert_allclose(v.grad, value_grad_expected)

522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
    def test_expand(self):
        # case1
        x = paddle.full([], 1, 'float32')
        x.stop_gradient = False
        out = paddle.expand(x, shape=[1])
        out.retain_grads()
        out.backward()

        self.assertEqual(out.shape, [1])
        np.testing.assert_allclose(out, 1.0)
        self.assertEqual(x.grad.shape, [])
        np.testing.assert_allclose(x.grad, 1.0)
        self.assertEqual(out.grad.shape, [1])
        np.testing.assert_allclose(out.grad, 1.0)

        # case2
        x1 = paddle.full([], 1, 'float32')
        x1.stop_gradient = False
        out1 = paddle.expand(x1, shape=[])
        out1.retain_grads()
        out1.backward()

        self.assertEqual(out1.shape, [])
        np.testing.assert_allclose(out1, 1.0)
        self.assertEqual(x1.grad.shape, [])
        np.testing.assert_allclose(x1.grad, 1.0)
        self.assertEqual(out1.grad.shape, [])
        np.testing.assert_allclose(out1.grad, 1.0)

        # case3
        x2 = paddle.full([], 1, 'float32')
        x2.stop_gradient = False
        out2 = paddle.expand(x2, shape=[1, 1])
        out2.retain_grads()
        out2.backward()

        self.assertEqual(out2.shape, [1, 1])
        np.testing.assert_allclose(out2, 1.0)
        self.assertEqual(x2.grad.shape, [])
        np.testing.assert_allclose(x2.grad, 1.0)
        self.assertEqual(out2.grad.shape, [1, 1])
        np.testing.assert_allclose(out2.grad, 1.0)

        # case4
        x3 = paddle.full([], 1, 'float32')
        x3.stop_gradient = False
        out3 = paddle.expand(x3, shape=[3, 3])
        out3.retain_grads()
        out3.backward()

        self.assertEqual(out3.shape, [3, 3])
        np.testing.assert_allclose(out3, 1.0)
        self.assertEqual(x3.grad.shape, [])
        np.testing.assert_allclose(x3.grad, 9.0)
        self.assertEqual(out3.grad.shape, [3, 3])
        np.testing.assert_allclose(out3.grad, 1.0)

    def test_expand_as(self):
        x = paddle.full([], 1, 'float32')
        x.stop_gradient = False
        y = paddle.full([], 1, 'float32')
        y.stop_gradient = False
        out = paddle.expand_as(x, y)
        out.backward()
        self.assertEqual(x.shape, [])
        self.assertEqual(x.item(), 1.0)
        self.assertEqual(x.grad.shape, [])
        self.assertEqual(x.grad.item(), 1.0)
        self.assertEqual(out.shape, [])
        self.assertEqual(out.item(), 1.0)
        self.assertEqual(out.grad, None)

        x1 = paddle.full([], 1, 'float32')
        x1.stop_gradient = False
        y1 = paddle.full([1], 1, 'float32')
        out1 = paddle.expand_as(x1, y1)
        out1.backward()
        self.assertEqual(x1.shape, [])
        self.assertEqual(x1.item(), 1.0)
        self.assertEqual(x1.grad.shape, [])
        self.assertEqual(x1.grad.item(0), 1.0)
        self.assertEqual(out1.shape, [1])
        self.assertEqual(out1.item(0), 1.0)
        self.assertEqual(out1.grad, None)

        x2 = paddle.full([], 1, 'float32')
        x2.stop_gradient = False
        y2 = paddle.full([3, 3], 1, 'float32')
        out2 = paddle.expand_as(x2, y2)
        out2.backward()
        self.assertEqual(x2.shape, [])
        self.assertEqual(x2.item(), 1.0)
        self.assertEqual(x2.grad.shape, [])
        self.assertEqual(x2.grad.item(0), 9.0)
        self.assertEqual(out2.shape, [3, 3])
        self.assertEqual(out2.item(0), 1.0)
        self.assertEqual(out2.grad, None)

    def test_top_k(self):
        x = paddle.full([], 1, 'float32')
        x.stop_gradient = False
        out, indices = paddle.topk(x, k=1, axis=0)
        out.retain_grads()
        out.backward()
        self.assertEqual(indices.shape, [])
        self.assertEqual(indices.item(), 0)
        self.assertEqual(x.shape, [])
        self.assertEqual(x.item(), 1.0)
        self.assertEqual(x.grad.shape, [])
        self.assertEqual(x.grad.item(0), 1.0)
        self.assertEqual(out.shape, [])
        self.assertEqual(out.item(), 1.0)
        self.assertEqual(out.grad, 1.0)

        x1 = paddle.full([], 1, 'float32')
        x1.stop_gradient = False
        out1, indices1 = paddle.topk(x1, k=1, axis=-1)
        out1.retain_grads()
        out1.backward()
        self.assertEqual(indices1.shape, [])
        self.assertEqual(indices1.item(), 0)
        self.assertEqual(x1.shape, [])
        self.assertEqual(x1.item(), 1.0)
        self.assertEqual(x.grad.shape, [])
        self.assertEqual(x.grad.item(0), 1.0)
        self.assertEqual(out1.shape, [])
        self.assertEqual(out1.item(), 1.0)
        self.assertEqual(out1.grad, 1.0)

        with self.assertRaises(ValueError):
            tmp = paddle.topk(x1, k=1, axis=2)

654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
    def test_broadcast_to(self):
        x = paddle.full([], 1, 'float32')
        x.stop_gradient = False
        out = paddle.broadcast_to(x, shape=[1])
        out.retain_grads()
        out.backward()

        self.assertEqual(out.shape, [1])
        np.testing.assert_allclose(out, 1.0)
        self.assertEqual(x.grad.shape, [])
        np.testing.assert_allclose(x.grad, 1.0)
        self.assertEqual(out.grad.shape, [1])
        np.testing.assert_allclose(out.grad, 1.0)

        # case2
        x1 = paddle.full([], 1, 'float32')
        x1.stop_gradient = False
        out1 = paddle.broadcast_to(x1, shape=[])
        out1.retain_grads()
        out1.backward()

        self.assertEqual(out1.shape, [])
        np.testing.assert_allclose(out1, 1.0)
        self.assertEqual(x1.grad.shape, [])
        np.testing.assert_allclose(x1.grad, 1.0)
        self.assertEqual(out1.grad.shape, [])
        np.testing.assert_allclose(out1.grad, 1.0)

        # case3
        x2 = paddle.full([], 1, 'float32')
        x2.stop_gradient = False
        out2 = paddle.broadcast_to(x2, shape=[1, 1])
        out2.retain_grads()
        out2.backward()

        self.assertEqual(out2.shape, [1, 1])
        np.testing.assert_allclose(out2, 1.0)
        self.assertEqual(x2.grad.shape, [])
        np.testing.assert_allclose(x2.grad, 1.0)
        self.assertEqual(out2.grad.shape, [1, 1])
        np.testing.assert_allclose(out2.grad, 1.0)

        # case4
        x3 = paddle.full([], 1, 'float32')
        x3.stop_gradient = False
        out3 = paddle.broadcast_to(x3, shape=[3, 3])
        out3.retain_grads()
        out3.backward()

        self.assertEqual(out3.shape, [3, 3])
        np.testing.assert_allclose(out3, 1.0)
        self.assertEqual(x3.grad.shape, [])
        np.testing.assert_allclose(x3.grad, 9.0)
        self.assertEqual(out3.grad.shape, [3, 3])
        np.testing.assert_allclose(out3.grad, 1.0)

    def test_broadcast_tensors(self):
        # 1) x is 0D, y is 0D
        x1 = paddle.full([], 2.0)
        x1.stop_gradient = False
        x2 = paddle.full([], 2.0)
        x2.stop_gradient = False
        out1, out2 = paddle.broadcast_tensors([x1, x2])
        # backward has bug now
        # out1.backward()

        self.assertEqual(out1.shape, [])
        self.assertEqual(out2.shape, [])
        # self.assertEqual(x1.grad.shape, [])

        # 2) x is ND , y is 0D
        x1 = paddle.full([2, 3], 2.0)
        x1.stop_gradient = False
        x2 = paddle.full([], 2.0)
        x2.stop_gradient = False
        out1, out2 = paddle.broadcast_tensors([x1, x2])
        # out1.backward()

        self.assertEqual(out1.shape, [2, 3])
        self.assertEqual(out2.shape, [2, 3])
        # self.assertEqual(x1.grad.shape, [2, 3])

        # 3) x is 0D , y is ND
        x1 = paddle.full([], 2.0)
        x1.stop_gradient = False
        x2 = paddle.full([2, 3], 2.0)
        x2.stop_gradient = False
        out1, out2 = paddle.broadcast_tensors([x1, x2])
        # out1.backward()

        self.assertEqual(out1.shape, [2, 3])
        self.assertEqual(out2.shape, [2, 3])
        # self.assertEqual(x1.grad.shape, [2, 3])

748
    def test_argmin(self):
749
        # 1) x is 0D
750 751 752 753
        x = paddle.rand([])
        out1 = paddle.argmin(x, 0)
        out2 = paddle.argmin(x, -1)
        out3 = paddle.argmin(x, None)
754

755
        self.assertEqual(out1.shape, [])
756
        np.testing.assert_allclose(out1, 0)
757 758

        self.assertEqual(out2.shape, [])
759
        np.testing.assert_allclose(out2, 0)
760 761

        self.assertEqual(out3.shape, [])
762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783
        np.testing.assert_allclose(out3, 0)

        # 2) x is 1D
        x = paddle.rand([5])
        x.stop_gradient = False
        out = paddle.argmin(x, 0)
        out.backward()
        self.assertEqual(out.shape, [])

        # 3) x is ND
        x = paddle.rand([3, 5])
        x.stop_gradient = False
        out = paddle.argmin(x)
        out.backward()
        self.assertEqual(out.shape, [])

        # 4) x is ND, keepdim=True
        x = paddle.rand([3, 5])
        x.stop_gradient = False
        out = paddle.argmin(x, keepdim=True)
        out.backward()
        self.assertEqual(out.shape, [1, 1])
784

785
    def test_argmax(self):
786
        # 1) x is 0D
787 788 789 790
        x = paddle.rand([])
        out1 = paddle.argmax(x, 0)
        out2 = paddle.argmax(x, -1)
        out3 = paddle.argmax(x, None)
791

792
        self.assertEqual(out1.shape, [])
793
        np.testing.assert_allclose(out1, 0)
794 795

        self.assertEqual(out2.shape, [])
796
        np.testing.assert_allclose(out2, 0)
797 798

        self.assertEqual(out3.shape, [])
799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814
        np.testing.assert_allclose(out3, 0)

        # 2) x is 1D
        x = paddle.rand([5])
        out = paddle.argmax(x, 0)
        self.assertEqual(out.shape, [])

        # 3) x is ND
        x = paddle.rand([3, 5])
        out = paddle.argmax(x)
        self.assertEqual(out.shape, [])

        # 4) x is ND, keepdim=True
        x = paddle.rand([3, 5])
        out = paddle.argmax(x, keepdim=True)
        self.assertEqual(out.shape, [1, 1])
815 816

    def test_median(self):
817
        # 1) x is 0D
818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839
        x = paddle.rand([])
        x.stop_gradient = False
        out1 = paddle.median(x, 0)
        out2 = paddle.median(x, -1)
        out3 = paddle.median(x, None)

        out1.backward()
        out2.backward()
        out3.backward()

        self.assertEqual(out1.shape, [])
        np.testing.assert_allclose(out1, x)

        self.assertEqual(out2.shape, [])
        np.testing.assert_allclose(out2, x)

        self.assertEqual(out3.shape, [])
        np.testing.assert_allclose(out3, x)

        self.assertEqual(x.grad.shape, [])
        np.testing.assert_allclose(x.grad, 3.0)

840 841 842 843 844 845 846
        # 2) x is 1D
        x = paddle.rand([5])
        x.stop_gradient = False
        out = paddle.median(x, 0)
        out.backward()
        self.assertEqual(out.shape, [])
        self.assertEqual(x.grad.shape, [5])
847

848 849 850 851 852 853 854
        # 3) x is ND
        x = paddle.rand([3, 5])
        x.stop_gradient = False
        out = paddle.median(x, None)
        out.backward()
        self.assertEqual(out.shape, [])
        self.assertEqual(x.grad.shape, [3, 5])
855

856 857 858 859 860 861 862
        # 4) x is ND, keepdim=True
        x = paddle.rand([3, 5])
        x.stop_gradient = False
        out = paddle.median(x, keepdim=True)
        out.backward()
        self.assertEqual(out.shape, [1, 1])
        self.assertEqual(x.grad.shape, [3, 5])
863

864 865 866 867 868 869
    def test_kthvalue(self):
        # 1) x is 0D
        x = paddle.randn([])
        x.stop_gradient = False
        out, index = paddle.kthvalue(x, 1)
        out.backward()
870

871 872 873 874
        self.assertEqual(out.shape, [])
        self.assertEqual(out, x)
        self.assertEqual(index.shape, [])
        self.assertEqual(index, 0)
875

876 877
        self.assertEqual(x.grad.shape, [])
        self.assertEqual(x.grad, 1.0)
878

879 880 881 882 883
        # 2) x is 1D
        x1 = paddle.randn([5])
        x1.stop_gradient = False
        out1, index1 = paddle.kthvalue(x1, 1)
        out1.backward()
884

885 886 887
        self.assertEqual(out1.shape, [])
        self.assertEqual(index1.shape, [])
        self.assertEqual(x1.grad.shape, [5])
888

889 890 891 892 893 894
    def test_mode(self):
        # 1) x is 0D
        x = paddle.randn([])
        x.stop_gradient = False
        out, index = paddle.mode(x)
        out.backward()
895

896 897 898 899
        self.assertEqual(out.shape, [])
        self.assertEqual(out, x)
        self.assertEqual(index.shape, [])
        self.assertEqual(index, 0)
900

901 902
        self.assertEqual(x.grad.shape, [])
        self.assertEqual(x.grad, 1.0)
903

904 905 906 907 908
        # 2) x is 1D
        x1 = paddle.randn([5])
        x1.stop_gradient = False
        out1, index1 = paddle.mode(x1)
        out1.backward()
909

910 911
        self.assertEqual(out1.shape, [])
        self.assertEqual(index1.shape, [])
912

913
        self.assertEqual(x1.grad.shape, [5])
914

915
    def test_is_empty(self):
916
        # 1) x is 0D
917 918 919
        x = paddle.rand([])
        out = paddle.is_empty(x)
        self.assertFalse(out)
920 921
        self.assertEqual(out.shape, [])

922 923 924 925
        # 2) x is 1D
        x = paddle.rand([5])
        out = paddle.is_empty(x)
        self.assertFalse(out)
926 927
        self.assertEqual(out.shape, [])

928 929 930 931
        # 3) x is ND
        x = paddle.rand([3, 5])
        out = paddle.is_empty(x)
        self.assertFalse(out)
932 933
        self.assertEqual(out.shape, [])

934 935 936
        x = paddle.rand([3, 0, 5])
        out = paddle.is_empty(x)
        self.assertTrue(out)
937
        self.assertEqual(out.shape, [])
938

939 940
    def test_squeeze_(self):
        # 1) x is 0D
941
        x = paddle.rand([])
942 943 944 945 946 947 948 949 950 951 952 953 954 955 956
        x.squeeze_(0)
        self.assertEqual(x.shape, [])

        # 2) x is 1D
        x = paddle.rand([1])
        x.squeeze_(0)
        self.assertEqual(x.shape, [])

        # 3)x is ND
        x = paddle.rand([2, 1])
        x.squeeze_(1)
        self.assertEqual(x.shape, [2])

    def test_as_complex(self):
        x = paddle.rand([2])
957
        x.stop_gradient = False
958
        out = paddle.as_complex(x)
959
        out.retain_grads()
960 961
        out.backward()

962
        self.assertEqual(x.shape, [2])
963
        self.assertEqual(out.shape, [])
964
        self.assertEqual(x.grad.shape, [2])
965 966
        self.assertEqual(out.grad.shape, [])

967 968 969
    def test_dot(self):
        # 1) x is 1D
        x = paddle.rand([2])
970
        x.stop_gradient = False
971 972 973
        y = paddle.rand([2])
        y.stop_gradient = False
        out = paddle.dot(x, y)
974
        out.retain_grads()
975 976
        out.backward()

977
        self.assertEqual(x.grad.shape, [2])
978 979 980
        self.assertEqual(out.shape, [])
        self.assertEqual(out.grad.shape, [])

981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996
        # 2) x is 2D
        x1 = paddle.rand([2, 2])
        x1.stop_gradient = False
        y1 = paddle.rand([2, 2])
        y1.stop_gradient = False
        out1 = paddle.dot(x1, y1)
        out1.retain_grads()
        out1.backward()

        self.assertEqual(x1.grad.shape, [2, 2])
        self.assertEqual(out1.shape, [2])
        self.assertEqual(out1.grad.shape, [2])

    def test_inner(self):
        # 0) input is 0D
        x = paddle.rand([])
997
        x.stop_gradient = False
998 999 1000
        y = paddle.rand([])
        y.stop_gradient = False
        out = paddle.inner(x, y)
1001
        out.retain_grads()
1002 1003
        out.backward()

1004
        self.assertEqual(x.grad.shape, [])
1005 1006 1007
        self.assertEqual(out.shape, [])
        self.assertEqual(out.grad.shape, [])

1008 1009
        # 1) input is 1D
        x = paddle.rand([2])
1010
        x.stop_gradient = False
1011 1012 1013 1014
        y = paddle.rand([2])
        y.stop_gradient = False
        out = paddle.inner(x, y)
        out.retain_grads()
1015 1016
        out.backward()

1017
        self.assertEqual(x.grad.shape, [2])
1018 1019 1020
        self.assertEqual(out.shape, [])
        self.assertEqual(out.grad.shape, [])

1021 1022 1023 1024 1025 1026 1027 1028
        # 2) input is 2D
        x = paddle.rand([2, 3])
        x.stop_gradient = False
        y = paddle.rand([3, 3])
        y.stop_gradient = False
        out = paddle.inner(x, y)
        out.retain_grads()
        out.backward()
1029

1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338
        self.assertEqual(x.grad.shape, [2, 3])
        self.assertEqual(out.shape, [2, 3])
        self.assertEqual(out.grad.shape, [2, 3])

    def test_tensordot(self):
        # 1) input is 1D
        x = paddle.arange(10, dtype='float64')
        x.stop_gradient = False
        y = paddle.arange(10, dtype='float64')
        y.stop_gradient = False
        out = paddle.tensordot(x, y, axes=1)
        out.retain_grads()
        out.backward()

        self.assertEqual(x.grad.shape, [10])
        self.assertEqual(out.shape, [])
        self.assertEqual(out.grad.shape, [])

        # 2) input is 2D
        x = paddle.arange(6, dtype='float64').reshape([2, 3])
        y = paddle.arange(6, dtype='float64').reshape([2, 3])
        x.stop_gradient = False
        out = paddle.tensordot(x, y, axes=2)
        out.retain_grads()
        out.backward()

        self.assertEqual(x.grad.shape, [2, 3])
        self.assertEqual(out.shape, [])
        self.assertEqual(out.grad.shape, [])

    def test_metric_accuracy(self):
        x = paddle.full(shape=[2, 4], fill_value=0.25)
        y = paddle.full(shape=[2, 1], fill_value=1, dtype="int64")
        out = paddle.metric.accuracy(input=x, label=y, k=1)
        self.assertEqual(out.shape, [])

    def test_std(self):
        # 1) x is 0D
        x = paddle.rand([])
        x.stop_gradient = False
        out1 = paddle.std(x)
        out2 = paddle.std(x, [])
        out1.backward()
        out2.backward()

        self.assertEqual(out1.shape, [])
        self.assertEqual(out2.shape, [])
        self.assertEqual(out1, 0)
        self.assertEqual(out2, 0)

        self.assertEqual(x.grad.shape, [])

        # 2) x is ND
        x = paddle.rand([3, 5])
        x.stop_gradient = False
        out = paddle.std(x)
        out.backward()

        self.assertEqual(out.shape, [])
        self.assertEqual(x.grad.shape, [3, 5])

    def test_var(self):
        # 1) x is 0D
        x = paddle.rand([])
        x.stop_gradient = False
        out1 = paddle.var(x)
        out2 = paddle.var(x, [])
        out1.backward()
        out2.backward()

        self.assertEqual(out1.shape, [])
        self.assertEqual(out2.shape, [])
        self.assertEqual(out1, 0)
        self.assertEqual(out2, 0)

        self.assertEqual(x.grad.shape, [])
        np.testing.assert_allclose(x.grad, 0)

        # 2) x is ND
        x = paddle.rand([3, 5])
        x.stop_gradient = False
        out = paddle.std(x)
        out.backward()

        self.assertEqual(out.shape, [])
        self.assertEqual(x.grad.shape, [3, 5])

    def test_quantile(self):
        # 1) x is 0D
        x = paddle.rand([])
        x.stop_gradient = False
        out = paddle.quantile(x, 0.5, axis=None)

        out.retain_grads()
        out.backward()

        out_empty_list = paddle.quantile(x, 0.5, axis=[])
        self.assertEqual(out_empty_list, out)

        self.assertEqual(x.shape, [])
        self.assertEqual(out.shape, [])
        self.assertEqual(out, x)

        self.assertEqual(x.grad.shape, [])
        self.assertEqual(x.grad, 1.0)
        self.assertEqual(out.grad.shape, [])
        self.assertEqual(out.grad, 1.0)

        # 2) x is ND
        x = paddle.rand([2, 3])
        x.stop_gradient = False
        out = paddle.quantile(x, 0.5, axis=None)

        out.retain_grads()
        out.backward()

        self.assertEqual(out.shape, [])
        self.assertEqual(out.grad.shape, [])
        self.assertEqual(out.grad, 1.0)
        self.assertEqual(x.grad.shape, [2, 3])

    def test_flip(self):
        x = paddle.rand([])
        x.stop_gradient = False
        out = paddle.flip(x, axis=[])
        out.retain_grads()
        out.backward()
        self.assertEqual(x.shape, [])
        self.assertEqual(out.shape, [])
        self.assertEqual(x.grad.shape, [])
        self.assertEqual(out.grad.shape, [])

    def test_linear(self):
        x = paddle.randn([3, 2])
        w = paddle.full(shape=[2, 4], fill_value=0.5)
        b = paddle.zeros([])

        np.testing.assert_array_equal(
            F.linear(x, w, b).numpy(), F.linear(x, w).numpy()
        )

    def test_is_floating_point(self):
        self.assertTrue(paddle.is_floating_point(self.x))

    def test_is_integer(self):
        x = paddle.randint(0, 10, [])
        self.assertTrue(paddle.is_integer(x))

    def test_is_tensor(self):
        self.assertTrue(paddle.is_tensor(self.x))

    def test_isfinite(self):
        out = paddle.isfinite(self.x)
        np.testing.assert_array_equal(out.numpy(), np.array(True))

    def test_isinf(self):
        x = paddle.to_tensor(np.array(float('-inf')))
        out = paddle.isinf(x)
        np.testing.assert_array_equal(out.numpy(), np.array(True))

    def test_isnan(self):
        x = paddle.to_tensor(np.array(float('nan')))
        out = paddle.isnan(x)
        np.testing.assert_array_equal(out.numpy(), np.array(True))

    def test_isclose(self):
        out = paddle.isclose(self.x, self.x)
        np.testing.assert_array_equal(out.numpy(), np.array(True))

    def test_clone(self):
        out = paddle.clone(self.x)
        np.testing.assert_array_equal(out.numpy(), self.x.numpy())

    def test_assign(self):
        out = paddle.assign(self.x)
        np.testing.assert_array_equal(out.numpy(), self.x.numpy())

    def test_item(self):
        x = paddle.full([], 0.5)
        self.assertEqual(x.item(), 0.5)

    def test_tolist(self):
        x = paddle.full([], 0.5)
        self.assertEqual(x.tolist(), 0.5)

    def test_numpy(self):
        x = paddle.full([], 0.5)
        x_np = x.numpy()
        np.testing.assert_array_equal(x_np.shape, ())
        np.testing.assert_array_equal(x_np, np.array(0.5))

        x_np = x.numpy(False)
        np.testing.assert_array_equal(x_np.shape, ())
        np.testing.assert_array_equal(x_np, np.array(0.5))

    def test_numel(self):
        # 1) x is 0D
        out = paddle.numel(self.x)
        self.assertEqual(out.shape, [])
        np.testing.assert_array_equal(out.numpy(), np.array(1))

        # 2) x is ND
        x = paddle.full([3, 5], 0.5)
        out = paddle.numel(x)
        self.assertEqual(out.shape, [])
        np.testing.assert_array_equal(out.numpy(), np.array(15))

    def test_rank(self):
        # 1) x is 0D
        x = paddle.rand([])
        out = paddle.rank(x)
        self.assertEqual(out.shape, [])
        np.testing.assert_array_equal(out.numpy(), np.array(0))

        # 1) x is ND
        x = paddle.full([3, 5], 0.5)
        out = paddle.rank(x)
        self.assertEqual(out.shape, [])
        np.testing.assert_array_equal(out.numpy(), np.array(2))

    def test_shape(self):
        out = paddle.shape(self.x)
        np.testing.assert_array_equal(out.numpy(), np.array([]))
        self.assertEqual(out.shape, [0])

    def test_equal_scalar(self):
        x = paddle.rand([])
        out = paddle.equal(x, 2.0)
        self.assertEqual(out.shape, [])
        self.assertEqual(out, False)

        x1 = paddle.full([], 2.0)
        out1 = paddle.equal(x1, 2.0)
        self.assertEqual(out1.shape, [])
        self.assertEqual(out1, True)

    def test_pow_scalar(self):
        x = paddle.rand([])
        x.stop_gradient = False
        out = paddle.pow(x, 2.0)
        out.retain_grads()
        out.backward()

        self.assertEqual(out.shape, [])
        self.assertEqual(out.grad.shape, [])
        self.assertEqual(x.grad.shape, [])

    def test_cast(self):
        x = paddle.full([], 1.0, 'float32')
        x.stop_gradient = False
        out = paddle.cast(x, 'int32')
        out.retain_grads()
        out.backward()

        self.assertEqual(out.shape, [])
        self.assertEqual(out.grad.shape, [])
        self.assertEqual(x.grad.shape, [])

    def test_cumprod(self):
        x = paddle.full([], 1.0, 'float32')
        x.stop_gradient = False
        out = paddle.cumprod(x, 0)
        out.retain_grads()
        out.backward()

        self.assertEqual(out.shape, [])
        self.assertEqual(out.grad.shape, [])
        self.assertEqual(x.grad.shape, [])

        with self.assertRaises(ValueError):
            tmp = paddle.cumprod(x, 2)

    def test_clip(self):
        x = paddle.uniform([], None, -10, 10)
        x.stop_gradient = False
        out = paddle.clip(x, -5, 5)
        out.retain_grads()
        out.backward()
        self.assertEqual(out.shape, [])
        self.assertEqual(out.grad.shape, [])
        self.assertEqual(x.grad.shape, [])

        x1 = paddle.uniform([], None, -10, 10)
        x1.stop_gradient = False
        out1 = paddle.clip(x1, paddle.full([], 5.0), paddle.full([], 5.0))
        out1.retain_grads()
        out1.backward()
        self.assertEqual(out1.shape, [])
        self.assertEqual(out1.grad.shape, [])
        self.assertEqual(x1.grad.shape, [])

    def test_increment(self):
        x = paddle.rand([])
        x.stop_gradient = False
        out = paddle.increment(x, 1.0)
        out.retain_grads()
        out.backward()

        self.assertEqual(out.shape, [])
        self.assertEqual(out.grad.shape, [])
        self.assertEqual(x.grad.shape, [])

    def test_bitwise_not(self):
        x = paddle.randint(-1, 1, [])
        out1 = ~x
        out2 = paddle.bitwise_not(x)

        self.assertEqual(out1.shape, [])
        self.assertEqual(out2.shape, [])
1339 1340 1341 1342 1343 1344 1345

    def test_logical_not(self):
        x = paddle.randint(0, 1, [])
        out = paddle.logical_not(x)

        self.assertEqual(out.shape, [])

1346
    def test_searchsorted(self):
1347
        # have no backward
1348 1349 1350 1351 1352 1353 1354 1355
        x = paddle.to_tensor([1, 3, 5, 7, 9])
        y = paddle.rand([])

        out = paddle.searchsorted(x, y)

        self.assertEqual(out.shape, [])
        self.assertEqual(out.numpy(), 0)

1356 1357 1358 1359
    def test_transpose(self):
        x = paddle.rand([])
        x.stop_gradient = False
        out = paddle.transpose(x, [])
1360
        out.retain_grads()
1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
        out.backward()

        self.assertEqual(out.shape, [])
        self.assertEqual(out, x)
        self.assertEqual(out.grad.shape, [])
        self.assertEqual(x.grad.shape, [])
        self.assertEqual(x.grad, 1.0)

        with self.assertRaises(ValueError):
            x = paddle.transpose(x, [0])

    def test_moveaxis(self):
        x = paddle.rand([])
        x.stop_gradient = False
        out = paddle.moveaxis(x, [], [])
1376
        out.retain_grads()
1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
        out.backward()

        self.assertEqual(out.shape, [])
        self.assertEqual(out, x)
        self.assertEqual(out.grad.shape, [])
        self.assertEqual(x.grad.shape, [])
        self.assertEqual(x.grad, 1.0)

        with self.assertRaises(AssertionError):
            x = paddle.moveaxis(x, [1], [0])

1388 1389 1390 1391
    def test_gather_1D(self):
        x = paddle.to_tensor([1.0, 3.0, 5.0, 7.0, 9.0], stop_gradient=False)
        index = paddle.full([], 2, 'int64')
        out = paddle.gather(x, index)
1392
        out.retain_grads()
1393 1394 1395 1396
        out.backward()

        self.assertEqual(out.shape, [])
        self.assertEqual(out.numpy(), 5)
1397
        self.assertEqual(x.grad.shape, [5])
1398 1399 1400 1401 1402 1403 1404 1405
        self.assertEqual(out.grad.shape, [])

    def test_gather_xD_axis_0(self):
        x = paddle.to_tensor(
            [[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]], stop_gradient=False
        )
        index = paddle.full([], 1, 'int64')
        out = paddle.gather(x, index)
1406
        out.retain_grads()
1407 1408 1409
        out.backward()

        self.assertEqual(out.shape, [3])
1410 1411
        np.testing.assert_array_equal(out.numpy(), x.numpy()[1, :])
        self.assertEqual(x.grad.shape, [2, 3])
1412 1413
        self.assertEqual(out.grad.shape, [3])

1414
    def test_gather_xD_axis_1(self):
1415 1416 1417
        x = paddle.to_tensor(
            [[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]], stop_gradient=False
        )
1418 1419
        index = paddle.full([], 1, 'int64')
        out = paddle.gather(x, index, axis=1)
1420 1421
        out.retain_grads()
        out.backward()
1422 1423

        self.assertEqual(out.shape, [2])
1424
        np.testing.assert_array_equal(out.numpy(), [2.0, 5.0])
1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495
        self.assertEqual(x.grad.shape, [2, 3])
        self.assertEqual(out.grad.shape, [2])

    def test_gather_nd(self):
        x1 = paddle.to_tensor([1.0, 3.0, 5.0, 7.0, 9.0], stop_gradient=False)
        x2 = paddle.to_tensor(
            [[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]], stop_gradient=False
        )

        index1 = paddle.full([1], 1, 'int64')
        index2 = paddle.full([2], 1, 'int64')

        out1 = paddle.gather_nd(x1, index1)
        out2 = paddle.gather_nd(x2, index2)

        out1.retain_grads()
        out2.retain_grads()

        out1.backward()
        out2.backward()

        self.assertEqual(out1.shape, [])
        self.assertEqual(out2.shape, [])
        np.testing.assert_array_equal(out1, np.array(3.0))
        np.testing.assert_array_equal(out2, np.array(5.0))
        self.assertEqual(x1.grad.shape, [5])
        self.assertEqual(x2.grad.shape, [2, 3])
        self.assertEqual(out1.grad.shape, [])
        self.assertEqual(out2.grad.shape, [])

    def test_einsum(self):
        os.environ['FLAGS_new_einsum'] = "0"
        x = paddle.rand([5])
        # sum
        out1 = paddle.einsum('i->', x)
        expect1 = np.einsum('i->', x)
        # dot
        out2 = paddle.einsum('i,i->', x, x)
        expect2 = np.einsum('i,i->', x, x)

        out1.retain_grads()
        out2.retain_grads()

        out1.backward()
        out2.backward()

        self.assertEqual(out1.shape, [])
        self.assertEqual(out2.shape, [])
        np.testing.assert_allclose(out1, expect1, rtol=1e-03)
        np.testing.assert_allclose(out2, expect2, rtol=1e-03)

    def test_einsum_V2(self):
        os.environ['FLAGS_new_einsum'] = "1"
        x = paddle.rand([5])
        # sum
        out1 = paddle.einsum('i->', x)
        expect1 = np.einsum('i->', x)
        # dot
        out2 = paddle.einsum('i,i->', x, x)
        expect2 = np.einsum('i,i->', x, x)

        out1.retain_grads()
        out2.retain_grads()

        out1.backward()
        out2.backward()

        self.assertEqual(out1.shape, [])
        self.assertEqual(out2.shape, [])
        np.testing.assert_allclose(out1, expect1, rtol=1e-03)
        np.testing.assert_allclose(out2, expect2, rtol=1e-03)
1496

1497
    def test_scatter_1D(self):
1498
        # have no backward now
1499
        x = paddle.to_tensor([1.0, 3.0, 5.0, 7.0, 9.0], stop_gradient=False)
1500 1501 1502 1503
        index = paddle.full([], 2, 'int64')
        updates = paddle.full([], 4.0)
        out = paddle.scatter(x, index, updates)

1504
        self.assertEqual(out.shape, [5])
1505 1506
        self.assertEqual(out.numpy()[2], 4)

1507
    def test_scatter_XD(self):
1508
        # have no backward now
1509 1510 1511
        x = paddle.to_tensor(
            [[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]], stop_gradient=False
        )
1512 1513 1514 1515
        index = paddle.full([], 1, 'int64')
        updates = paddle.to_tensor([1.0, 2.0, 3.0])
        out = paddle.scatter(x, index, updates)

1516 1517
        self.assertEqual(out.shape, [2, 3])
        np.testing.assert_array_equal(out.numpy()[1], [1.0, 2.0, 3.0])
1518

1519 1520 1521 1522 1523 1524 1525 1526
    def test_diagflat(self):
        x1 = paddle.rand([])
        x2 = paddle.rand([])
        x3 = paddle.rand([])
        x1.stop_gradient = False
        x2.stop_gradient = False
        x3.stop_gradient = False

1527 1528 1529 1530
        x1.retain_grads()
        x2.retain_grads()
        x3.retain_grads()

1531 1532 1533 1534
        out1 = paddle.diagflat(x1, 1)
        out2 = paddle.diagflat(x2, -1)
        out3 = paddle.diagflat(x3, 0)

1535 1536 1537 1538
        out1.retain_grads()
        out2.retain_grads()
        out3.retain_grads()

1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554
        out1.backward()
        out2.backward()
        out3.backward()

        self.assertEqual(out1.shape, [2, 2])
        self.assertEqual(out2.shape, [2, 2])
        self.assertEqual(out3.shape, [1, 1])

        self.assertEqual(out1.grad.shape, [2, 2])
        self.assertEqual(out2.grad.shape, [2, 2])
        self.assertEqual(out3.grad.shape, [1, 1])

        self.assertEqual(x1.grad.shape, [])
        self.assertEqual(x2.grad.shape, [])
        self.assertEqual(x3.grad.shape, [])

1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
    def test_scatter__1D(self):
        x = paddle.to_tensor([1.0, 3.0, 5.0, 7.0, 9.0])
        index = paddle.full([], 2, 'int64')
        updates = paddle.full([], 4.0)
        out = paddle.scatter_(x, index, updates)

        self.assertEqual(out.numpy()[2], 4)

    def test_scatter__XD(self):
        x = paddle.to_tensor([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])
        index = paddle.full([], 1, 'int64')
        updates = paddle.to_tensor([1.0, 2.0, 3.0])
        out = paddle.scatter_(x, index, updates)
1568
        np.testing.assert_array_equal(out.numpy()[1], [1.0, 2.0, 3.0])
1569

1570 1571 1572 1573 1574 1575 1576 1577
    def test_scatter_nd(self):
        index = paddle.to_tensor([3], dtype="int64")
        updates = paddle.full([], 2, dtype='float32')

        out = paddle.scatter_nd(index, updates, [5])
        self.assertEqual(out.shape, [5])
        self.assertEqual(out.numpy()[3], 2)

1578
    def test_flatten(self):
1579
        x = paddle.rand([])
1580 1581 1582 1583 1584 1585
        x.stop_gradient = False

        start_axis = 0
        stop_axis = -1

        out = paddle.flatten(x, start_axis=start_axis, stop_axis=stop_axis)
1586
        out.retain_grads()
1587 1588 1589
        out.backward()

        self.assertEqual(out.shape, [1])
1590
        self.assertEqual(out.grad.shape, [1])
1591 1592
        self.assertEqual(x.grad.shape, [])

1593 1594 1595 1596 1597
    def test_histogram(self):
        x = paddle.rand([])
        out = paddle.histogram(x, bins=5, min=1, max=5)
        self.assertEqual(out.shape, [5])

1598 1599 1600 1601
    def test_scale(self):
        x = paddle.rand([])
        x.stop_gradient = False
        out = paddle.scale(x, scale=2.0, bias=1.0)
1602

1603
        out.retain_grads()
1604 1605 1606 1607 1608 1609
        out.backward()

        self.assertEqual(out.shape, [])
        self.assertEqual(out.grad.shape, [])
        self.assertEqual(x.grad.shape, [])

1610 1611 1612 1613 1614
    def test_scale_(self):
        x = paddle.rand([])
        out = x.scale_(scale=2.0, bias=1.0)
        self.assertEqual(out.shape, [])

1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639
    def test_floor_divide(self):
        # 1-d // 0-d
        x = paddle.to_tensor([1, -2, 3], dtype="int64")
        y = paddle.full([], 2, dtype='int64')
        out1_1 = paddle.floor_divide(x, y)
        out1_2 = paddle.Tensor.__floordiv__(x, y)

        np.testing.assert_array_equal(out1_1.numpy(), out1_2.numpy())
        np.testing.assert_array_equal(out1_1.numpy(), np.asarray([0, -1, 1]))

        # 0-d // 1-d
        out2_1 = paddle.floor_divide(y, x)
        out2_2 = paddle.Tensor.__floordiv__(y, x)

        np.testing.assert_array_equal(out2_1.numpy(), out2_2.numpy())
        np.testing.assert_array_equal(out2_2.numpy(), np.asarray([2, -1, 0]))

        # 0-d // 0-d
        x = paddle.full([], 3, dtype='int64')
        out3_1 = paddle.floor_divide(x, y)
        out3_2 = paddle.Tensor.__floordiv__(x, y)

        np.testing.assert_array_equal(out3_1.numpy(), out3_2.numpy())
        np.testing.assert_array_equal(out3_2.numpy(), np.asarray(1))

1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655
    def test_cumsum(self):
        x1 = paddle.rand([])
        x1.stop_gradient = False

        out1 = paddle.cumsum(x1)
        out2 = paddle.cumsum(x1, axis=0)
        out3 = paddle.cumsum(x1, axis=-1)

        out1.retain_grads()
        out2.retain_grads()
        out3.retain_grads()

        out1.backward()
        out2.backward()
        out3.backward()

1656 1657
        self.assertEqual(x1.grad.shape, [])
        self.assertTrue(x1.grad.numpy() == 3)
1658 1659
        self.assertEqual(out1.shape, [1])
        self.assertEqual(out1.grad.shape, [1])
1660
        self.assertTrue(out1.grad.numpy() == 1)
1661 1662
        self.assertEqual(out2.shape, [])
        self.assertEqual(out2.grad.shape, [])
1663
        self.assertTrue(out2.grad.numpy() == 1)
1664 1665
        self.assertEqual(out3.shape, [])
        self.assertEqual(out3.grad.shape, [])
1666
        self.assertTrue(out3.grad.numpy() == 1)
1667

W
wawltor 已提交
1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684
    def test_add_n(self):
        x1 = paddle.rand([])
        x1.stop_gradient = False
        x2 = paddle.rand([])
        x2.stop_gradient = False
        x3 = paddle.rand([])
        x3.stop_gradient = False

        out1 = paddle.add_n(x1)
        out2 = paddle.add_n([x2, x3])

        out1.retain_grads()
        out2.retain_grads()

        out1.backward()
        out2.backward()

1685 1686 1687 1688 1689 1690
        self.assertEqual(x1.grad.shape, [])
        self.assertTrue(x1.grad.numpy() == 1)
        self.assertEqual(x2.grad.shape, [])
        self.assertTrue(x2.grad.numpy() == 1)
        self.assertEqual(x3.grad.shape, [])
        self.assertTrue(x3.grad.numpy() == 1)
W
wawltor 已提交
1691 1692 1693 1694 1695
        self.assertEqual(out1.shape, [])
        self.assertEqual(out1.grad.shape, [])
        self.assertEqual(out2.shape, [])
        self.assertEqual(out2.grad.shape, [])

1696 1697 1698 1699
    def test_reshape_list(self):
        x = paddle.rand([])
        x.stop_gradient = False
        out = paddle.reshape(x, [])
1700

1701
        out.retain_grads()
1702 1703 1704 1705 1706 1707
        out.backward()
        self.assertEqual(x.grad.shape, [])
        self.assertEqual(out.shape, [])
        self.assertEqual(out.grad.shape, [])

        out = paddle.reshape(x, [1])
1708
        out.retain_grads()
1709 1710 1711 1712 1713 1714
        out.backward()
        self.assertEqual(x.grad.shape, [])
        self.assertEqual(out.shape, [1])
        self.assertEqual(out.grad.shape, [1])

        out = paddle.reshape(x, [-1])
1715
        out.retain_grads()
1716 1717 1718 1719 1720 1721
        out.backward()
        self.assertEqual(x.grad.shape, [])
        self.assertEqual(out.shape, [1])
        self.assertEqual(out.grad.shape, [1])

        out = paddle.reshape(x, [-1, 1])
1722
        out.retain_grads()
1723 1724 1725 1726 1727 1728 1729 1730 1731
        out.backward()
        self.assertEqual(x.grad.shape, [])
        self.assertEqual(out.shape, [1, 1])
        self.assertEqual(out.grad.shape, [1, 1])

    def test_reshape_tensor(self):
        x = paddle.rand([1, 1])
        x.stop_gradient = False
        out = paddle.reshape(x, [])
1732

1733
        out.retain_grads()
1734 1735 1736 1737 1738
        out.backward()
        self.assertEqual(x.grad.shape, [1, 1])
        self.assertEqual(out.shape, [])
        self.assertEqual(out.grad.shape, [])

1739
        new_shape = paddle.to_tensor([1, 1, 1], "int32")
1740
        out = paddle.reshape(x, new_shape)
1741
        out.retain_grads()
1742 1743
        out.backward()
        self.assertEqual(x.grad.shape, [1, 1])
1744 1745
        self.assertEqual(out.shape, [1, 1, 1])
        self.assertEqual(out.grad.shape, [1, 1, 1])
1746

1747
        new_shape = paddle.to_tensor([-1], "int32")
1748
        out = paddle.reshape(x, new_shape)
1749
        out.retain_grads()
1750 1751 1752 1753 1754 1755 1756
        out.backward()
        self.assertEqual(x.grad.shape, [1, 1])
        self.assertEqual(out.shape, [1])
        self.assertEqual(out.grad.shape, [1])

        new_shape = [paddle.full([], -1, "int32"), paddle.full([], 1, "int32")]
        out = paddle.reshape(x, new_shape)
1757
        out.retain_grads()
1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793
        out.backward()
        self.assertEqual(x.grad.shape, [1, 1])
        self.assertEqual(out.shape, [1, 1])
        self.assertEqual(out.grad.shape, [1, 1])

    def test_reshape__list(self):
        x = paddle.rand([])
        out = paddle.reshape_(x, [])
        self.assertEqual(out.shape, [])

        out = paddle.reshape_(x, [1])
        self.assertEqual(out.shape, [1])

        out = paddle.reshape_(x, [-1])
        self.assertEqual(out.shape, [1])

        out = paddle.reshape_(x, [-1, 1])
        self.assertEqual(out.shape, [1, 1])

    def test_reshape__tensor(self):
        x = paddle.rand([1, 1])
        out = paddle.reshape_(x, [])
        self.assertEqual(out.shape, [])

        new_shape = paddle.full([1], 1, "int32")
        out = paddle.reshape_(x, new_shape)
        self.assertEqual(out.shape, [1])

        new_shape = paddle.full([1], -1, "int32")
        out = paddle.reshape_(x, new_shape)
        self.assertEqual(out.shape, [1])

        new_shape = [paddle.full([], -1, "int32"), paddle.full([], 1, "int32")]
        out = paddle.reshape_(x, new_shape)
        self.assertEqual(out.shape, [1, 1])

1794 1795 1796 1797 1798 1799 1800 1801 1802 1803
    def test_reverse(self):
        x = paddle.rand([])
        x.stop_gradient = False
        out = paddle.reverse(x, axis=[])
        out.retain_grads()
        out.backward()
        self.assertEqual(x.shape, [])
        self.assertEqual(out.shape, [])
        self.assertEqual(out.grad.shape, [])

1804 1805 1806 1807 1808
    def test_sort(self):
        x1 = paddle.rand([])
        x2 = paddle.rand([])
        x1.stop_gradient = False
        x2.stop_gradient = False
1809 1810
        x1.retain_grads()
        x2.retain_grads()
1811 1812 1813
        out1 = paddle.sort(x1, axis=-1)
        out2 = paddle.sort(x2, axis=0)

1814 1815 1816
        out1.retain_grads()
        out2.retain_grads()

1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835
        out1.backward()
        out2.backward()

        self.assertEqual(out1.shape, [])
        self.assertEqual(out2.shape, [])
        self.assertEqual(out1.numpy(), x1.numpy())
        self.assertEqual(out2.numpy(), x2.numpy())
        self.assertEqual(out1.grad.shape, [])
        self.assertEqual(out2.grad.shape, [])
        self.assertEqual(x1.grad.shape, [])
        self.assertEqual(x2.grad.shape, [])
        self.assertEqual(x1.grad.numpy(), 1)
        self.assertEqual(x2.grad.numpy(), 1)

    def test_argsort(self):
        x1 = paddle.rand([])
        x2 = paddle.rand([])
        x1.stop_gradient = False
        x2.stop_gradient = False
1836 1837
        x1.retain_grads()
        x2.retain_grads()
1838

1839 1840 1841
        out1 = paddle.argsort(x1, axis=-1)
        out2 = paddle.argsort(x2, axis=0)

1842 1843 1844
        out1.retain_grads()
        out2.retain_grads()

1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858
        out1.backward()
        out2.backward()

        self.assertEqual(out1.shape, [])
        self.assertEqual(out2.shape, [])
        self.assertEqual(out1.numpy(), 0)
        self.assertEqual(out2.numpy(), 0)
        self.assertEqual(out1.grad.shape, [])
        self.assertEqual(out2.grad.shape, [])
        self.assertEqual(x1.grad.shape, [])
        self.assertEqual(x2.grad.shape, [])
        self.assertEqual(x1.grad.numpy(), 0)
        self.assertEqual(x2.grad.numpy(), 0)

1859 1860 1861 1862 1863 1864 1865 1866
    def test_lerp(self):
        # 0D + 0D, weight is float scalar
        x = paddle.rand([])
        y = paddle.rand([])
        x.stop_gradient = False
        y.stop_gradient = False
        out = paddle.lerp(x, y, 0.5)
        out.backward()
1867

1868 1869 1870
        self.assertEqual(out.shape, [])
        self.assertEqual(x.grad.shape, [])
        self.assertEqual(y.grad.shape, [])
1871

1872 1873 1874 1875 1876 1877 1878
        # 0D + 0D, weigh is 0D
        x0 = paddle.rand([])
        y0 = paddle.rand([])
        w0 = paddle.rand([])
        x0.stop_gradient = False
        y0.stop_gradient = False
        y0.retain_grads()
1879

1880
        out0 = paddle.lerp(x0, y0, w0)
1881
        out0.backward()
1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939

        self.assertEqual(out0.shape, [])
        self.assertEqual(x0.grad.shape, [])
        self.assertEqual(y0.grad.shape, [])

        # 0D + ND
        x1 = paddle.rand([])
        y1 = paddle.rand([64, 64])
        w1 = paddle.rand([])
        x1.stop_gradient = False
        y1.stop_gradient = False
        x1.retain_grads()
        y1.retain_grads()

        out1 = paddle.lerp(x1, y1, w1)
        out1.backward()

        self.assertEqual(out1.shape, [64, 64])
        self.assertEqual(x1.grad.shape, [])
        self.assertEqual(y1.grad.shape, [64, 64])

        # ND + 0D
        x2 = paddle.rand([64, 64])
        y2 = paddle.rand([])
        w2 = paddle.rand([])
        x2.stop_gradient = False
        y2.stop_gradient = False
        x2.retain_grads()
        y2.retain_grads()

        out2 = paddle.lerp(x2, y2, w2)
        out2.backward()

        self.assertEqual(out2.shape, [64, 64])
        self.assertEqual(x2.grad.shape, [64, 64])
        self.assertEqual(y2.grad.shape, [])

    def test_repeat_interleave(self):
        x = paddle.randn(())
        x.stop_gradient = False

        out = paddle.repeat_interleave(x, 2, None)
        out.backward()

        # check shape of output
        self.assertEqual(out.shape, [2])

        # check grad shape
        self.assertEqual(x.grad.shape, [])

        repeats = paddle.to_tensor([3], dtype='int32')
        out = paddle.repeat_interleave(x, repeats, None)

        # check shape of output with 1D repeats
        self.assertEqual(out.shape, [3])

        # check grad shape with 1D repeats
        self.assertEqual(x.grad.shape, [])
1940 1941

    def test_allclose(self):
1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957
        # 1) x is 0D
        x = paddle.full([], 0.5)
        y = paddle.full([], 0.6)
        out = paddle.allclose(x, y)
        self.assertEqual(out.shape, [])
        self.assertFalse(out)

        # 2) x is ND
        x = paddle.full([2, 3], 0.5)
        y = paddle.full([2, 3], 0.6)
        out = paddle.allclose(x, y)
        self.assertEqual(out.shape, [])
        self.assertFalse(out)

    def test_equal_all(self):
        # 1) x is 0D
1958 1959
        x = paddle.full([], 0.5)
        y = paddle.full([], 0.6)
1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
        out = paddle.equal_all(x, y)
        self.assertEqual(out.shape, [])
        self.assertFalse(out)

        # 2) x is ND
        x = paddle.full([2, 3], 0.5)
        y = paddle.full([2, 3], 0.6)
        out = paddle.equal_all(x, y)
        self.assertEqual(out.shape, [])
        self.assertFalse(out)

    def test_where(self):
        x1 = paddle.full([], 1)
        x2 = paddle.full([], 2)
        x1.stop_gradient = False
        x2.stop_gradient = False
        x1.retain_grads()
        x2.retain_grads()
        out = paddle.where(x1 > x2, x1, x2)
        out.retain_grads()
        out.backward()
        self.assertEqual(out.shape, [])
        self.assertEqual(out.numpy(), 2)
        self.assertEqual(out.grad.shape, [])
        self.assertEqual(x1.grad.shape, [])
        self.assertEqual(x2.grad.shape, [])
        self.assertEqual(x1.grad.numpy(), 0)
        self.assertEqual(x2.grad.numpy(), 1)

    def test_atan2(self):
        x1 = paddle.full([], 0)
        x2 = paddle.full([], 2)
        x1.retain_grads()
        x2.retain_grads()
        x1.stop_gradient = False
        x2.stop_gradient = False
        out = paddle.atan2(x1, x2)
        out.retain_grads()
        out.backward()
        self.assertEqual(out.shape, [])
        self.assertEqual(out.numpy(), 0)
        self.assertEqual(out.grad.shape, [])
        self.assertEqual(x1.grad.shape, [])
        self.assertEqual(x2.grad.shape, [])
        self.assertEqual(x1.grad.numpy(), 0.5)
        self.assertEqual(x2.grad.numpy(), 0)
2006

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061
    def test_interpolate(self):
        from paddle.nn.functional import interpolate

        input_x = paddle.rand([2, 3, 6, 6])
        input_x.stop_gradient = False
        origin_result = interpolate(
            x=input_x, size=[12, 12], mode="bilinear", align_corners=False
        )

        output_size = [
            paddle.full([], 12, dtype="int32"),
            paddle.full([], 12, dtype="int32"),
        ]
        out1 = interpolate(
            x=input_x, size=output_size, mode="bilinear", align_corners=False
        )
        out1.backward()

        self.assertEqual(out1.shape, [2, 3, 12, 12])
        self.assertEqual(input_x.grad.shape, [2, 3, 6, 6])

        scale_1 = [paddle.full([], 2), paddle.full([], 2)]
        out2 = interpolate(
            x=input_x,
            scale_factor=scale_1,
            mode="bilinear",
            align_corners=False,
        )
        out2.backward()

        self.assertEqual(out2.shape, [2, 3, 12, 12])
        self.assertEqual(input_x.grad.shape, [2, 3, 6, 6])

        scale_2 = paddle.full([], 2)
        out3 = interpolate(
            x=input_x,
            scale_factor=scale_2,
            mode="bilinear",
            align_corners=False,
        )
        out3.backward()

        self.assertEqual(out3.shape, [2, 3, 12, 12])
        self.assertEqual(input_x.grad.shape, [2, 3, 6, 6])

        np.testing.assert_allclose(
            origin_result.numpy(), out1.numpy(), rtol=1e-05
        )
        np.testing.assert_allclose(
            origin_result.numpy(), out2.numpy(), rtol=1e-05
        )
        np.testing.assert_allclose(
            origin_result.numpy(), out3.numpy(), rtol=1e-05
        )

2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128
    def test_upsample(self):
        from paddle.nn.functional import upsample

        input_x = paddle.rand([2, 3, 6, 6])
        input_x.stop_gradient = False

        output_size = [
            paddle.full([], 12, dtype="int32"),
            paddle.full([], 12, dtype="int32"),
        ]
        out1 = upsample(
            x=input_x, size=output_size, mode="bilinear", align_corners=False
        )
        out1.backward()

        self.assertEqual(out1.shape, [2, 3, 12, 12])
        self.assertEqual(input_x.grad.shape, [2, 3, 6, 6])

    def test_unstack(self):
        x1 = paddle.full([1], 0)
        x2 = paddle.full([2], 2)
        x1.retain_grads()
        x2.retain_grads()
        x1.stop_gradient = False
        x2.stop_gradient = False

        [out1] = paddle.unstack(x1, 0)
        out1.retain_grads()
        out1.backward()
        [out2_1, out2_2] = paddle.unstack(x2, 0)
        out2 = paddle.add_n([out2_1, out2_2])
        out2.retain_grads()
        out2.backward()

        self.assertEqual(out1.shape, [])
        self.assertEqual(out1.numpy(), 0)

        self.assertEqual(out2_1.shape, [])
        self.assertEqual(out2_1.numpy(), 2)
        self.assertEqual(out2_2.shape, [])
        self.assertEqual(out2_2.numpy(), 2)
        self.assertEqual(x2.grad.shape, [2])

    def test_unbind(self):
        x1 = paddle.full([1], 0)
        x2 = paddle.full([2], 2)
        x1.retain_grads()
        x2.retain_grads()
        x1.stop_gradient = False
        x2.stop_gradient = False

        [out1] = paddle.unbind(x1, 0)
        out1.retain_grads()
        out1.backward()
        [out2_1, out2_2] = paddle.unbind(x2, 0)
        out2 = paddle.add_n([out2_1, out2_2])
        out2.retain_grads()
        out2.backward()

        self.assertEqual(out1.shape, [])
        self.assertEqual(out1.numpy(), 0)

        self.assertEqual(out2_1.shape, [])
        self.assertEqual(out2_1.numpy(), 2)
        self.assertEqual(out2_2.shape, [])
        self.assertEqual(out2_2.numpy(), 2)
        self.assertEqual(x2.grad.shape, [2])
2129

2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143
    def test_maseked_select(self):
        x = paddle.rand([])
        x.stop_gradient = False
        mask = paddle.full([], True, dtype='bool')
        y = paddle.masked_select(x, mask)

        y.retain_grads()
        y.backward()
        self.assertEqual(y.shape, [1])
        self.assertEqual(y.numpy(), x.numpy())
        self.assertEqual(y.grad.shape, [1])
        self.assertEqual(x.grad.shape, [])
        self.assertEqual(x.grad.numpy(), 1)

2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163
    def test_squeeze(self):
        x1 = paddle.full([], 2)
        x1.stop_gradient = False
        x1.retain_grads()
        out1 = paddle.squeeze(x1, axis=0)
        out1.retain_grads()
        out1.backward()
        self.assertEqual(out1.shape, [])
        self.assertEqual(x1.grad.shape, [])

        x2 = paddle.full([], 3)
        x3 = paddle.full([1], 0, dtype='int32')
        x2.stop_gradient = False
        x2.retain_grads()
        out2 = paddle.squeeze(x2, axis=x3)
        out2.retain_grads()
        out2.backward()
        self.assertEqual(out2.shape, [])
        self.assertEqual(x2.grad.shape, [])

2164 2165 2166
    def test_unsqueeze(self):
        x1 = paddle.full([], 2)
        x1.stop_gradient = False
2167
        x1.retain_grads()
2168
        out1 = paddle.unsqueeze(x1, axis=0)
2169
        out1.retain_grads()
2170 2171 2172 2173 2174 2175
        out1.backward()
        self.assertEqual(out1.shape, [1])
        self.assertEqual(x1.grad.shape, [])

        x2 = paddle.full([], 0, dtype='int32')
        out2 = paddle.unsqueeze(x1, axis=x2)
2176
        out2.retain_grads()
2177 2178
        out2.backward()
        self.assertEqual(out2.shape, [1])
2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190
        self.assertEqual(x1.grad.shape, [])

    def test_t(self):
        x = paddle.full([], 2.0)
        x.stop_gradient = False
        x.retain_grads()
        out = paddle.t(x)
        out.retain_grads()
        out.backward()
        self.assertEqual(out.shape, [])
        self.assertEqual(out.grad.shape, [])
        self.assertEqual(x.grad.shape, [])
2191

2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218
    def test_prelu(self):
        x1 = paddle.full([], 1.0, 'float32')
        x1.stop_gradient = False
        w1 = paddle.full([], 0.25, dtype='float32')
        w1.stop_gradient = False
        out1 = paddle.nn.functional.prelu(x1, w1)
        out1.retain_grads()
        out1.backward()
        self.assertEqual(out1.shape, [])
        self.assertEqual(out1.numpy(), 1.0)
        self.assertEqual(out1.grad.shape, [])
        self.assertEqual(x1.grad.shape, [])
        self.assertEqual(x1.grad.numpy(), 1.0)

        x2 = paddle.full([], -1.0, 'float32')
        x2.stop_gradient = False
        w2 = paddle.full([], 0.25, dtype='float32')
        w2.stop_gradient = False
        out2 = paddle.nn.functional.prelu(x2, w2)
        out2.retain_grads()
        out2.backward()
        self.assertEqual(out2.shape, [])
        self.assertEqual(out2.numpy(), -0.25)
        self.assertEqual(out2.grad.shape, [])
        self.assertEqual(x2.grad.shape, [])
        self.assertEqual(x2.grad.numpy(), 0.25)

2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506
    def test_while_loop(self):
        def cond(i, x):
            return paddle.less_than(i, eleven)

        def body(i, x):
            x = x + i
            i = i + 1
            return [i, x]

        i = paddle.full([], 1.0, dtype='float32')
        i.stop_gradient = False
        eleven = paddle.full([], 11, dtype='float32')
        x = paddle.full([], 0.0, dtype='float32')
        x.stop_gradient = False
        out_i, out_x = paddle.static.nn.while_loop(cond, body, [i, x])
        out_x.backward()

        self.assertEqual(out_i.shape, [])
        np.testing.assert_allclose(out_i, np.array(11))
        self.assertEqual(out_x.shape, [])
        np.testing.assert_allclose(out_x, np.array(55))
        self.assertEqual(i.grad.shape, [])
        np.testing.assert_allclose(i.grad, np.array(10))
        self.assertEqual(x.grad.shape, [])
        np.testing.assert_allclose(x.grad, np.array(1.0))

    def test_to_tensor(self):
        out1 = paddle.to_tensor(1)
        out2 = paddle.to_tensor(2.5)

        out1.retain_grads()
        out1.backward()
        out2.retain_grads()
        out2.backward()

        self.assertEqual(out1.shape, [])
        self.assertEqual(out1, 1)
        self.assertEqual(out2.shape, [])
        self.assertEqual(out2, 2.5)

    def test_linalg_slogdet(self):
        # 2-D input
        x = paddle.randn([3, 3])
        x.stop_gradient = False
        out = paddle.linalg.slogdet(x)
        out.retain_grads()
        out.backward()

        self.assertTrue(out.shape, [2])
        self.assertTrue(x.grad.shape, [3, 3])

        # 3-D input
        x1 = paddle.randn([3, 3, 3])
        x1.stop_gradient = False
        out1 = paddle.linalg.slogdet(x1)
        out1.retain_grads()
        out1.backward()

        self.assertTrue(out1.shape, [2, 3])
        self.assertTrue(x1.grad.shape, [3, 3, 3])

    def test_multi_dot(self):
        a = paddle.randn([4])
        a.stop_gradient = False
        b = paddle.randn([4, 5])
        b.stop_gradient = False
        c = paddle.randn([5])
        c.stop_gradient = False

        out = paddle.linalg.multi_dot([a, b, c])
        out.retain_grads()
        out.backward()

        self.assertEqual(out.shape, [])
        self.assertEqual(a.grad.shape, [4])
        self.assertEqual(b.grad.shape, [4, 5])
        self.assertEqual(c.grad.shape, [5])

    def test_cov(self):
        xt = paddle.randn((3, 4))
        xt.stop_gradient = False
        xt_1 = paddle.randn((12,))
        xt_1.stop_gradient = False

        xt_out = paddle.linalg.cov(xt)
        xt_out.retain_grads()
        xt_out.backward()
        self.assertEqual(xt_out.shape, [3, 3])
        self.assertEqual(xt.grad.shape, [3, 4])

        xt_1_out = paddle.linalg.cov(xt_1)
        xt_1.retain_grads()
        xt_1_out.backward()
        self.assertEqual(xt_1_out.shape, [])
        self.assertEqual(xt_1.grad.shape, [12])

    def test_det(self):
        xt = paddle.randn([3, 3, 3])
        xt.stop_gradient = False
        xt_1 = paddle.randn([3, 3])
        xt_1.stop_gradient = False

        xt_out = paddle.linalg.det(xt)
        xt.retain_grads()
        xt_out.backward()
        self.assertEqual(xt_out.shape, [3])
        self.assertEqual(xt.grad.shape, [3, 3, 3])

        xt_1_out = paddle.linalg.det(xt_1)
        xt_1.retain_grads()
        xt_1_out.backward()
        self.assertEqual(xt_1_out.shape, [])
        self.assertEqual(xt_1.grad.shape, [3, 3])

    def test_dist(self):
        x = paddle.to_tensor([[3, 3], [3, 3]], dtype="float32")
        y = paddle.to_tensor([[3, 3], [3, 1]], dtype="float32")
        x.stop_gradient = False
        y.stop_gradient = False
        out = paddle.dist(x, y, 0)
        out.backward()

        self.assertEqual(out.shape, [])
        np.testing.assert_allclose(out, np.array(1))
        self.assertEqual(x.grad.shape, [2, 2])
        self.assertEqual(y.grad.shape, [2, 2])

    def test_linalg_norm(self):
        # 1D input, p = fro ,axis = None, using reduceInferMeta
        x_1 = paddle.arange(24, dtype="float32") - 12
        x_1.stop_gradient = False
        out_1 = paddle.linalg.norm(x_1)
        out_1.retain_grads()
        out_1.backward()

        self.assertEqual(out_1.shape, [])
        self.assertTrue(x_1.grad.shape, [24])

        # 1D input, p = 1 ,axis = None,
        # using p_nrom, as_vector = True
        x_2 = paddle.arange(24, dtype="float32") - 12
        x_2.stop_gradient = False
        out_2 = paddle.linalg.norm(x_2, p=1)
        out_2.retain_grads()
        out_2.backward()

        self.assertEqual(out_2.shape, [])
        self.assertEqual(x_2.grad.shape, [24])

        # 1D input, p = 1 ,axis = 0,
        # using p_nrom, as_vector = False
        x_2_p = paddle.arange(24, dtype="float32") - 12
        x_2_p.stop_gradient = False
        out_2_p = paddle.linalg.norm(x_2_p, p=1, axis=0)
        out_2_p.retain_grads()
        out_2_p.backward()

        self.assertEqual(out_2_p.shape, [])
        self.assertEqual(x_2_p.grad.shape, [24])

        # 1D input, p = fro ,axis = 0,
        # using p_nrom, as_vector = False
        x_2_fro = paddle.arange(24, dtype="float32") - 12
        x_2_fro.stop_gradient = False
        out_2_fro = paddle.linalg.norm(x_2_fro, p="fro", axis=0)
        out_2_fro.retain_grads()
        out_2_fro.backward()

        self.assertEqual(out_2_fro.shape, [])
        self.assertEqual(x_2_fro.grad.shape, [24])

        # 2D input, p = 1, axis = [0, 1]
        # using p_matrix_norm ,depends on paddle.sum
        x_3 = paddle.arange(24, dtype="float32").reshape([4, 6])
        x_3.stop_gradient = False
        out_3 = paddle.linalg.norm(x_3, p=1, axis=[0, 1])
        out_3.retain_grads()
        out_3.backward()
        self.assertEqual(out_3.shape, [])
        self.assertEqual(x_3.grad.shape, [4, 6])

        # 2D input, p = 1, axis = None
        # using p_matrix_norm, depends on paddle.sum
        x_4 = paddle.arange(24, dtype="float32").reshape([4, 6])
        x_4.stop_gradient = False
        out_4 = paddle.linalg.norm(x_4)
        out_4.retain_grads()
        out_4.backward()
        self.assertEqual(out_4.shape, [])
        self.assertEqual(x_4.grad.shape, [4, 6])

        # 2D input, p = inf, axis = [0, 1]
        # using p_matrix_norm, depends on paddle.sum
        x_5 = paddle.arange(24, dtype="float32").reshape([4, 6])
        x_5.stop_gradient = False
        out_5 = paddle.linalg.norm(x_5, p=2, axis=[0, 1])
        out_5.retain_grads()
        out_5.backward()

        self.assertEqual(out_5.shape, [])
        self.assertEqual(x_5.grad.shape, [4, 6])

        # 2D input, p = -inf, axis = [0, 1]
        x_6 = paddle.arange(24, dtype="float32").reshape([4, 6])
        x_6.stop_gradient = False
        out_6 = paddle.linalg.norm(x_6, p=-float("inf"), axis=[0, 1])
        out_6.retain_grads()
        out_6.backward()

        self.assertEqual(out_6.shape, [])
        self.assertEqual(x_6.grad.shape, [4, 6])

    def test_linalg_cond(self):
        def assert_shape(out):
            self.assertEqual(out.shape, [])

        x1 = paddle.to_tensor([[1.0, 0, -1], [0, 1, 0], [1, 0, 1]])
        x1.stop_gradient = False
        # p = 2 : use paddle.sum
        out = paddle.linalg.cond(x1)
        out.backward()
        assert_shape(out)
        self.assertEqual(x1.grad.shape, [3, 3])

        # p = fro : use paddle.sum
        x2 = paddle.to_tensor([[1.0, 0, -1], [0, 1, 0], [1, 0, 1]])
        x2.stop_gradient = False
        out_fro = paddle.linalg.cond(x2, p='fro')
        out_fro.backward()
        assert_shape(out_fro)
        self.assertEqual(x2.grad.shape, [3, 3])

        # p = nuc : use paddle.sum
        x3 = paddle.to_tensor([[1.0, 0, -1], [0, 1, 0], [1, 0, 1]])
        x3.stop_gradient = False
        out_nuc = paddle.linalg.cond(x3, p='nuc')
        out_nuc.backward()
        assert_shape(out_nuc)
        self.assertEqual(x3.grad.shape, [3, 3])

        # p in (-1, 1) : use paddle.sum
        x4 = paddle.to_tensor([[1.0, 0, -1], [0, 1, 0], [1, 0, 1]])
        x4.stop_gradient = False
        out_1 = paddle.linalg.cond(x4, p=1)
        out_1.backward()
        assert_shape(out_1)
        self.assertEqual(x4.grad.shape, [3, 3])

        x5 = paddle.to_tensor([[1.0, 0, -1], [0, 1, 0], [1, 0, 1]])
        x5.stop_gradient = False
        out_minus_1 = paddle.linalg.cond(x5, p=-1)
        out_minus_1.backward()
        assert_shape(out_minus_1)
        self.assertEqual(x5.grad.shape, [3, 3])

        # p in (-2, 2)  depends on paddle.sum
        x6 = paddle.to_tensor([[1.0, 0, -1], [0, 1, 0], [1, 0, 1]])
        x6.stop_gradient = False
        out_2 = paddle.linalg.cond(x6, p=2)
        out_2.backward()
        assert_shape(out_2)
        self.assertEqual(x6.grad.shape, [3, 3])

        # p in (-inf, inf):use paddle.sum
        x8 = paddle.to_tensor([[1.0, 0, -1], [0, 1, 0], [1, 0, 1]])
        x8.stop_gradient = False
        out_inf = paddle.linalg.cond(x8, p=float("inf"))
        out_inf.backward()
        assert_shape(out_inf)
        self.assertEqual(x8.grad.shape, [3, 3])

        a = paddle.randn([2, 4, 4])
        a.stop_gradient = False
        a_cond_fro = paddle.linalg.cond(a, p='fro')
        a_cond_fro.backward()
        self.assertEqual(len(a_cond_fro.shape), 1)
        self.assertEqual(a.grad.shape, [2, 4, 4])

    def test_trace(self):
        x = paddle.to_tensor([[3, 2], [1, 9]], dtype="float32")
        x.stop_gradient = False
        out = paddle.trace(x)
        out.backward()

        self.assertEqual(out.shape, [])
        np.testing.assert_allclose(out, np.array(12))
        self.assertEqual(x.grad.shape, [2, 2])

2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635

# Use to test API whose zero-dim input tensors don't have grad and not need to test backward in OpTest.
class TestNoBackwardAPI(unittest.TestCase):
    def setUp(self):
        self.shape = [
            paddle.full([], 2, 'int32'),
            paddle.full([], 3, 'int32'),
            paddle.full([], 4, 'int32'),
        ]

    def test_slice(self):
        starts = [paddle.full([], 1, 'int32'), paddle.full([], 1, 'int32')]
        ends = [paddle.full([], 3, 'int32'), paddle.full([], 3, 'int32')]
        x = paddle.rand([5, 3, 3])
        out = paddle.slice(x, [1, 2], starts, ends)
        self.assertEqual(out.shape, [5, 2, 2])

    def test_strided_slice(self):
        starts = [paddle.full([], 0, 'int32'), paddle.full([], 0, 'int32')]
        ends = [paddle.full([], 4, 'int32'), paddle.full([], 4, 'int32')]
        strides = [paddle.full([], 2, 'int32'), paddle.full([], 2, 'int32')]
        x = paddle.rand([5, 5, 5])
        out = paddle.strided_slice(x, [1, 2], starts, ends, strides)
        self.assertEqual(out.shape, [5, 2, 2])

    def test_linspace(self):
        start = paddle.full([], 1.0)
        stop = paddle.full([], 5.0)
        num = paddle.full([], 5, 'int32')
        out = paddle.linspace(start, stop, num)
        np.testing.assert_array_equal(out.numpy(), [1.0, 2.0, 3.0, 4.0, 5.0])

    def test_arange(self):
        start = paddle.full([], 1.0)
        stop = paddle.full([], 6.0)
        step = paddle.full([], 1.0)
        out = paddle.arange(start, stop, step)
        np.testing.assert_array_equal(out.numpy(), [1.0, 2.0, 3.0, 4.0, 5.0])

    def test_normal(self):
        mean = paddle.full([], 0.0)
        std = paddle.full([], 0.0)
        out = paddle.normal(mean, std)
        self.assertEqual(out.shape, [])

        out = paddle.normal(0.0, 1.0, [])
        self.assertEqual(out.shape, [])

        out = paddle.normal(0.0, 1.0, self.shape)
        self.assertEqual(out.shape, [2, 3, 4])

    def test_rand(self):
        out = paddle.rand([])
        self.assertEqual(out.shape, [])

        out = paddle.rand(self.shape)
        self.assertEqual(out.shape, [2, 3, 4])

    def test_randn(self):
        out = paddle.randn([])
        self.assertEqual(out.shape, [])

        out = paddle.randn(self.shape)
        self.assertEqual(out.shape, [2, 3, 4])

    def test_randint_and_randint_like(self):
        out = paddle.randint(-10, 10, [])
        self.assertEqual(out.shape, [])

        out = paddle.randint_like(out, -10, 10)
        self.assertEqual(out.shape, [])

        out = paddle.randint(-10, 10, self.shape)
        self.assertEqual(out.shape, [2, 3, 4])

    def test_standard_normal(self):
        out = paddle.standard_normal([])
        self.assertEqual(out.shape, [])

        out = paddle.standard_normal(self.shape)
        self.assertEqual(out.shape, [2, 3, 4])

    def test_uniform(self):
        out = paddle.uniform([])
        self.assertEqual(out.shape, [])

        out = paddle.uniform(self.shape)
        self.assertEqual(out.shape, [2, 3, 4])

    def test_empty_and_empty_like(self):
        out = paddle.empty([])
        self.assertEqual(out.shape, [])

        out = paddle.empty_like(out)
        self.assertEqual(out.shape, [])

        out = paddle.empty(self.shape)
        self.assertEqual(out.shape, [2, 3, 4])

    def test_full_and_full_like(self):
        out = paddle.full([], 0.5)
        self.assertEqual(out.shape, [])

        out = paddle.full_like(out, 0.5)
        self.assertEqual(out.shape, [])

        out = paddle.full(self.shape, 0.5)
        self.assertEqual(out.shape, [2, 3, 4])

    def test_ones_and_ones_like(self):
        out = paddle.ones([])
        self.assertEqual(out.shape, [])

        out = paddle.ones_like(out)
        self.assertEqual(out.shape, [])

        out = paddle.ones(self.shape)
        self.assertEqual(out.shape, [2, 3, 4])

    def test_zeros_and_zeros_like(self):
        out = paddle.zeros([])
        self.assertEqual(out.shape, [])

        out = paddle.zeros_like(out)
        self.assertEqual(out.shape, [])

        out = paddle.zeros(self.shape)
        self.assertEqual(out.shape, [2, 3, 4])

2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653
    def test_embedding(self):
        ids = paddle.full(shape=[], fill_value=1, dtype='int64')
        w0 = paddle.arange(3, 9).reshape((3, 2)).astype(paddle.float32)
        w = paddle.to_tensor(w0, stop_gradient=False)
        emb = paddle.nn.functional.embedding(
            x=ids, weight=w, sparse=True, name="embedding"
        )
        self.assertEqual(emb.shape, [2])
        res = [5.0, 6.0]
        for i in range(len(res)):
            self.assertEqual(emb.numpy()[i], res[i])

    def test_one_hot_label(self):
        label = paddle.full(shape=[], fill_value=2, dtype='int64')
        one_hot_label = paddle.nn.functional.one_hot(label, num_classes=4)
        self.assertEqual(one_hot_label.shape, [4])
        self.assertEqual(one_hot_label.numpy()[2], 1)

2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691
    def test_unique_consecutive(self):
        x = paddle.rand([])
        y, inverse, counts = paddle.unique_consecutive(
            x,
            return_inverse=True,
            return_counts=True,
        )

        self.assertEqual(y, x)
        self.assertEqual(inverse, 0)
        self.assertEqual(counts, 1)
        self.assertEqual(y.shape, [1])
        self.assertEqual(inverse.shape, [1])
        self.assertEqual(counts.shape, [1])

    def test_unique(self):
        x = paddle.rand([])
        y, index, inverse, counts = paddle.unique(
            x,
            return_index=True,
            return_inverse=True,
            return_counts=True,
        )

        self.assertEqual(y, x)
        self.assertEqual(index, 0)
        self.assertEqual(inverse, 0)
        self.assertEqual(counts, 1)
        self.assertEqual(y.shape, [1])
        self.assertEqual(index.shape, [1])
        self.assertEqual(inverse.shape, [1])
        self.assertEqual(counts.shape, [1])

    def test_matrix_rank(self):
        x = paddle.eye(10)
        x.stop_gradient = False
        out = paddle.linalg.matrix_rank(x)

2692
        self.assertEqual(out.shape, [])
2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717
        np.testing.assert_equal(out, np.array(10))

        c = paddle.ones(shape=[3, 4, 5])
        c.stop_gradient = False
        out_c = paddle.linalg.matrix_rank(c)
        self.assertEqual(out_c.shape, [3])
        np.testing.assert_equal(out_c, np.array([1, 1, 1]))

        # 2D, tol->float : OUTPUT 0D
        x_tol = paddle.eye(10)
        x_tol.stop_gradient = False
        out_tol = paddle.linalg.matrix_rank(x_tol, tol=0.1)
        self.assertEqual(out_tol.shape, [])

        # 3D, tol->float : OUTPUT 1D
        c_tol = paddle.ones(shape=[3, 4, 5])
        c_tol.stop_gradient = False
        out_c_tol = paddle.linalg.matrix_rank(c_tol, tol=0.1)
        self.assertEqual(out_c_tol.shape, [3])

        tol_2 = paddle.randn([2])
        # 2D, tol->Tensor[1,2] : OUTPUT 1D
        d = paddle.eye(10)
        out_d = paddle.linalg.matrix_rank(d, tol=tol_2)
        self.assertEqual(out_d.shape, [2])
2718

2719 2720 2721

if __name__ == "__main__":
    unittest.main()