Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
d4d3d7ed
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
d4d3d7ed
编写于
11月 15, 2022
作者:
zhouweiwei2014
提交者:
GitHub
11月 15, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[Zero-Dim] support input 0D Tensor for xpu kernel, test=kunlun (#47849)
上级
8a339d24
变更
13
隐藏空白更改
内联
并排
Showing
13 changed file
with
538 addition
and
43 deletion
+538
-43
paddle/phi/kernels/xpu/activation_grad_kernel.cc
paddle/phi/kernels/xpu/activation_grad_kernel.cc
+22
-24
paddle/phi/kernels/xpu/activation_kernel.cc
paddle/phi/kernels/xpu/activation_kernel.cc
+7
-2
paddle/phi/kernels/xpu/elementwise.h
paddle/phi/kernels/xpu/elementwise.h
+20
-0
paddle/phi/kernels/xpu/reduce_max_grad_kernel.cc
paddle/phi/kernels/xpu/reduce_max_grad_kernel.cc
+8
-0
paddle/phi/kernels/xpu/reduce_mean_grad_kernel.cc
paddle/phi/kernels/xpu/reduce_mean_grad_kernel.cc
+10
-8
paddle/phi/kernels/xpu/reduce_sum_grad_kernel.cc
paddle/phi/kernels/xpu/reduce_sum_grad_kernel.cc
+8
-0
paddle/phi/kernels/xpu/where_kernel.cc
paddle/phi/kernels/xpu/where_kernel.cc
+12
-9
python/paddle/fluid/tests/unittests/xpu/test_activation_op_xpu.py
...addle/fluid/tests/unittests/xpu/test_activation_op_xpu.py
+28
-0
python/paddle/fluid/tests/unittests/xpu/test_elementwise_add_op_xpu.py
.../fluid/tests/unittests/xpu/test_elementwise_add_op_xpu.py
+18
-0
python/paddle/fluid/tests/unittests/xpu/test_elementwise_div_op_xpu.py
.../fluid/tests/unittests/xpu/test_elementwise_div_op_xpu.py
+16
-0
python/paddle/fluid/tests/unittests/xpu/test_elementwise_mul_op_xpu.py
.../fluid/tests/unittests/xpu/test_elementwise_mul_op_xpu.py
+24
-0
python/paddle/fluid/tests/unittests/xpu/test_elementwise_sub_op_xpu.py
.../fluid/tests/unittests/xpu/test_elementwise_sub_op_xpu.py
+24
-0
python/paddle/fluid/tests/unittests/xpu/test_zero_dim_tensor_xpu.py
...dle/fluid/tests/unittests/xpu/test_zero_dim_tensor_xpu.py
+341
-0
未找到文件。
paddle/phi/kernels/xpu/activation_grad_kernel.cc
浏览文件 @
d4d3d7ed
...
...
@@ -169,39 +169,37 @@ struct XPULogGradFunctor : public funcs::BaseActivationFunctor<T> {
const
DenseTensor
*
dOut
,
DenseTensor
*
dX
)
const
{
const
T
*
x_data
=
nullptr
;
const
T
*
y_grad
=
nullptr
;
const
T
*
dout_data
=
nullptr
;
if
(
x
!=
nullptr
)
x_data
=
x
->
data
<
T
>
();
if
(
dOut
!=
nullptr
)
y_grad
=
dOut
->
data
<
T
>
();
T
*
x_grad
=
dX
->
data
<
T
>
();
const
auto
x_dims
=
x
->
dims
();
auto
xshape
=
vectorize
<
int
>
(
x_dims
);
int
len
=
x
->
dims
()[
x_dims
.
size
()
-
1
];
std
::
vector
<
int
>
yshape
(
1
,
len
);
xpu
::
ctx_guard
RAII_GUARD
(
dev_ctx
.
x_context
());
T
*
y_data
=
RAII_GUARD
.
alloc_l3_or_gm
<
T
>
(
len
);
PADDLE_ENFORCE_XDNN_NOT_NULL
(
y_data
);
T
*
tmp_grad
=
RAII_GUARD
.
alloc_l3_or_gm
<
T
>
(
x
->
numel
());
PADDLE_ENFORCE_XDNN_NOT_NULL
(
tmp_grad
);
int
r
=
xpu
::
constant
<
T
>
(
dev_ctx
.
x_context
(),
y_data
,
len
,
static_cast
<
T
>
(
1.0
));
if
(
dOut
!=
nullptr
)
dout_data
=
dOut
->
data
<
T
>
();
T
*
dx_data
=
dev_ctx
.
template
Alloc
<
T
>(
dX
);
int
r
=
xpu
::
constant
<
T
>
(
dev_ctx
.
x_context
(),
dx_data
,
x
->
numel
(),
static_cast
<
T
>
(
1.0
));
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"constant"
);
auto
x_dims
=
vectorize
<
int
>
(
x
->
dims
());
// use [1] to replace [], because xpu not support []
if
(
x_dims
.
size
()
==
0
)
{
x_dims
=
std
::
vector
<
int
>
({
1
});
}
// dx.device(d) = dout * (static_cast<T>(1) / x);
r
=
xpu
::
broadcast_div
(
dev_ctx
.
x_context
(),
reinterpret_cast
<
const
float
*>
(
y
_data
),
reinterpret_cast
<
const
float
*>
(
dx
_data
),
reinterpret_cast
<
const
float
*>
(
x_data
),
reinterpret_cast
<
float
*>
(
tmp_grad
),
yshape
,
x
shape
);
reinterpret_cast
<
float
*>
(
dx_data
),
x_dims
,
x
_dims
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"broadcast_div"
);
r
=
xpu
::
broadcast_mul
(
dev_ctx
.
x_context
(),
reinterpret_cast
<
const
float
*>
(
y_grad
),
reinterpret_cast
<
const
float
*>
(
tmp_grad
),
reinterpret_cast
<
float
*>
(
x_grad
),
x
shape
,
x
shape
);
reinterpret_cast
<
const
float
*>
(
dx_data
),
reinterpret_cast
<
const
float
*>
(
dout_data
),
reinterpret_cast
<
float
*>
(
dx_data
),
x
_dims
,
x
_dims
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"broadcast_mul"
);
}
};
...
...
paddle/phi/kernels/xpu/activation_kernel.cc
浏览文件 @
d4d3d7ed
...
...
@@ -213,9 +213,14 @@ void PowKernel(const Context& dev_ctx,
static_cast
<
void
*>
(
&
pow_factor
),
sizeof
(
T
));
// broadcast_pow(Context* ctx, const T* x, const T* y, T* z, const
// std::vector<int>& xshape, const std::vector<int>& yshape);
auto
x_dims
=
vectorize
<
int
>
(
x
.
dims
());
// use [1] to replace [], because xpu not support []
if
(
x_dims
.
size
()
==
0
)
{
x_dims
=
std
::
vector
<
int
>
({
1
});
}
// broadcast_pow(Context* ctx, const T* x, const T* y, T* z, const
// std::vector<int>& xshape, const std::vector<int>& yshape);
int
r
=
xpu
::
broadcast_pow
(
xpu_context
,
x_data
,
factor_data
,
y_data
,
x_dims
,
{
1
});
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"broadcast_pow"
);
...
...
paddle/phi/kernels/xpu/elementwise.h
浏览文件 @
d4d3d7ed
...
...
@@ -84,6 +84,17 @@ void XPUElementwise(const XPUContext& dev_ctx,
int
ret
=
xpu
::
SUCCESS
;
// For [2, 3] + [] --> [2, 3] + [1, 1]
// For [] + [2, 3] --> [1, 1] + [2, 3]
// For [] + [], Use [1] + [1] to replace [], because xpu not support []
if
(
x_dims_vec
.
size
()
==
0
)
{
x_dims_vec
=
std
::
vector
<
int
>
({
1
});
}
if
(
y_dims_vec
.
size
()
==
0
)
{
y_dims_vec
=
std
::
vector
<
int
>
({
1
});
}
ret
=
func
(
dev_ctx
.
x_context
(),
reinterpret_cast
<
const
XPUType
*>
(
x_data
),
reinterpret_cast
<
const
XPUType
*>
(
y_data
),
...
...
@@ -165,6 +176,15 @@ void XPUElementwiseGrad(const XPUContext& dev_ctx,
dy_data
=
dev_ctx
.
template
Alloc
<
T
>(
dy
);
}
// use [1] to replace [], because xpu not support []
if
(
x_dims_vec
.
size
()
==
0
)
{
x_dims_vec
=
std
::
vector
<
int
>
({
1
});
}
if
(
y_dims_vec
.
size
()
==
0
)
{
y_dims_vec
=
std
::
vector
<
int
>
({
1
});
}
int
ret
=
func
(
dev_ctx
.
x_context
(),
reinterpret_cast
<
const
XPUType
*>
(
x_data
),
reinterpret_cast
<
const
XPUType
*>
(
y_data
),
...
...
paddle/phi/kernels/xpu/reduce_max_grad_kernel.cc
浏览文件 @
d4d3d7ed
...
...
@@ -75,6 +75,14 @@ void ReduceMaxGradKernel(const Context& dev_ctx,
XPU_SUCCESS
,
errors
::
ResourceExhausted
(
"XPU has no enough memory"
));
// use [1] to replace [], because xpu not support []
if
(
xdims
.
size
()
==
0
)
{
xdims
=
std
::
vector
<
int
>
({
1
});
}
if
(
ydims
.
size
()
==
0
)
{
ydims
=
std
::
vector
<
int
>
({
1
});
}
// step 1. brocast out and out_grad
int
r
=
xpu
::
broadcast
<
T
>
(
dev_ctx
.
x_context
(),
out_data
,
brocast1
,
ydims
,
xdims
);
...
...
paddle/phi/kernels/xpu/reduce_mean_grad_kernel.cc
浏览文件 @
d4d3d7ed
...
...
@@ -38,14 +38,8 @@ void ReduceMeanGradKernel(const Context& dev_ctx,
auto
reduce_dims
=
dims_arr
.
GetData
();
std
::
vector
<
int
>
xdims
;
for
(
int
i
=
0
;
i
<
x
.
dims
().
size
();
i
++
)
{
xdims
.
push_back
(
x
.
dims
()[
i
]);
}
std
::
vector
<
int
>
ydims
;
for
(
int
i
=
0
;
i
<
out_grad
.
dims
().
size
();
i
++
)
{
ydims
.
push_back
(
out_grad
.
dims
()[
i
]);
}
std
::
vector
<
int
>
xdims
=
vectorize
<
int
>
(
x
.
dims
());
std
::
vector
<
int
>
ydims
=
vectorize
<
int
>
(
out_grad
.
dims
());
int
reduce_numel
=
1
;
if
(
reduce_all
)
{
...
...
@@ -74,6 +68,14 @@ void ReduceMeanGradKernel(const Context& dev_ctx,
dev_ctx
.
x_context
(),
x_data
,
x
.
numel
(),
static_cast
<
XPUType
>
(
val
));
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"constant"
);
// use [1] to replace [], because xpu not support []
if
(
xdims
.
size
()
==
0
)
{
xdims
=
std
::
vector
<
int
>
({
1
});
}
if
(
ydims
.
size
()
==
0
)
{
ydims
=
std
::
vector
<
int
>
({
1
});
}
r
=
xpu
::
broadcast_mul
(
dev_ctx
.
x_context
(),
x_data
,
dy_data
,
x_data
,
xdims
,
ydims
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"broadcast_mul"
);
...
...
paddle/phi/kernels/xpu/reduce_sum_grad_kernel.cc
浏览文件 @
d4d3d7ed
...
...
@@ -57,6 +57,14 @@ void ReduceSumGradKernel(const Context& dev_ctx,
}
}
// use [1] to replace [], because xpu not support []
if
(
xdims
.
size
()
==
0
)
{
xdims
=
std
::
vector
<
int
>
({
1
});
}
if
(
ydims
.
size
()
==
0
)
{
ydims
=
std
::
vector
<
int
>
({
1
});
}
int
r
=
xpu
::
broadcast
<
XPUType
>
(
dev_ctx
.
x_context
(),
out_data
,
x_grad_data
,
ydims
,
xdims
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"broadcast"
);
...
...
paddle/phi/kernels/xpu/where_kernel.cc
浏览文件 @
d4d3d7ed
...
...
@@ -31,15 +31,18 @@ void WhereKernel(const Context& ctx,
T
*
out_data
=
ctx
.
template
Alloc
<
T
>(
out
);
auto
cond_dims
=
phi
::
vectorize
<
int
>
(
condition
.
dims
());
auto
input_dims
=
phi
::
vectorize
<
int
>
(
x
.
dims
());
int
ret
=
xpu
::
select
(
ctx
.
x_context
(),
cond_data
,
x_data
,
y_data
,
out_data
,
cond_dims
,
input_dims
);
auto
x_dims
=
phi
::
vectorize
<
int
>
(
x
.
dims
());
// use [1] to replace [], because xpu not support []
if
(
cond_dims
.
size
()
==
0
)
{
cond_dims
=
std
::
vector
<
int
>
({
1
});
}
if
(
x_dims
.
size
()
==
0
)
{
x_dims
=
std
::
vector
<
int
>
({
1
});
}
int
ret
=
xpu
::
select
(
ctx
.
x_context
(),
cond_data
,
x_data
,
y_data
,
out_data
,
cond_dims
,
x_dims
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
ret
,
"select"
);
}
...
...
python/paddle/fluid/tests/unittests/xpu/test_activation_op_xpu.py
浏览文件 @
d4d3d7ed
...
...
@@ -75,6 +75,10 @@ class XPUTestExpOP(XPUOpTestWrapper):
self
.
inputs
=
{
'X'
:
OpTest
.
np_dtype_to_fluid_dtype
(
x
)}
self
.
outputs
=
{
'Out'
:
out
}
class
XPUTestExp_ZeroDIm
(
TestActivationOPBase
):
def
set_shape
(
self
):
self
.
shape
=
[]
support_types
=
get_xpu_op_support_types
(
'exp'
)
for
stype
in
support_types
:
...
...
@@ -100,6 +104,10 @@ class XPUTestSigmoidOP(XPUOpTestWrapper):
def
init_config
(
self
):
self
.
x
=
np
.
random
.
uniform
(
-
1
,
1
,
[
11
,
17
]).
astype
(
self
.
dtype
)
class
XPUTestSigmoid_ZeroDIm
(
XPUTestSigmoid
):
def
init_config
(
self
):
self
.
x
=
np
.
random
.
uniform
(
-
2
,
2
,
[]).
astype
(
self
.
dtype
)
class
XPUTestSigmoid2
(
XPUTestSigmoid
):
def
init_config
(
self
):
self
.
x
=
np
.
random
.
uniform
(
-
2
,
2
,
[
100
]).
astype
(
self
.
dtype
)
...
...
@@ -310,6 +318,10 @@ class XPUTestLogOP(XPUOpTestWrapper):
self
.
inputs
=
{
'X'
:
OpTest
.
np_dtype_to_fluid_dtype
(
x
)}
self
.
outputs
=
{
'Out'
:
out
}
class
TestLogCase_ZeroDim
(
XPUTestLog
):
def
set_shape
(
self
):
self
.
shape
=
[]
class
TestLogCase1
(
XPUTestLog
):
def
set_shape
(
self
):
self
.
shape
=
[
1
,
11
,
17
]
...
...
@@ -351,6 +363,10 @@ class XPUTestSquareOP(XPUOpTestWrapper):
def
init_config
(
self
):
self
.
x
=
np
.
random
.
uniform
(
-
1
,
1
,
[
11
,
17
]).
astype
(
self
.
dtype
)
class
XPUTestSquare_ZeroDim
(
XPUTestSquare
):
def
init_config
(
self
):
self
.
x
=
np
.
random
.
uniform
(
-
2
,
2
,
[]).
astype
(
self
.
dtype
)
class
XPUTestSquare2
(
XPUTestSquare
):
def
init_config
(
self
):
self
.
x
=
np
.
random
.
uniform
(
-
2
,
2
,
[
100
]).
astype
(
self
.
dtype
)
...
...
@@ -517,6 +533,10 @@ class XPUTestSoftPlusOP(XPUOpTestWrapper):
def
init_config
(
self
):
self
.
x
=
np
.
random
.
uniform
(
-
1
,
1
,
[
11
,
17
]).
astype
(
self
.
dtype
)
class
XPUTestSoftPlus_ZeroDim
(
XPUTestSoftPlusBase
):
def
init_config
(
self
):
self
.
x
=
np
.
random
.
uniform
(
-
2
,
2
,
[]).
astype
(
self
.
dtype
)
class
XPUTestSoftPlus2
(
XPUTestSoftPlusBase
):
def
init_config
(
self
):
self
.
x
=
np
.
random
.
uniform
(
-
2
,
2
,
[
1024
,
8
]).
astype
(
self
.
dtype
)
...
...
@@ -976,6 +996,10 @@ class XPUTestSwishOP(XPUOpTestWrapper):
def
init_config
(
self
):
self
.
x
=
np
.
random
.
uniform
(
-
1
,
1
,
[
11
,
17
]).
astype
(
self
.
dtype
)
class
XPUTestSwish_ZeroDim
(
XPUTestSwishBase
):
def
init_config
(
self
):
self
.
x
=
np
.
random
.
uniform
(
-
2
,
2
,
[]).
astype
(
self
.
dtype
)
class
XPUTestSwish2
(
XPUTestSwishBase
):
def
init_config
(
self
):
self
.
x
=
np
.
random
.
uniform
(
-
2
,
2
,
[
1024
,
8
]).
astype
(
self
.
dtype
)
...
...
@@ -1057,6 +1081,10 @@ class XPUTestMishOP(XPUOpTestWrapper):
def
init_config
(
self
):
self
.
x
=
np
.
random
.
uniform
(
-
1
,
1
,
[
11
,
17
]).
astype
(
self
.
dtype
)
class
XPUTestMish_ZeroDim
(
XPUTestMishBase
):
def
init_config
(
self
):
self
.
x
=
np
.
random
.
uniform
(
-
2
,
2
,
[]).
astype
(
self
.
dtype
)
class
XPUTestMish2
(
XPUTestMishBase
):
def
init_config
(
self
):
self
.
x
=
np
.
random
.
uniform
(
-
2
,
2
,
[
1024
,
8
]).
astype
(
self
.
dtype
)
...
...
python/paddle/fluid/tests/unittests/xpu/test_elementwise_add_op_xpu.py
浏览文件 @
d4d3d7ed
...
...
@@ -101,6 +101,24 @@ class XPUTestElementwiseAddOp(XPUOpTestWrapper):
def
init_max_relative_error
(
self
):
self
.
max_relative_error
=
0.006
class
TestElementwiseAddOp_ZeroDim1
(
TestElementwiseAddOp
):
def
init_input_output
(
self
):
self
.
x
=
np
.
random
.
uniform
(
-
1
,
1
,
[]).
astype
(
self
.
dtype
)
self
.
y
=
np
.
random
.
uniform
(
-
1
,
1
,
[]).
astype
(
self
.
dtype
)
self
.
out
=
self
.
x
+
self
.
y
class
TestElementwiseAddOp_ZeroDim2
(
TestElementwiseAddOp
):
def
init_input_output
(
self
):
self
.
x
=
np
.
random
.
uniform
(
-
1
,
1
,
[]).
astype
(
self
.
dtype
)
self
.
y
=
np
.
random
.
uniform
(
-
1
,
1
,
[
13
,
17
]).
astype
(
self
.
dtype
)
self
.
out
=
self
.
x
+
self
.
y
class
TestElementwiseAddOp_ZeroDim3
(
TestElementwiseAddOp
):
def
init_input_output
(
self
):
self
.
x
=
np
.
random
.
uniform
(
-
1
,
1
,
[
13
,
17
]).
astype
(
self
.
dtype
)
self
.
y
=
np
.
random
.
uniform
(
-
1
,
1
,
[]).
astype
(
self
.
dtype
)
self
.
out
=
self
.
x
+
self
.
y
@
skip_check_grad_ci
(
reason
=
"[skip shape check] Use y_shape(1) to test broadcast."
)
...
...
python/paddle/fluid/tests/unittests/xpu/test_elementwise_div_op_xpu.py
浏览文件 @
d4d3d7ed
...
...
@@ -93,6 +93,22 @@ class XPUTestElementwiseDivOp(XPUOpTestWrapper):
def
init_dtype
(
self
):
pass
class
TestElementwiseDivOp_ZeroDim1
(
ElementwiseDivOp
):
def
init_input_output
(
self
):
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
-
1
,
1
,
[]).
astype
(
self
.
dtype
),
'Y'
:
np
.
random
.
uniform
(
-
1
,
1
,
[]).
astype
(
self
.
dtype
),
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
]
/
self
.
inputs
[
'Y'
]}
class
TestElementwiseDivOp_ZeroDim2
(
ElementwiseDivOp
):
def
init_input_output
(
self
):
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
-
1
,
1
,
[
13
,
17
]).
astype
(
self
.
dtype
),
'Y'
:
np
.
random
.
uniform
(
-
1
,
1
,
[]).
astype
(
self
.
dtype
),
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
]
/
self
.
inputs
[
'Y'
]}
@
skip_check_grad_ci
(
reason
=
"[skip shape check] Use y_shape(1) to test broadcast."
)
...
...
python/paddle/fluid/tests/unittests/xpu/test_elementwise_mul_op_xpu.py
浏览文件 @
d4d3d7ed
...
...
@@ -103,6 +103,30 @@ class XPUTestElementwiseMulOp(XPUOpTestWrapper):
def
init_axis
(
self
):
pass
class
TestElementwiseMulOp_ZeroDim1
(
ElementwiseMulOp
):
def
init_input_output
(
self
):
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
-
1
,
1
,
[]).
astype
(
self
.
dtype
),
'Y'
:
np
.
random
.
uniform
(
-
1
,
1
,
[]).
astype
(
self
.
dtype
),
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
]
*
self
.
inputs
[
'Y'
]}
class
TestElementwiseMulOp_ZeroDim2
(
ElementwiseMulOp
):
def
init_input_output
(
self
):
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
-
1
,
1
,
[
13
,
17
]).
astype
(
self
.
dtype
),
'Y'
:
np
.
random
.
uniform
(
-
1
,
1
,
[]).
astype
(
self
.
dtype
),
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
]
*
self
.
inputs
[
'Y'
]}
class
TestElementwiseMulOp_ZeroDim3
(
ElementwiseMulOp
):
def
init_input_output
(
self
):
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
-
1
,
1
,
[]).
astype
(
self
.
dtype
),
'Y'
:
np
.
random
.
uniform
(
-
1
,
1
,
[
13
,
17
]).
astype
(
self
.
dtype
),
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
]
*
self
.
inputs
[
'Y'
]}
@
skip_check_grad_ci
(
reason
=
"[skip shape check] Use y_shape(1) to test broadcast."
)
...
...
python/paddle/fluid/tests/unittests/xpu/test_elementwise_sub_op_xpu.py
浏览文件 @
d4d3d7ed
...
...
@@ -80,6 +80,30 @@ class XPUTestElementwiseSubOp(XPUOpTestWrapper):
no_grad_set
=
set
(
'Y'
),
)
class
TestElementwiseSubOp_ZeroDim1
(
TestElementwiseOp
):
def
init_input_output
(
self
):
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
-
1
,
1
,
[]).
astype
(
self
.
dtype
),
'Y'
:
np
.
random
.
uniform
(
-
1
,
1
,
[]).
astype
(
self
.
dtype
),
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
]
-
self
.
inputs
[
'Y'
]}
class
TestElementwiseSubOp_ZeroDim2
(
TestElementwiseOp
):
def
init_input_output
(
self
):
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
-
1
,
1
,
[
13
,
17
]).
astype
(
self
.
dtype
),
'Y'
:
np
.
random
.
uniform
(
-
1
,
1
,
[]).
astype
(
self
.
dtype
),
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
]
-
self
.
inputs
[
'Y'
]}
class
TestElementwiseSubOp_ZeroDim3
(
TestElementwiseOp
):
def
init_input_output
(
self
):
self
.
inputs
=
{
'X'
:
np
.
random
.
uniform
(
-
1
,
1
,
[]).
astype
(
self
.
dtype
),
'Y'
:
np
.
random
.
uniform
(
-
1
,
1
,
[
13
,
17
]).
astype
(
self
.
dtype
),
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
]
-
self
.
inputs
[
'Y'
]}
@
skip_check_grad_ci
(
reason
=
"[skip shape check] Use y_shape(1) to test broadcast."
)
...
...
python/paddle/fluid/tests/unittests/xpu/test_zero_dim_tensor_xpu.py
0 → 100644
浏览文件 @
d4d3d7ed
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
paddle
import
paddle.fluid
as
fluid
import
paddle.nn.functional
as
F
import
numpy
as
np
import
unittest
paddle
.
set_device
(
'xpu'
)
unary_api_list
=
[
paddle
.
nn
.
functional
.
elu
,
paddle
.
nn
.
functional
.
gelu
,
paddle
.
nn
.
functional
.
hardsigmoid
,
paddle
.
nn
.
functional
.
hardswish
,
paddle
.
nn
.
functional
.
leaky_relu
,
paddle
.
nn
.
functional
.
log_sigmoid
,
paddle
.
nn
.
functional
.
relu
,
paddle
.
nn
.
functional
.
relu6
,
paddle
.
nn
.
functional
.
sigmoid
,
paddle
.
nn
.
functional
.
softplus
,
paddle
.
nn
.
functional
.
softshrink
,
paddle
.
nn
.
functional
.
softsign
,
paddle
.
nn
.
functional
.
swish
,
paddle
.
nn
.
functional
.
tanhshrink
,
paddle
.
nn
.
functional
.
thresholded_relu
,
paddle
.
stanh
,
paddle
.
nn
.
functional
.
celu
,
paddle
.
nn
.
functional
.
mish
,
paddle
.
nn
.
functional
.
silu
,
paddle
.
nn
.
functional
.
tanh
,
paddle
.
cosh
,
paddle
.
sinh
,
paddle
.
abs
,
paddle
.
acos
,
paddle
.
asin
,
paddle
.
atan
,
paddle
.
ceil
,
paddle
.
cos
,
paddle
.
exp
,
paddle
.
floor
,
paddle
.
log
,
paddle
.
log1p
,
paddle
.
reciprocal
,
paddle
.
round
,
paddle
.
sin
,
paddle
.
sqrt
,
paddle
.
square
,
paddle
.
tanh
,
paddle
.
acosh
,
paddle
.
asinh
,
paddle
.
atanh
,
paddle
.
expm1
,
paddle
.
log10
,
paddle
.
log2
,
paddle
.
tan
,
]
# Use to test zero-dim in unary API.
class
TestUnaryAPI
(
unittest
.
TestCase
):
def
test
(
self
):
paddle
.
disable_static
()
fluid
.
set_flags
({
"FLAGS_retain_grad_for_all_tensor"
:
True
})
for
api
in
unary_api_list
:
x
=
paddle
.
rand
([])
x
.
stop_gradient
=
False
out
=
api
(
x
)
out
.
backward
()
self
.
assertEqual
(
x
.
shape
,
[])
self
.
assertEqual
(
out
.
shape
,
[])
self
.
assertEqual
(
x
.
grad
.
shape
,
[])
self
.
assertEqual
(
out
.
grad
.
shape
,
[])
paddle
.
enable_static
()
reduce_api_list
=
[
paddle
.
sum
,
paddle
.
mean
,
paddle
.
nansum
,
paddle
.
nanmean
,
paddle
.
min
,
paddle
.
max
,
paddle
.
amin
,
paddle
.
amax
,
paddle
.
prod
,
paddle
.
logsumexp
,
paddle
.
all
,
paddle
.
any
,
]
# Use to test zero-dim of reduce API
class
TestReduceAPI
(
unittest
.
TestCase
):
def
test
(
self
):
paddle
.
disable_static
()
fluid
.
set_flags
({
"FLAGS_retain_grad_for_all_tensor"
:
True
})
for
api
in
reduce_api_list
:
if
api
in
[
paddle
.
all
,
paddle
.
any
]:
x
=
paddle
.
randint
(
0
,
2
,
[]).
astype
(
'bool'
)
out
=
api
(
x
,
None
)
self
.
assertEqual
(
x
.
shape
,
[])
self
.
assertEqual
(
out
.
shape
,
[])
else
:
x
=
paddle
.
rand
([])
x
.
stop_gradient
=
False
out
=
api
(
x
,
None
)
out
.
backward
()
self
.
assertEqual
(
x
.
shape
,
[])
self
.
assertEqual
(
x
.
grad
.
shape
,
[])
self
.
assertEqual
(
out
.
shape
,
[])
self
.
assertEqual
(
out
.
grad
.
shape
,
[])
paddle
.
enable_static
()
binary_api_list
=
[
{
'func'
:
paddle
.
add
,
'cls_method'
:
'__add__'
},
{
'func'
:
paddle
.
subtract
,
'cls_method'
:
'__sub__'
},
{
'func'
:
paddle
.
multiply
,
'cls_method'
:
'__mul__'
},
{
'func'
:
paddle
.
divide
,
'cls_method'
:
'__div__'
},
{
'func'
:
paddle
.
pow
,
'cls_method'
:
'__pow__'
},
]
binary_api_list_without_grad
=
[
{
'func'
:
paddle
.
equal
,
'cls_method'
:
'__eq__'
},
{
'func'
:
paddle
.
not_equal
,
'cls_method'
:
'__ne__'
},
{
'func'
:
paddle
.
greater_equal
,
'cls_method'
:
'__ge__'
},
{
'func'
:
paddle
.
greater_than
,
'cls_method'
:
'__gt__'
},
{
'func'
:
paddle
.
less_equal
,
'cls_method'
:
'__le__'
},
{
'func'
:
paddle
.
less_than
,
'cls_method'
:
'__lt__'
},
{
'func'
:
paddle
.
remainder
,
'cls_method'
:
'__mod__'
},
paddle
.
mod
,
paddle
.
floor_mod
,
paddle
.
logical_and
,
paddle
.
logical_or
,
paddle
.
logical_xor
,
]
binary_int_api_list_without_grad
=
[
paddle
.
bitwise_and
,
paddle
.
bitwise_or
,
paddle
.
bitwise_xor
,
]
# Use to test zero-dim of binary API
class
TestBinaryAPI
(
unittest
.
TestCase
):
def
test
(
self
):
paddle
.
disable_static
()
fluid
.
set_flags
({
"FLAGS_retain_grad_for_all_tensor"
:
True
})
for
api
in
binary_api_list
+
binary_api_list_without_grad
:
# 1) x/y is 0D
x
=
paddle
.
rand
([])
y
=
paddle
.
rand
([])
x
.
stop_gradient
=
False
y
.
stop_gradient
=
False
if
isinstance
(
api
,
dict
):
out
=
api
[
'func'
](
x
,
y
)
out_cls
=
getattr
(
paddle
.
Tensor
,
api
[
'cls_method'
])(
x
,
y
)
np
.
testing
.
assert_array_equal
(
out_cls
.
numpy
(),
out
.
numpy
())
else
:
out
=
api
(
x
,
y
)
self
.
assertEqual
(
out
.
shape
,
[])
if
api
not
in
binary_api_list_without_grad
:
out
.
backward
()
self
.
assertEqual
(
x
.
grad
.
shape
,
[])
self
.
assertEqual
(
y
.
grad
.
shape
,
[])
self
.
assertEqual
(
out
.
grad
.
shape
,
[])
# 2) x is not 0D , y is 0D
x
=
paddle
.
rand
([
2
,
3
,
4
])
y
=
paddle
.
rand
([])
x
.
stop_gradient
=
False
y
.
stop_gradient
=
False
if
isinstance
(
api
,
dict
):
out
=
api
[
'func'
](
x
,
y
)
out_cls
=
getattr
(
paddle
.
Tensor
,
api
[
'cls_method'
])(
x
,
y
)
np
.
testing
.
assert_array_equal
(
out_cls
.
numpy
(),
out
.
numpy
())
else
:
out
=
api
(
x
,
y
)
self
.
assertEqual
(
out
.
shape
,
[
2
,
3
,
4
])
if
api
not
in
binary_api_list_without_grad
:
out
.
backward
()
self
.
assertEqual
(
x
.
grad
.
shape
,
[
2
,
3
,
4
])
self
.
assertEqual
(
y
.
grad
.
shape
,
[])
self
.
assertEqual
(
out
.
grad
.
shape
,
[
2
,
3
,
4
])
# 3) x is 0D , y is not 0D
x
=
paddle
.
rand
([])
y
=
paddle
.
rand
([
2
,
3
,
4
])
x
.
stop_gradient
=
False
y
.
stop_gradient
=
False
if
isinstance
(
api
,
dict
):
out
=
api
[
'func'
](
x
,
y
)
out_cls
=
getattr
(
paddle
.
Tensor
,
api
[
'cls_method'
])(
x
,
y
)
np
.
testing
.
assert_array_equal
(
out_cls
.
numpy
(),
out
.
numpy
())
else
:
out
=
api
(
x
,
y
)
self
.
assertEqual
(
out
.
shape
,
[
2
,
3
,
4
])
if
api
not
in
binary_api_list_without_grad
:
out
.
backward
()
self
.
assertEqual
(
x
.
grad
.
shape
,
[])
self
.
assertEqual
(
y
.
grad
.
shape
,
[
2
,
3
,
4
])
self
.
assertEqual
(
out
.
grad
.
shape
,
[
2
,
3
,
4
])
# 4) x is 0D , y is scalar
x
=
paddle
.
rand
([])
y
=
0.5
x
.
stop_gradient
=
False
if
isinstance
(
api
,
dict
):
out
=
getattr
(
paddle
.
Tensor
,
api
[
'cls_method'
])(
x
,
y
)
self
.
assertEqual
(
out
.
shape
,
[])
for
api
in
binary_int_api_list_without_grad
:
# 1) x/y is 0D
x
=
paddle
.
randint
(
-
10
,
10
,
[])
y
=
paddle
.
randint
(
-
10
,
10
,
[])
out
=
api
(
x
,
y
)
self
.
assertEqual
(
out
.
shape
,
[])
# 2) x is not 0D , y is 0D
x
=
paddle
.
randint
(
-
10
,
10
,
[
3
,
5
])
y
=
paddle
.
randint
(
-
10
,
10
,
[])
out
=
api
(
x
,
y
)
self
.
assertEqual
(
out
.
shape
,
[
3
,
5
])
# 3) x is 0D , y is not 0D
x
=
paddle
.
randint
(
-
10
,
10
,
[])
y
=
paddle
.
randint
(
-
10
,
10
,
[
3
,
5
])
out
=
api
(
x
,
y
)
self
.
assertEqual
(
out
.
shape
,
[
3
,
5
])
paddle
.
enable_static
()
# Use to test zero-dim of Sundry API, which is simple and do
# not have backward, or is not need to test backward in OpTest.
class
TestSundryAPI
(
unittest
.
TestCase
):
def
setUp
(
self
):
paddle
.
disable_static
()
self
.
x
=
paddle
.
rand
([])
def
test_linear
(
self
):
x
=
paddle
.
randn
([
3
,
2
])
w
=
paddle
.
full
(
shape
=
[
2
,
4
],
fill_value
=
0.5
)
b
=
paddle
.
zeros
([])
np
.
testing
.
assert_array_equal
(
F
.
linear
(
x
,
w
,
b
).
numpy
(),
F
.
linear
(
x
,
w
).
numpy
()
)
def
test_is_floating_point
(
self
):
self
.
assertTrue
(
paddle
.
is_floating_point
(
self
.
x
))
def
test_is_integer
(
self
):
x
=
paddle
.
randint
(
0
,
10
,
[])
self
.
assertTrue
(
paddle
.
is_integer
(
x
))
def
test_is_tensor
(
self
):
self
.
assertTrue
(
paddle
.
is_tensor
(
self
.
x
))
def
test_is_empty
(
self
):
x
=
paddle
.
rand
([
3
,
0
,
5
])
self
.
assertTrue
(
paddle
.
is_empty
(
x
))
def
test_isfinite
(
self
):
out
=
paddle
.
isfinite
(
self
.
x
)
np
.
testing
.
assert_array_equal
(
out
.
numpy
(),
np
.
array
(
True
))
def
test_isinf
(
self
):
x
=
paddle
.
to_tensor
(
np
.
array
(
float
(
'-inf'
)))
out
=
paddle
.
isinf
(
x
)
np
.
testing
.
assert_array_equal
(
out
.
numpy
(),
np
.
array
(
True
))
def
test_isnan
(
self
):
x
=
paddle
.
to_tensor
(
np
.
array
(
float
(
'nan'
)))
out
=
paddle
.
isnan
(
x
)
np
.
testing
.
assert_array_equal
(
out
.
numpy
(),
np
.
array
(
True
))
def
test_isclose
(
self
):
out
=
paddle
.
isclose
(
self
.
x
,
self
.
x
)
np
.
testing
.
assert_array_equal
(
out
.
numpy
(),
np
.
array
(
True
))
def
test_clone
(
self
):
out
=
paddle
.
clone
(
self
.
x
)
np
.
testing
.
assert_array_equal
(
out
.
numpy
(),
self
.
x
.
numpy
())
def
test_assign
(
self
):
out
=
paddle
.
assign
(
self
.
x
)
np
.
testing
.
assert_array_equal
(
out
.
numpy
(),
self
.
x
.
numpy
())
def
test_item
(
self
):
x
=
paddle
.
full
([],
0.5
)
self
.
assertEqual
(
x
.
item
(),
0.5
)
def
test_tolist
(
self
):
x
=
paddle
.
full
([],
0.5
)
self
.
assertEqual
(
x
.
tolist
(),
0.5
)
def
test_numpy
(
self
):
x
=
paddle
.
full
([],
0.5
)
np
.
testing
.
assert_array_equal
(
x
.
numpy
(),
np
.
array
(
0.5
))
def
test_numel
(
self
):
out
=
paddle
.
numel
(
self
.
x
)
self
.
assertEqual
(
out
.
shape
,
[])
np
.
testing
.
assert_array_equal
(
out
.
numpy
(),
np
.
array
(
1
))
def
test_rank
(
self
):
out
=
paddle
.
rank
(
self
.
x
)
self
.
assertEqual
(
out
.
shape
,
[])
np
.
testing
.
assert_array_equal
(
out
.
numpy
(),
np
.
array
(
0
))
def
test_shape
(
self
):
out
=
paddle
.
shape
(
self
.
x
)
self
.
assertEqual
(
out
.
shape
,
[
0
])
np
.
testing
.
assert_array_equal
(
out
.
numpy
(),
np
.
array
([]))
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录