test_zero_dim_tensor_xpu.py 49.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16 17 18
import unittest

import numpy as np

19 20 21 22 23 24 25 26 27 28
import paddle
import paddle.nn.functional as F

paddle.set_device('xpu')

unary_api_list = [
    paddle.nn.functional.elu,
    paddle.nn.functional.gelu,
    paddle.nn.functional.hardsigmoid,
    paddle.nn.functional.hardswish,
29 30
    paddle.nn.functional.hardshrink,
    paddle.nn.functional.hardtanh,
31 32 33 34 35 36 37 38 39 40 41 42 43
    paddle.nn.functional.leaky_relu,
    paddle.nn.functional.log_sigmoid,
    paddle.nn.functional.relu,
    paddle.nn.functional.relu6,
    paddle.nn.functional.sigmoid,
    paddle.nn.functional.softplus,
    paddle.nn.functional.softshrink,
    paddle.nn.functional.softsign,
    paddle.nn.functional.swish,
    paddle.nn.functional.tanhshrink,
    paddle.nn.functional.thresholded_relu,
    paddle.stanh,
    paddle.nn.functional.celu,
44
    paddle.nn.functional.selu,
45 46 47
    paddle.nn.functional.mish,
    paddle.nn.functional.silu,
    paddle.nn.functional.tanh,
48
    paddle.nn.functional.dropout,
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
    paddle.cosh,
    paddle.sinh,
    paddle.abs,
    paddle.acos,
    paddle.asin,
    paddle.atan,
    paddle.ceil,
    paddle.cos,
    paddle.exp,
    paddle.floor,
    paddle.log,
    paddle.log1p,
    paddle.reciprocal,
    paddle.round,
    paddle.sin,
    paddle.sqrt,
    paddle.square,
    paddle.tanh,
    paddle.acosh,
    paddle.asinh,
    paddle.atanh,
    paddle.expm1,
    paddle.log10,
    paddle.log2,
    paddle.tan,
74 75 76 77 78 79 80 81 82 83 84 85 86
    paddle.erf,
    paddle.erfinv,
    paddle.rsqrt,
    paddle.sign,
    paddle.deg2rad,
    paddle.rad2deg,
    paddle.neg,
    paddle.logit,
    paddle.trunc,
    paddle.digamma,
    paddle.lgamma,
    paddle.poisson,
    paddle.bernoulli,
87 88
    paddle.nn.functional.softmax,
    paddle.nn.functional.log_softmax,
89 90 91 92 93
]

inplace_api_list = [
    paddle.nn.functional.relu_,
    paddle.nn.functional.tanh_,
94 95 96 97 98
]


# Use to test zero-dim in unary API.
class TestUnaryAPI(unittest.TestCase):
99
    def test_dygraph_unary(self):
100 101 102 103 104
        paddle.disable_static()
        for api in unary_api_list:
            x = paddle.rand([])
            x.stop_gradient = False
            out = api(x)
105
            out.retain_grads()
106 107 108 109
            out.backward()

            self.assertEqual(x.shape, [])
            self.assertEqual(out.shape, [])
110 111 112 113 114 115 116 117 118
            if x.grad is not None:
                self.assertEqual(x.grad.shape, [])
                self.assertEqual(out.grad.shape, [])

        for api in inplace_api_list:
            x = paddle.rand([])
            out = api(x)
            self.assertEqual(x.shape, [])
            self.assertEqual(out.shape, [])
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140

        paddle.enable_static()


reduce_api_list = [
    paddle.sum,
    paddle.mean,
    paddle.nansum,
    paddle.nanmean,
    paddle.min,
    paddle.max,
    paddle.amin,
    paddle.amax,
    paddle.prod,
    paddle.logsumexp,
    paddle.all,
    paddle.any,
]


# Use to test zero-dim of reduce API
class TestReduceAPI(unittest.TestCase):
141
    def test_dygraph_reduce(self):
142 143
        paddle.disable_static()
        for api in reduce_api_list:
144
            # 1) x is 0D
145 146 147 148
            if api in [paddle.all, paddle.any]:
                x = paddle.randint(0, 2, []).astype('bool')
            else:
                x = paddle.rand([])
149 150
            x.stop_gradient = False
            out = api(x, None)
151
            out.retain_grads()
152

153
            out.backward()
154

155 156
            self.assertEqual(x.shape, [])
            self.assertEqual(out.shape, [])
157
            np.testing.assert_allclose(out.numpy(), x.numpy())
158
            if x.grad is not None:
159 160
                self.assertEqual(x.grad.shape, [])
                self.assertEqual(out.grad.shape, [])
161 162
                np.testing.assert_allclose(x.grad.numpy(), np.array(1.0))
                np.testing.assert_allclose(out.grad.numpy(), np.array(1.0))
163

164 165 166 167 168 169 170 171 172 173 174 175 176 177
            out1 = api(x, 0)
            self.assertEqual(out1.shape, [])
            self.assertEqual(out1, out)
            out1.backward()

            out2 = api(x, -1)
            self.assertEqual(out2.shape, [])
            self.assertEqual(out2, out)
            out2.backward()

            if x.grad is not None:
                self.assertEqual(x.grad.shape, [])
                np.testing.assert_allclose(x.grad.numpy(), np.array(3.0))

178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
        paddle.enable_static()


binary_api_list = [
    {'func': paddle.add, 'cls_method': '__add__'},
    {'func': paddle.subtract, 'cls_method': '__sub__'},
    {'func': paddle.multiply, 'cls_method': '__mul__'},
    {'func': paddle.divide, 'cls_method': '__div__'},
    {'func': paddle.pow, 'cls_method': '__pow__'},
    {'func': paddle.equal, 'cls_method': '__eq__'},
    {'func': paddle.not_equal, 'cls_method': '__ne__'},
    {'func': paddle.greater_equal, 'cls_method': '__ge__'},
    {'func': paddle.greater_than, 'cls_method': '__gt__'},
    {'func': paddle.less_equal, 'cls_method': '__le__'},
    {'func': paddle.less_than, 'cls_method': '__lt__'},
    {'func': paddle.remainder, 'cls_method': '__mod__'},
    paddle.mod,
    paddle.floor_mod,
    paddle.logical_and,
    paddle.logical_or,
    paddle.logical_xor,
199 200
    paddle.maximum,
    paddle.minimum,
201 202
]

203
binary_int_api_list = [
204 205 206 207 208 209 210 211
    paddle.bitwise_and,
    paddle.bitwise_or,
    paddle.bitwise_xor,
]


# Use to test zero-dim of binary API
class TestBinaryAPI(unittest.TestCase):
212
    def test_dygraph_binary(self):
213
        paddle.disable_static()
214
        for api in binary_api_list:
215
            # 1) x is 0D, y is 0D
216 217 218 219
            x = paddle.rand([])
            y = paddle.rand([])
            x.stop_gradient = False
            y.stop_gradient = False
220 221
            x.retain_grads()
            y.retain_grads()
222 223 224 225 226 227
            if isinstance(api, dict):
                out = api['func'](x, y)
                out_cls = getattr(paddle.Tensor, api['cls_method'])(x, y)
                np.testing.assert_array_equal(out_cls.numpy(), out.numpy())
            else:
                out = api(x, y)
228
            out.retain_grads()
229
            out.backward()
230 231 232 233

            self.assertEqual(x.shape, [])
            self.assertEqual(y.shape, [])
            self.assertEqual(out.shape, [])
234
            if x.grad is not None:
235 236 237 238
                self.assertEqual(x.grad.shape, [])
                self.assertEqual(y.grad.shape, [])
                self.assertEqual(out.grad.shape, [])

239
            # 2) x is ND, y is 0D
240 241 242 243 244 245 246 247 248 249
            x = paddle.rand([2, 3, 4])
            y = paddle.rand([])
            x.stop_gradient = False
            y.stop_gradient = False
            if isinstance(api, dict):
                out = api['func'](x, y)
                out_cls = getattr(paddle.Tensor, api['cls_method'])(x, y)
                np.testing.assert_array_equal(out_cls.numpy(), out.numpy())
            else:
                out = api(x, y)
250
            out.retain_grads()
251
            out.backward()
252 253 254 255

            self.assertEqual(x.shape, [2, 3, 4])
            self.assertEqual(y.shape, [])
            self.assertEqual(out.shape, [2, 3, 4])
256
            if x.grad is not None:
257 258 259 260
                self.assertEqual(x.grad.shape, [2, 3, 4])
                self.assertEqual(y.grad.shape, [])
                self.assertEqual(out.grad.shape, [2, 3, 4])

261
            # 3) x is 0D , y is ND
262 263 264 265
            x = paddle.rand([])
            y = paddle.rand([2, 3, 4])
            x.stop_gradient = False
            y.stop_gradient = False
266 267
            x.retain_grads()
            y.retain_grads()
268 269 270 271 272 273
            if isinstance(api, dict):
                out = api['func'](x, y)
                out_cls = getattr(paddle.Tensor, api['cls_method'])(x, y)
                np.testing.assert_array_equal(out_cls.numpy(), out.numpy())
            else:
                out = api(x, y)
274
            out.retain_grads()
275
            out.backward()
276 277 278 279

            self.assertEqual(x.shape, [])
            self.assertEqual(y.shape, [2, 3, 4])
            self.assertEqual(out.shape, [2, 3, 4])
280
            if x.grad is not None:
281 282 283 284 285 286 287
                self.assertEqual(x.grad.shape, [])
                self.assertEqual(y.grad.shape, [2, 3, 4])
                self.assertEqual(out.grad.shape, [2, 3, 4])

            # 4) x is 0D , y is scalar
            x = paddle.rand([])
            x.stop_gradient = False
288
            y = 0.5
289 290
            if isinstance(api, dict):
                out = getattr(paddle.Tensor, api['cls_method'])(x, y)
291
                out.retain_grads()
292 293 294
                out.backward()

                self.assertEqual(x.shape, [])
295
                self.assertEqual(out.shape, [])
296 297 298
                if x.grad is not None:
                    self.assertEqual(x.grad.shape, [])
                    self.assertEqual(out.grad.shape, [])
299

300
        for api in binary_int_api_list:
301
            # 1) x is 0D, y is 0D
302 303 304 305 306 307
            x_np = np.random.randint(-10, 10, [])
            y_np = np.random.randint(-10, 10, [])
            out_np = eval('np.%s(x_np, y_np)' % api.__name__)

            x = paddle.to_tensor(x_np)
            y = paddle.to_tensor(y_np)
308
            out = api(x, y)
309

310
            self.assertEqual(out.shape, [])
311
            np.testing.assert_array_equal(out.numpy(), out_np)
312

313
            # 2) x is ND, y is 0D
314 315 316 317 318 319
            x_np = np.random.randint(-10, 10, [3, 5])
            y_np = np.random.randint(-10, 10, [])
            out_np = eval('np.%s(x_np, y_np)' % api.__name__)

            x = paddle.to_tensor(x_np)
            y = paddle.to_tensor(y_np)
320
            out = api(x, y)
321

322
            self.assertEqual(out.shape, [3, 5])
323
            np.testing.assert_array_equal(out.numpy(), out_np)
324

325
            # 3) x is 0D , y is ND
326 327 328 329 330 331
            x_np = np.random.randint(-10, 10, [])
            y_np = np.random.randint(-10, 10, [3, 5])
            out_np = eval('np.%s(x_np, y_np)' % api.__name__)

            x = paddle.to_tensor(x_np)
            y = paddle.to_tensor(y_np)
332
            out = api(x, y)
333

334
            self.assertEqual(out.shape, [3, 5])
335
            np.testing.assert_array_equal(out.numpy(), out_np)
336 337 338 339

        paddle.enable_static()


340 341
# Use to test zero-dim of Sundry API, which is unique and can not be classified
# with others. It can be implemented here flexibly.
342 343 344 345 346
class TestSundryAPI(unittest.TestCase):
    def setUp(self):
        paddle.disable_static()
        self.x = paddle.rand([])

347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
    def test_getitem(self):
        # case1: When all axis have a scalar indice, output should be a 0-d Tensor;
        x = paddle.arange(2 * 3 * 4 * 5).reshape((2, 3, 4, 5))
        x.stop_gradient = False
        out = x[1, 2, 3, 4]
        out.retain_grads()
        out.backward()
        self.assertEqual(out.shape, [])
        np.testing.assert_allclose(out, np.array(119))
        self.assertEqual(out.grad.shape, [])
        np.testing.assert_allclose(out.grad, 1.0)
        self.assertEqual(x.grad.shape, [2, 3, 4, 5])
        x_grad_expected = np.zeros((2, 3, 4, 5))
        x_grad_expected[1, 2, 3, 4] = 1.0
        np.testing.assert_allclose(x.grad, x_grad_expected)

        # case2: When one axis has a 0-d Tensor indice, the output should be same as int indice.
        x = paddle.arange(2 * 3 * 4 * 5).reshape((2, 3, 4, 5))
        out1 = x[1, 2]
        out2 = x[
            paddle.full([], 1, dtype='int32'), paddle.full([], 2, dtype='int32')
        ]
        np.testing.assert_allclose(out1, out2)

        # case3: When all axis have a scalar indice (i.e. case1) and has None indice,
        # ndim of output should be same with numbers of None.
        x = paddle.arange(2 * 3 * 4 * 5).reshape((2, 3, 4, 5))
        out1 = x[1, 2, None, 3, 4]
        self.assertEqual(out1.shape, [1])
        np.testing.assert_allclose(out1, np.array([119]))
        out2 = x[1, None, 2, None, 3, 4]
        self.assertEqual(out2.shape, [1, 1])
        np.testing.assert_allclose(out2, np.array([[119]]))

        # case4: 1-D Tensor will be treated as vector, no axis decrease will happen.
        x = paddle.ones((2, 3, 4))
        indice = paddle.ones([1], dtype='int32')
        out1 = x[indice]
        self.assertEqual(out1.shape, [1, 3, 4])
        np.testing.assert_allclose(out1, np.ones((1, 3, 4)))
        out2 = x[indice, indice]
        self.assertEqual(out2.shape, [1, 4])
        np.testing.assert_allclose(out2, np.ones((1, 4)))

    def test_setitem(self):
        # case1: all axis have a scalar indice
        x = paddle.arange(2 * 3 * 4 * 5).reshape((2, 3, 4, 5))
        x.stop_gradient = False
        out = x * 2
        out[1, 2, 3, 4] = 10
        out.backward()

        self.assertEqual(out.shape, x.shape)
        np.testing.assert_allclose(out[1, 2, 3, 4], np.array(10))
        self.assertEqual(x.grad.shape, [2, 3, 4, 5])
        x_grad_expected = np.ones((2, 3, 4, 5)) * 2
        x_grad_expected[1, 2, 3, 4] = 0
        np.testing.assert_allclose(x.grad, x_grad_expected)

        # case2: 0-D Tensor indice in some axis
        # NOTE(zoooo0820): Now, int/slice with 0-D Tensor will still be
        # treated as combined indexing, which is not support backward.
        # There should have more test cases such as out[1, indice, :] = 0.5 when this
        # problem is fixed.
        x = paddle.randn((2, 3, 4, 5))
        x.stop_gradient = False
        indice = paddle.full([], 1, dtype='int32')
        out = x * 1
        out[indice, indice] = 0.5
        out.backward()

        self.assertEqual(out.shape, x.shape)
        np.testing.assert_allclose(out[1, 1], np.ones((4, 5)) * 0.5)
        x_grad_expected = np.ones((2, 3, 4, 5))
        x_grad_expected[1, 1] = 0
        np.testing.assert_allclose(x.grad, x_grad_expected)

        # case3:0-D Tensor indice in some axis, value is a Tensor
        # and there is broadcast
        x = paddle.randn((2, 3, 4, 5))
        x.stop_gradient = False
        v = paddle.ones((4, 5), dtype='float32') * 5
        v.stop_gradient = False
        indice = paddle.full([], 1, dtype='int32')
        out = x * 1
        out[indice] = v
        out.backward()

        self.assertEqual(out.shape, x.shape)
        np.testing.assert_allclose(out[1], np.ones((3, 4, 5)) * 5)
        x_grad_expected = np.ones((2, 3, 4, 5))
        x_grad_expected[1] = 0
        np.testing.assert_allclose(x.grad, x_grad_expected)
        value_grad_expected = np.ones((4, 5)) * 3
        np.testing.assert_allclose(v.grad, value_grad_expected)

        # case4: value is a 0-D tensor and there is broadcast
        x = paddle.randn((2, 3, 4, 5))
        x.stop_gradient = False
        v = paddle.ones([], dtype='float32') * 5
        v.stop_gradient = False
        out = x * 1
        indice = paddle.full([], 0, dtype='int32')
        out[indice] = v
        out.backward()

        self.assertEqual(out.shape, x.shape)
        self.assertEqual(v.grad.shape, [])
        np.testing.assert_allclose(out[0], np.ones((3, 4, 5)) * 5)
        x_grad_expected = np.ones((2, 3, 4, 5))
        x_grad_expected[0] = 0
        np.testing.assert_allclose(x.grad, x_grad_expected)
        value_grad_expected = np.ones(()) * 3 * 4 * 5
        np.testing.assert_allclose(v.grad, value_grad_expected)

        # case5: indice / value is 0-D Tensor, and there is no broadcast
        x = paddle.randn((2, 3, 4, 5))
        x.stop_gradient = False
        v = paddle.ones([], dtype='float32') * 2
        v.stop_gradient = False
        out = x * 1
        indice = paddle.full([], 0, dtype='int32')
        out[indice, indice, indice, indice] = v
        out.backward()

        self.assertEqual(out.shape, x.shape)
        self.assertEqual(v.grad.shape, [])
        np.testing.assert_allclose(out[0, 0, 0, 0], np.ones(()) * 2)
        x_grad_expected = np.ones((2, 3, 4, 5))
        x_grad_expected[0, 0, 0, 0] = 0
        np.testing.assert_allclose(x.grad, x_grad_expected)
        value_grad_expected = np.ones(())
        np.testing.assert_allclose(v.grad, value_grad_expected)

481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
    def test_expand(self):
        # case1
        x = paddle.full([], 1, 'float32')
        x.stop_gradient = False
        out = paddle.expand(x, shape=[1])
        out.retain_grads()
        out.backward()

        self.assertEqual(out.shape, [1])
        np.testing.assert_allclose(out, 1.0)
        self.assertEqual(x.grad.shape, [])
        np.testing.assert_allclose(x.grad, 1.0)
        self.assertEqual(out.grad.shape, [1])
        np.testing.assert_allclose(out.grad, 1.0)

        # case2
        x1 = paddle.full([], 1, 'float32')
        x1.stop_gradient = False
        out1 = paddle.expand(x1, shape=[])
        out1.retain_grads()
        out1.backward()

        self.assertEqual(out1.shape, [])
        np.testing.assert_allclose(out1, 1.0)
        self.assertEqual(x1.grad.shape, [])
        np.testing.assert_allclose(x1.grad, 1.0)
        self.assertEqual(out1.grad.shape, [])
        np.testing.assert_allclose(out1.grad, 1.0)

        # case3
        x2 = paddle.full([], 1, 'float32')
        x2.stop_gradient = False
        out2 = paddle.expand(x2, shape=[1, 1])
        out2.retain_grads()
        out2.backward()

        self.assertEqual(out2.shape, [1, 1])
        np.testing.assert_allclose(out2, 1.0)
        self.assertEqual(x2.grad.shape, [])
        np.testing.assert_allclose(x2.grad, 1.0)
        self.assertEqual(out2.grad.shape, [1, 1])
        np.testing.assert_allclose(out2.grad, 1.0)

        # case4
        x3 = paddle.full([], 1, 'float32')
        x3.stop_gradient = False
        out3 = paddle.expand(x3, shape=[3, 3])
        out3.retain_grads()
        out3.backward()

        self.assertEqual(out3.shape, [3, 3])
        np.testing.assert_allclose(out3, 1.0)
        self.assertEqual(x3.grad.shape, [])
        np.testing.assert_allclose(x3.grad, 9.0)
        self.assertEqual(out3.grad.shape, [3, 3])
        np.testing.assert_allclose(out3.grad, 1.0)

    def test_expand_as(self):
        x = paddle.full([], 1, 'float32')
        x.stop_gradient = False
        y = paddle.full([], 1, 'float32')
        y.stop_gradient = False
        out = paddle.expand_as(x, y)
        out.backward()
        self.assertEqual(x.shape, [])
        self.assertEqual(x.item(), 1.0)
        self.assertEqual(x.grad.shape, [])
        self.assertEqual(x.grad.item(), 1.0)
        self.assertEqual(out.shape, [])
        self.assertEqual(out.item(), 1.0)
        self.assertEqual(out.grad, None)

        x1 = paddle.full([], 1, 'float32')
        x1.stop_gradient = False
        y1 = paddle.full([1], 1, 'float32')
        out1 = paddle.expand_as(x1, y1)
        out1.backward()
        self.assertEqual(x1.shape, [])
        self.assertEqual(x1.item(), 1.0)
        self.assertEqual(x1.grad.shape, [])
        self.assertEqual(x1.grad.item(0), 1.0)
        self.assertEqual(out1.shape, [1])
        self.assertEqual(out1.item(0), 1.0)
        self.assertEqual(out1.grad, None)

        x2 = paddle.full([], 1, 'float32')
        x2.stop_gradient = False
        y2 = paddle.full([3, 3], 1, 'float32')
        out2 = paddle.expand_as(x2, y2)
        out2.backward()
        self.assertEqual(x2.shape, [])
        self.assertEqual(x2.item(), 1.0)
        self.assertEqual(x2.grad.shape, [])
        self.assertEqual(x2.grad.item(0), 9.0)
        self.assertEqual(out2.shape, [3, 3])
        self.assertEqual(out2.item(0), 1.0)
        self.assertEqual(out2.grad, None)

    def test_top_k(self):
        x = paddle.full([], 1, 'float32')
        x.stop_gradient = False
        out, indices = paddle.topk(x, k=1, axis=0)
        out.retain_grads()
        out.backward()
        self.assertEqual(indices.shape, [])
        self.assertEqual(indices.item(), 0)
        self.assertEqual(x.shape, [])
        self.assertEqual(x.item(), 1.0)
        self.assertEqual(x.grad.shape, [])
        self.assertEqual(x.grad.item(0), 1.0)
        self.assertEqual(out.shape, [])
        self.assertEqual(out.item(), 1.0)
        self.assertEqual(out.grad, 1.0)

        x1 = paddle.full([], 1, 'float32')
        x1.stop_gradient = False
        out1, indices1 = paddle.topk(x1, k=1, axis=-1)
        out1.retain_grads()
        out1.backward()
        self.assertEqual(indices1.shape, [])
        self.assertEqual(indices1.item(), 0)
        self.assertEqual(x1.shape, [])
        self.assertEqual(x1.item(), 1.0)
        self.assertEqual(x.grad.shape, [])
        self.assertEqual(x.grad.item(0), 1.0)
        self.assertEqual(out1.shape, [])
        self.assertEqual(out1.item(), 1.0)
        self.assertEqual(out1.grad, 1.0)

        with self.assertRaises(ValueError):
            tmp = paddle.topk(x1, k=1, axis=2)

613
    def test_argmin(self):
614
        # 1) x is 0D
615 616 617 618
        x = paddle.rand([])
        out1 = paddle.argmin(x, 0)
        out2 = paddle.argmin(x, -1)
        out3 = paddle.argmin(x, None)
619

620
        self.assertEqual(out1.shape, [])
621
        np.testing.assert_allclose(out1, 0)
622 623

        self.assertEqual(out2.shape, [])
624
        np.testing.assert_allclose(out2, 0)
625 626

        self.assertEqual(out3.shape, [])
627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648
        np.testing.assert_allclose(out3, 0)

        # 2) x is 1D
        x = paddle.rand([5])
        x.stop_gradient = False
        out = paddle.argmin(x, 0)
        out.backward()
        self.assertEqual(out.shape, [])

        # 3) x is ND
        x = paddle.rand([3, 5])
        x.stop_gradient = False
        out = paddle.argmin(x)
        out.backward()
        self.assertEqual(out.shape, [])

        # 4) x is ND, keepdim=True
        x = paddle.rand([3, 5])
        x.stop_gradient = False
        out = paddle.argmin(x, keepdim=True)
        out.backward()
        self.assertEqual(out.shape, [1, 1])
649

650
    def test_argmax(self):
651
        # 1) x is 0D
652 653 654 655
        x = paddle.rand([])
        out1 = paddle.argmax(x, 0)
        out2 = paddle.argmax(x, -1)
        out3 = paddle.argmax(x, None)
656

657
        self.assertEqual(out1.shape, [])
658
        np.testing.assert_allclose(out1, 0)
659 660

        self.assertEqual(out2.shape, [])
661
        np.testing.assert_allclose(out2, 0)
662 663

        self.assertEqual(out3.shape, [])
664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679
        np.testing.assert_allclose(out3, 0)

        # 2) x is 1D
        x = paddle.rand([5])
        out = paddle.argmax(x, 0)
        self.assertEqual(out.shape, [])

        # 3) x is ND
        x = paddle.rand([3, 5])
        out = paddle.argmax(x)
        self.assertEqual(out.shape, [])

        # 4) x is ND, keepdim=True
        x = paddle.rand([3, 5])
        out = paddle.argmax(x, keepdim=True)
        self.assertEqual(out.shape, [1, 1])
680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703

    def test_median(self):
        x = paddle.rand([])
        x.stop_gradient = False
        out1 = paddle.median(x, 0)
        out2 = paddle.median(x, -1)
        out3 = paddle.median(x, None)

        out1.backward()
        out2.backward()
        out3.backward()

        self.assertEqual(out1.shape, [])
        np.testing.assert_allclose(out1, x)

        self.assertEqual(out2.shape, [])
        np.testing.assert_allclose(out2, x)

        self.assertEqual(out3.shape, [])
        np.testing.assert_allclose(out3, x)

        self.assertEqual(x.grad.shape, [])
        np.testing.assert_allclose(x.grad, 3.0)

704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765
    def test_linear(self):
        x = paddle.randn([3, 2])
        w = paddle.full(shape=[2, 4], fill_value=0.5)
        b = paddle.zeros([])

        np.testing.assert_array_equal(
            F.linear(x, w, b).numpy(), F.linear(x, w).numpy()
        )

    def test_is_floating_point(self):
        self.assertTrue(paddle.is_floating_point(self.x))

    def test_is_integer(self):
        x = paddle.randint(0, 10, [])
        self.assertTrue(paddle.is_integer(x))

    def test_is_tensor(self):
        self.assertTrue(paddle.is_tensor(self.x))

    def test_is_empty(self):
        x = paddle.rand([3, 0, 5])
        self.assertTrue(paddle.is_empty(x))

    def test_isfinite(self):
        out = paddle.isfinite(self.x)
        np.testing.assert_array_equal(out.numpy(), np.array(True))

    def test_isinf(self):
        x = paddle.to_tensor(np.array(float('-inf')))
        out = paddle.isinf(x)
        np.testing.assert_array_equal(out.numpy(), np.array(True))

    def test_isnan(self):
        x = paddle.to_tensor(np.array(float('nan')))
        out = paddle.isnan(x)
        np.testing.assert_array_equal(out.numpy(), np.array(True))

    def test_isclose(self):
        out = paddle.isclose(self.x, self.x)
        np.testing.assert_array_equal(out.numpy(), np.array(True))

    def test_clone(self):
        out = paddle.clone(self.x)
        np.testing.assert_array_equal(out.numpy(), self.x.numpy())

    def test_assign(self):
        out = paddle.assign(self.x)
        np.testing.assert_array_equal(out.numpy(), self.x.numpy())

    def test_item(self):
        x = paddle.full([], 0.5)
        self.assertEqual(x.item(), 0.5)

    def test_tolist(self):
        x = paddle.full([], 0.5)
        self.assertEqual(x.tolist(), 0.5)

    def test_numpy(self):
        x = paddle.full([], 0.5)
        np.testing.assert_array_equal(x.numpy(), np.array(0.5))

    def test_numel(self):
766
        # 1) x is 0D
767 768 769 770
        out = paddle.numel(self.x)
        self.assertEqual(out.shape, [])
        np.testing.assert_array_equal(out.numpy(), np.array(1))

771 772 773 774 775 776
        # 2) x is ND
        x = paddle.full([3, 5], 0.5)
        out = paddle.numel(x)
        self.assertEqual(out.shape, [])
        np.testing.assert_array_equal(out.numpy(), np.array(15))

777
    def test_rank(self):
778
        # 1) x is 0D
779 780 781 782
        out = paddle.rank(self.x)
        self.assertEqual(out.shape, [])
        np.testing.assert_array_equal(out.numpy(), np.array(0))

783 784 785 786 787 788
        # 1) x is ND
        x = paddle.full([3, 5], 0.5)
        out = paddle.rank(x)
        self.assertEqual(out.shape, [])
        np.testing.assert_array_equal(out.numpy(), np.array(2))

789 790 791 792 793
    def test_shape(self):
        out = paddle.shape(self.x)
        self.assertEqual(out.shape, [0])
        np.testing.assert_array_equal(out.numpy(), np.array([]))

794 795 796
    def test_pow_factor(self):
        x = paddle.rand([])
        x.stop_gradient = False
797
        x.retain_grads()
798
        out = paddle.pow(x, 2.0)
799
        out.retain_grads()
800 801 802 803 804 805 806 807 808
        out.backward()

        self.assertEqual(out.shape, [])
        self.assertEqual(out.grad.shape, [])
        self.assertEqual(x.grad.shape, [])

    def test_cast(self):
        x = paddle.full([], 1.0, 'float32')
        x.stop_gradient = False
809
        x.retain_grads()
810
        out = paddle.cast(x, 'int32')
811
        out.retain_grads()
812 813 814 815 816 817 818 819 820
        out.backward()

        self.assertEqual(out.shape, [])
        self.assertEqual(out.grad.shape, [])
        self.assertEqual(x.grad.shape, [])

    def test_clip(self):
        x = paddle.uniform([], None, -10, 10)
        x.stop_gradient = False
821
        x.retain_grads()
822
        out = paddle.clip(x, -5, 5)
823
        out.retain_grads()
824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853
        out.backward()

        self.assertEqual(out.shape, [])
        self.assertEqual(out.grad.shape, [])
        self.assertEqual(x.grad.shape, [])

    def test_increment(self):
        x = paddle.rand([])
        x.stop_gradient = False
        out = paddle.increment(x, 1.0)
        out.backward()

        self.assertEqual(out.shape, [])
        self.assertEqual(out.grad.shape, [])
        self.assertEqual(x.grad.shape, [])

    def test_bitwise_not(self):
        x = paddle.randint(-1, 1, [])
        out1 = ~x
        out2 = paddle.bitwise_not(x)

        self.assertEqual(out1.shape, [])
        self.assertEqual(out2.shape, [])

    def test_logical_not(self):
        x = paddle.randint(0, 1, [])
        out = paddle.logical_not(x)

        self.assertEqual(out.shape, [])

854 855 856 857 858 859 860 861 862 863
    def test_searchsorted(self):
        x = paddle.to_tensor([1, 3, 5, 7, 9])
        y = paddle.rand([])

        # only has forward kernel
        out = paddle.searchsorted(x, y)

        self.assertEqual(out.shape, [])
        self.assertEqual(out.numpy(), 0)

864 865 866 867
    def test_transpose(self):
        x = paddle.rand([])
        x.stop_gradient = False
        out = paddle.transpose(x, [])
868
        out.retain_grads()
869 870 871 872 873 874 875 876 877 878 879 880 881 882 883
        out.backward()

        self.assertEqual(out.shape, [])
        self.assertEqual(out, x)
        self.assertEqual(out.grad.shape, [])
        self.assertEqual(x.grad.shape, [])
        self.assertEqual(x.grad, 1.0)

        with self.assertRaises(ValueError):
            x = paddle.transpose(x, [0])

    def test_moveaxis(self):
        x = paddle.rand([])
        x.stop_gradient = False
        out = paddle.moveaxis(x, [], [])
884
        out.retain_grads()
885 886 887 888 889 890 891 892 893 894 895
        out.backward()

        self.assertEqual(out.shape, [])
        self.assertEqual(out, x)
        self.assertEqual(out.grad.shape, [])
        self.assertEqual(x.grad.shape, [])
        self.assertEqual(x.grad, 1.0)

        with self.assertRaises(AssertionError):
            x = paddle.moveaxis(x, [1], [0])

896 897 898 899
    def test_gather_1D(self):
        x = paddle.to_tensor([1.0, 3.0, 5.0, 7.0, 9.0], stop_gradient=False)
        index = paddle.full([], 2, 'int64')
        out = paddle.gather(x, index)
900
        out.retain_grads()
901 902 903 904
        out.backward()

        self.assertEqual(out.shape, [])
        self.assertEqual(out.numpy(), 5)
905
        self.assertEqual(x.grad.shape, [5])
906 907 908 909 910 911 912 913
        self.assertEqual(out.grad.shape, [])

    def test_gather_xD_axis_0(self):
        x = paddle.to_tensor(
            [[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]], stop_gradient=False
        )
        index = paddle.full([], 1, 'int64')
        out = paddle.gather(x, index)
914
        out.retain_grads()
915 916 917
        out.backward()

        self.assertEqual(out.shape, [3])
918 919
        np.testing.assert_array_equal(out.numpy(), x.numpy()[1, :])
        self.assertEqual(x.grad.shape, [2, 3])
920 921
        self.assertEqual(out.grad.shape, [3])

922
    def test_gather_xD_axis_1(self):
923 924 925
        x = paddle.to_tensor(
            [[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]], stop_gradient=False
        )
926 927 928 929
        index = paddle.full([], 1, 'int64')
        out = paddle.gather(x, index, axis=1)

        self.assertEqual(out.shape, [2])
930
        np.testing.assert_array_equal(out.numpy(), [2.0, 5.0])
931

932
    def test_scatter_1D(self):
933
        x = paddle.to_tensor([1.0, 3.0, 5.0, 7.0, 9.0], stop_gradient=False)
934 935 936 937
        index = paddle.full([], 2, 'int64')
        updates = paddle.full([], 4.0)
        out = paddle.scatter(x, index, updates)

938
        self.assertEqual(out.shape, [5])
939 940
        self.assertEqual(out.numpy()[2], 4)

941
    def test_scatter_XD(self):
942 943 944
        x = paddle.to_tensor(
            [[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]], stop_gradient=False
        )
945 946 947 948
        index = paddle.full([], 1, 'int64')
        updates = paddle.to_tensor([1.0, 2.0, 3.0])
        out = paddle.scatter(x, index, updates)

949 950
        self.assertEqual(out.shape, [2, 3])
        np.testing.assert_array_equal(out.numpy()[1], [1.0, 2.0, 3.0])
951

952 953 954 955 956 957 958 959
    def test_diagflat(self):
        x1 = paddle.rand([])
        x2 = paddle.rand([])
        x3 = paddle.rand([])
        x1.stop_gradient = False
        x2.stop_gradient = False
        x3.stop_gradient = False

960 961 962 963
        x1.retain_grads()
        x2.retain_grads()
        x3.retain_grads()

964 965 966 967
        out1 = paddle.diagflat(x1, 1)
        out2 = paddle.diagflat(x2, -1)
        out3 = paddle.diagflat(x3, 0)

968 969 970 971
        out1.retain_grads()
        out2.retain_grads()
        out3.retain_grads()

972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987
        out1.backward()
        out2.backward()
        out3.backward()

        self.assertEqual(out1.shape, [2, 2])
        self.assertEqual(out2.shape, [2, 2])
        self.assertEqual(out3.shape, [1, 1])

        self.assertEqual(out1.grad.shape, [2, 2])
        self.assertEqual(out2.grad.shape, [2, 2])
        self.assertEqual(out3.grad.shape, [1, 1])

        self.assertEqual(x1.grad.shape, [])
        self.assertEqual(x2.grad.shape, [])
        self.assertEqual(x3.grad.shape, [])

988 989 990 991 992 993 994 995 996 997 998 999 1000
    def test_scatter__1D(self):
        x = paddle.to_tensor([1.0, 3.0, 5.0, 7.0, 9.0])
        index = paddle.full([], 2, 'int64')
        updates = paddle.full([], 4.0)
        out = paddle.scatter_(x, index, updates)

        self.assertEqual(out.numpy()[2], 4)

    def test_scatter__XD(self):
        x = paddle.to_tensor([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])
        index = paddle.full([], 1, 'int64')
        updates = paddle.to_tensor([1.0, 2.0, 3.0])
        out = paddle.scatter_(x, index, updates)
1001
        np.testing.assert_array_equal(out.numpy()[1], [1.0, 2.0, 3.0])
1002

1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
    def test_flatten(self):
        x = paddle.full([], 1, 'float32')
        x.stop_gradient = False

        start_axis = 0
        stop_axis = -1

        out = paddle.flatten(x, start_axis=start_axis, stop_axis=stop_axis)
        out.backward()

        self.assertEqual(out.shape, [1])
        self.assertEqual(x.grad.shape, [])

1016 1017 1018
    def test_scale(self):
        x = paddle.rand([])
        x.stop_gradient = False
1019
        x.retain_grads()
1020
        out = paddle.scale(x, scale=2.0, bias=1.0)
1021
        out.retain_grads()
1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
        out.backward()

        self.assertEqual(out.shape, [])
        self.assertEqual(out.grad.shape, [])
        self.assertEqual(x.grad.shape, [])

    def test_floor_divide(self):
        # 1-d // 0-d
        x = paddle.to_tensor([1, -2, 3], dtype="int64")
        y = paddle.full([], 2, dtype='int64')
        out1_1 = paddle.floor_divide(x, y)
        out1_2 = paddle.Tensor.__floordiv__(x, y)

        np.testing.assert_array_equal(out1_1.numpy(), out1_2.numpy())
        np.testing.assert_array_equal(out1_1.numpy(), np.asarray([0, -1, 1]))

        # 0-d // 1-d
        out2_1 = paddle.floor_divide(y, x)
        out2_2 = paddle.Tensor.__floordiv__(y, x)

        np.testing.assert_array_equal(out2_1.numpy(), out2_2.numpy())
        np.testing.assert_array_equal(out2_2.numpy(), np.asarray([2, -1, 0]))

        # 0-d // 0-d
        x = paddle.full([], 3, dtype='int64')
        out3_1 = paddle.floor_divide(x, y)
        out3_2 = paddle.Tensor.__floordiv__(x, y)

        np.testing.assert_array_equal(out3_1.numpy(), out3_2.numpy())
        np.testing.assert_array_equal(out3_2.numpy(), np.asarray(1))

1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075
    def test_cumsum(self):
        x1 = paddle.rand([])
        x1.stop_gradient = False

        out1 = paddle.cumsum(x1)
        out2 = paddle.cumsum(x1, axis=0)
        out3 = paddle.cumsum(x1, axis=-1)

        out1.retain_grads()
        out2.retain_grads()
        out3.retain_grads()

        out1.backward()
        out2.backward()
        out3.backward()

        self.assertEqual(out1.shape, [1])
        self.assertEqual(out1.grad.shape, [1])
        self.assertEqual(out2.shape, [])
        self.assertEqual(out2.grad.shape, [])
        self.assertEqual(out3.shape, [])
        self.assertEqual(out3.grad.shape, [])

W
wawltor 已提交
1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
    def test_add_n(self):
        x1 = paddle.rand([])
        x1.stop_gradient = False
        x2 = paddle.rand([])
        x2.stop_gradient = False
        x3 = paddle.rand([])
        x3.stop_gradient = False

        out1 = paddle.add_n(x1)
        out2 = paddle.add_n([x2, x3])

        out1.retain_grads()
        out2.retain_grads()

        out1.backward()
        out2.backward()

        self.assertEqual(out1.shape, [])
        self.assertEqual(out1.grad.shape, [])
        self.assertEqual(out2.shape, [])
        self.assertEqual(out2.grad.shape, [])

1098 1099 1100 1101 1102
    def test_reshape_list(self):
        x = paddle.rand([])
        x.stop_gradient = False

        out = paddle.reshape(x, [])
1103
        out.retain_grads()
1104 1105 1106 1107 1108 1109
        out.backward()
        self.assertEqual(x.grad.shape, [])
        self.assertEqual(out.shape, [])
        self.assertEqual(out.grad.shape, [])

        out = paddle.reshape(x, [1])
1110
        out.retain_grads()
1111 1112 1113 1114 1115 1116
        out.backward()
        self.assertEqual(x.grad.shape, [])
        self.assertEqual(out.shape, [1])
        self.assertEqual(out.grad.shape, [1])

        out = paddle.reshape(x, [-1])
1117
        out.retain_grads()
1118 1119 1120 1121 1122 1123
        out.backward()
        self.assertEqual(x.grad.shape, [])
        self.assertEqual(out.shape, [1])
        self.assertEqual(out.grad.shape, [1])

        out = paddle.reshape(x, [-1, 1])
1124
        out.retain_grads()
1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
        out.backward()
        self.assertEqual(x.grad.shape, [])
        self.assertEqual(out.shape, [1, 1])
        self.assertEqual(out.grad.shape, [1, 1])

    def test_reshape_tensor(self):
        x = paddle.rand([1, 1])
        x.stop_gradient = False

        out = paddle.reshape(x, [])
1135
        out.retain_grads()
1136 1137 1138 1139 1140
        out.backward()
        self.assertEqual(x.grad.shape, [1, 1])
        self.assertEqual(out.shape, [])
        self.assertEqual(out.grad.shape, [])

1141
        new_shape = paddle.to_tensor([1, 1, 1], "int32")
1142
        out = paddle.reshape(x, new_shape)
1143
        out.retain_grads()
1144 1145
        out.backward()
        self.assertEqual(x.grad.shape, [1, 1])
1146 1147
        self.assertEqual(out.shape, [1, 1, 1])
        self.assertEqual(out.grad.shape, [1, 1, 1])
1148

1149
        new_shape = paddle.to_tensor([-1], "int32")
1150
        out = paddle.reshape(x, new_shape)
1151
        out.retain_grads()
1152 1153 1154 1155 1156 1157 1158
        out.backward()
        self.assertEqual(x.grad.shape, [1, 1])
        self.assertEqual(out.shape, [1])
        self.assertEqual(out.grad.shape, [1])

        new_shape = [paddle.full([], -1, "int32"), paddle.full([], 1, "int32")]
        out = paddle.reshape(x, new_shape)
1159
        out.retain_grads()
1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
        out.backward()
        self.assertEqual(x.grad.shape, [1, 1])
        self.assertEqual(out.shape, [1, 1])
        self.assertEqual(out.grad.shape, [1, 1])

    def test_reshape__list(self):
        x = paddle.rand([])
        out = paddle.reshape_(x, [])
        self.assertEqual(out.shape, [])

        out = paddle.reshape_(x, [1])
        self.assertEqual(out.shape, [1])

        out = paddle.reshape_(x, [-1])
        self.assertEqual(out.shape, [1])

        out = paddle.reshape_(x, [-1, 1])
        self.assertEqual(out.shape, [1, 1])

    def test_reshape__tensor(self):
        x = paddle.rand([1, 1])
        out = paddle.reshape_(x, [])
        self.assertEqual(out.shape, [])

        new_shape = paddle.full([1], 1, "int32")
        out = paddle.reshape_(x, new_shape)
        self.assertEqual(out.shape, [1])

        new_shape = paddle.full([1], -1, "int32")
        out = paddle.reshape_(x, new_shape)
        self.assertEqual(out.shape, [1])

        new_shape = [paddle.full([], -1, "int32"), paddle.full([], 1, "int32")]
        out = paddle.reshape_(x, new_shape)
        self.assertEqual(out.shape, [1, 1])

1196 1197 1198 1199 1200
    def test_sort(self):
        x1 = paddle.rand([])
        x2 = paddle.rand([])
        x1.stop_gradient = False
        x2.stop_gradient = False
1201

1202 1203 1204
        x1.retain_grads()
        x2.retain_grads()

1205 1206 1207
        out1 = paddle.sort(x1, axis=-1)
        out2 = paddle.sort(x2, axis=0)

1208 1209 1210
        out1.retain_grads()
        out2.retain_grads()

1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
        out1.backward()
        out2.backward()

        self.assertEqual(out1.shape, [])
        self.assertEqual(out2.shape, [])
        self.assertEqual(out1.numpy(), x1.numpy())
        self.assertEqual(out2.numpy(), x2.numpy())
        self.assertEqual(out1.grad.shape, [])
        self.assertEqual(out2.grad.shape, [])
        self.assertEqual(x1.grad.shape, [])
        self.assertEqual(x2.grad.shape, [])
        self.assertEqual(x1.grad.numpy(), 1)
        self.assertEqual(x2.grad.numpy(), 1)

    def test_argsort(self):
        x1 = paddle.rand([])
        x2 = paddle.rand([])
        x1.stop_gradient = False
        x2.stop_gradient = False
1230 1231
        x1.retain_grads()
        x2.retain_grads()
1232

1233 1234 1235
        out1 = paddle.argsort(x1, axis=-1)
        out2 = paddle.argsort(x2, axis=0)

1236 1237 1238
        out1.retain_grads()
        out2.retain_grads()

1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252
        out1.backward()
        out2.backward()

        self.assertEqual(out1.shape, [])
        self.assertEqual(out2.shape, [])
        self.assertEqual(out1.numpy(), 0)
        self.assertEqual(out2.numpy(), 0)
        self.assertEqual(out1.grad.shape, [])
        self.assertEqual(out2.grad.shape, [])
        self.assertEqual(x1.grad.shape, [])
        self.assertEqual(x2.grad.shape, [])
        self.assertEqual(x1.grad.numpy(), 0)
        self.assertEqual(x2.grad.numpy(), 0)

1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271
    def test_sigmoid_focal_loss(self):
        logit = paddle.to_tensor(
            [[0.97, 0.91, 0.03], [0.55, 0.43, 0.71]],
            dtype='float32',
            stop_gradient=False,
        )
        label = paddle.to_tensor(
            [[1.0, 0.0, 0.0], [0.0, 1.0, 0.0]], dtype='float32'
        )
        fg_num_0 = paddle.full([], 2.0)
        fg_num_1 = paddle.full([1], 2.0)

        out0 = F.sigmoid_focal_loss(logit, label, normalizer=fg_num_0)
        out1 = F.sigmoid_focal_loss(logit, label, normalizer=fg_num_1)

        np.testing.assert_array_equal(
            out0.numpy(),
            out1.numpy(),
        )
1272
        self.assertEqual(out0.shape, [])
1273

J
jameszhang 已提交
1274
        out0.retain_grads()
1275
        out0.backward()
1276
        self.assertEqual(out0.grad.shape, [])
1277 1278 1279 1280 1281 1282 1283
        self.assertEqual(logit.grad.shape, [2, 3])

    def test_allclose(self):
        x = paddle.full([], 0.5)
        y = paddle.full([], 0.6)
        self.assertFalse(paddle.allclose(x, y))

1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338
    def test_interpolate(self):
        from paddle.nn.functional import interpolate

        input_x = paddle.rand([2, 3, 6, 6])
        input_x.stop_gradient = False
        origin_result = interpolate(
            x=input_x, size=[12, 12], mode="bilinear", align_corners=False
        )

        output_size = [
            paddle.full([], 12, dtype="int32"),
            paddle.full([], 12, dtype="int32"),
        ]
        out1 = interpolate(
            x=input_x, size=output_size, mode="bilinear", align_corners=False
        )
        out1.backward()

        self.assertEqual(out1.shape, [2, 3, 12, 12])
        self.assertEqual(input_x.grad.shape, [2, 3, 6, 6])

        scale_1 = [paddle.full([], 2), paddle.full([], 2)]
        out2 = interpolate(
            x=input_x,
            scale_factor=scale_1,
            mode="bilinear",
            align_corners=False,
        )
        out2.backward()

        self.assertEqual(out2.shape, [2, 3, 12, 12])
        self.assertEqual(input_x.grad.shape, [2, 3, 6, 6])

        scale_2 = paddle.full([], 2)
        out3 = interpolate(
            x=input_x,
            scale_factor=scale_2,
            mode="bilinear",
            align_corners=False,
        )
        out3.backward()

        self.assertEqual(out3.shape, [2, 3, 12, 12])
        self.assertEqual(input_x.grad.shape, [2, 3, 6, 6])

        np.testing.assert_allclose(
            origin_result.numpy(), out1.numpy(), rtol=1e-05
        )
        np.testing.assert_allclose(
            origin_result.numpy(), out2.numpy(), rtol=1e-05
        )
        np.testing.assert_allclose(
            origin_result.numpy(), out3.numpy(), rtol=1e-05
        )

1339 1340 1341 1342 1343 1344 1345
    def test_equalall(self):
        x = paddle.full([], 0.5)
        y = paddle.full([], 0.6)
        out = paddle.equal_all(x, y)
        self.assertEqual(out.shape, [])
        self.assertFalse(out)

1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
    def test_maseked_select(self):
        x = paddle.rand([])
        x.stop_gradient = False
        mask = paddle.full([], True, dtype='bool')
        y = paddle.masked_select(x, mask)

        y.retain_grads()
        y.backward()
        self.assertEqual(y.shape, [1])
        self.assertEqual(y.numpy(), x.numpy())
        self.assertEqual(y.grad.shape, [1])
        self.assertEqual(x.grad.shape, [])
        self.assertEqual(x.grad.numpy(), 1)

1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372
    def test_unsqueeze(self):
        x1 = paddle.full([], 2)
        x1.stop_gradient = False
        out1 = paddle.unsqueeze(x1, axis=0)
        out1.backward()
        self.assertEqual(out1.shape, [1])
        self.assertEqual(x1.grad.shape, [])

        x2 = paddle.full([], 0, dtype='int32')
        out2 = paddle.unsqueeze(x1, axis=x2)
        out2.backward()
        self.assertEqual(out2.shape, [1])

1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
    def test_prelu(self):
        x1 = paddle.full([], 1.0, 'float32')
        x1.stop_gradient = False
        w1 = paddle.full([], 0.25, dtype='float32')
        w1.stop_gradient = False
        out1 = paddle.nn.functional.prelu(x1, w1)
        out1.retain_grads()
        out1.backward()
        self.assertEqual(out1.shape, [])
        self.assertEqual(out1.numpy(), 1.0)
        self.assertEqual(out1.grad.shape, [])
        self.assertEqual(x1.grad.shape, [])
        self.assertEqual(x1.grad.numpy(), 1.0)

        x2 = paddle.full([], -1.0, 'float32')
        x2.stop_gradient = False
        w2 = paddle.full([], 0.25, dtype='float32')
        w2.stop_gradient = False
        out2 = paddle.nn.functional.prelu(x2, w2)
        out2.retain_grads()
        out2.backward()
        self.assertEqual(out2.shape, [])
        self.assertEqual(out2.numpy(), -0.25)
        self.assertEqual(out2.grad.shape, [])
        self.assertEqual(x2.grad.shape, [])
        self.assertEqual(x2.grad.numpy(), 0.25)

1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529

# Use to test API whose zero-dim input tensors don't have grad and not need to test backward in OpTest.
class TestNoBackwardAPI(unittest.TestCase):
    def setUp(self):
        paddle.disable_static()
        self.shape = [
            paddle.full([], 2, 'int32'),
            paddle.full([], 3, 'int32'),
            paddle.full([], 4, 'int32'),
        ]

    def test_slice(self):
        starts = [paddle.full([], 1, 'int32'), paddle.full([], 1, 'int32')]
        ends = [paddle.full([], 3, 'int32'), paddle.full([], 3, 'int32')]
        x = paddle.rand([5, 3, 3])
        out = paddle.slice(x, [1, 2], starts, ends)
        self.assertEqual(out.shape, [5, 2, 2])

    def test_strided_slice(self):
        starts = [paddle.full([], 0, 'int32'), paddle.full([], 0, 'int32')]
        ends = [paddle.full([], 4, 'int32'), paddle.full([], 4, 'int32')]
        strides = [paddle.full([], 2, 'int32'), paddle.full([], 2, 'int32')]
        x = paddle.rand([5, 5, 5])
        out = paddle.strided_slice(x, [1, 2], starts, ends, strides)
        self.assertEqual(out.shape, [5, 2, 2])

    def test_linspace(self):
        start = paddle.full([], 1.0)
        stop = paddle.full([], 5.0)
        num = paddle.full([], 5, 'int32')
        out = paddle.linspace(start, stop, num)
        np.testing.assert_array_equal(out.numpy(), [1.0, 2.0, 3.0, 4.0, 5.0])

    def test_arange(self):
        start = paddle.full([], 1.0)
        stop = paddle.full([], 6.0)
        step = paddle.full([], 1.0)
        out = paddle.arange(start, stop, step)
        np.testing.assert_array_equal(out.numpy(), [1.0, 2.0, 3.0, 4.0, 5.0])

    def test_normal(self):
        mean = paddle.full([], 0.0)
        std = paddle.full([], 0.0)
        out = paddle.normal(mean, std)
        self.assertEqual(out.shape, [])

        out = paddle.normal(0.0, 1.0, [])
        self.assertEqual(out.shape, [])

        out = paddle.normal(0.0, 1.0, self.shape)
        self.assertEqual(out.shape, [2, 3, 4])

    def test_rand(self):
        out = paddle.rand([])
        self.assertEqual(out.shape, [])

        out = paddle.rand(self.shape)
        self.assertEqual(out.shape, [2, 3, 4])

    def test_randn(self):
        out = paddle.randn([])
        self.assertEqual(out.shape, [])

        out = paddle.randn(self.shape)
        self.assertEqual(out.shape, [2, 3, 4])

    def test_randint_and_randint_like(self):
        out = paddle.randint(-10, 10, [])
        self.assertEqual(out.shape, [])

        out = paddle.randint_like(out, -10, 10)
        self.assertEqual(out.shape, [])

        out = paddle.randint(-10, 10, self.shape)
        self.assertEqual(out.shape, [2, 3, 4])

    def test_standard_normal(self):
        out = paddle.standard_normal([])
        self.assertEqual(out.shape, [])

        out = paddle.standard_normal(self.shape)
        self.assertEqual(out.shape, [2, 3, 4])

    def test_uniform(self):
        out = paddle.uniform([])
        self.assertEqual(out.shape, [])

        out = paddle.uniform(self.shape)
        self.assertEqual(out.shape, [2, 3, 4])

    def test_empty_and_empty_like(self):
        out = paddle.empty([])
        self.assertEqual(out.shape, [])

        out = paddle.empty_like(out)
        self.assertEqual(out.shape, [])

        out = paddle.empty(self.shape)
        self.assertEqual(out.shape, [2, 3, 4])

    def test_full_and_full_like(self):
        out = paddle.full([], 0.5)
        self.assertEqual(out.shape, [])

        out = paddle.full_like(out, 0.5)
        self.assertEqual(out.shape, [])

        out = paddle.full(self.shape, 0.5)
        self.assertEqual(out.shape, [2, 3, 4])

    def test_ones_and_ones_like(self):
        out = paddle.ones([])
        self.assertEqual(out.shape, [])

        out = paddle.ones_like(out)
        self.assertEqual(out.shape, [])

        out = paddle.ones(self.shape)
        self.assertEqual(out.shape, [2, 3, 4])

    def test_zeros_and_zeros_like(self):
        out = paddle.zeros([])
        self.assertEqual(out.shape, [])

        out = paddle.zeros_like(out)
        self.assertEqual(out.shape, [])

        out = paddle.zeros(self.shape)
        self.assertEqual(out.shape, [2, 3, 4])

1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547
    def test_embedding(self):
        ids = paddle.full(shape=[], fill_value=1, dtype='int64')
        w0 = paddle.arange(3, 9).reshape((3, 2)).astype(paddle.float32)
        w = paddle.to_tensor(w0, stop_gradient=False)
        emb = paddle.nn.functional.embedding(
            x=ids, weight=w, sparse=True, name="embedding"
        )
        self.assertEqual(emb.shape, [2])
        res = [5.0, 6.0]
        for i in range(len(res)):
            self.assertEqual(emb.numpy()[i], res[i])

    def test_one_hot_label(self):
        label = paddle.full(shape=[], fill_value=2, dtype='int64')
        one_hot_label = paddle.nn.functional.one_hot(label, num_classes=4)
        self.assertEqual(one_hot_label.shape, [4])
        self.assertEqual(one_hot_label.numpy()[2], 1)

1548 1549 1550 1551 1552 1553 1554
    def test_where(self):
        x1 = paddle.full([], 1)
        x2 = paddle.full([], 2)
        out = paddle.where(x1 > x2, x1, x2)
        self.assertEqual(out.shape, [])
        self.assertEqual(out.numpy(), 2)

1555 1556 1557

if __name__ == "__main__":
    unittest.main()