test_activation_nn_grad.py 21.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
16 17

import gradient_checker
18
import numpy as np
19
from decorator_helper import prog_scope
20

21
import paddle
22
import paddle.fluid as fluid
23
import paddle.fluid.core as core
24
import paddle.nn.functional as F
25 26


27 28 29 30 31 32
class TestSigmoidTripleGradCheck(unittest.TestCase):
    @prog_scope()
    def func(self, place):
        shape = [2, 3, 7, 9]
        eps = 0.0005
        dtype = np.float64
G
GGBond8488 已提交
33
        x = paddle.static.data('x', shape, dtype=dtype)
34
        x.persistable = True
35
        y = F.sigmoid(x)
36 37
        x_arr = np.random.random(shape).astype(dtype)
        x_arr[np.abs(x_arr) < 0.005] = 0.002
38 39 40
        gradient_checker.triple_grad_check(
            [x], y, x_init=x_arr, place=place, eps=eps
        )
41 42

    def test_grad(self):
43
        paddle.enable_static()
44 45 46 47 48 49 50
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


51
class TestSigmoidDoubleGradCheck(unittest.TestCase):
52
    def sigmoid_wrapper(self, x):
53
        return F.sigmoid(x[0])
54

55 56 57 58 59
    @prog_scope()
    def func(self, place):
        shape = [2, 3, 7, 9]
        eps = 0.0005
        dtype = np.float64
G
GGBond8488 已提交
60
        x = paddle.static.data('x', shape, dtype=dtype)
61
        x.persistable = True
62
        y = F.sigmoid(x)
63 64
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
        x_arr[np.abs(x_arr) < 0.005] = 0.002
65 66 67 68 69 70
        gradient_checker.double_grad_check(
            [x], y, x_init=x_arr, place=place, eps=eps
        )
        gradient_checker.double_grad_check_for_dygraph(
            self.sigmoid_wrapper, [x], y, x_init=x_arr, place=place
        )
71 72

    def test_grad(self):
73
        paddle.enable_static()
74 75 76 77 78 79 80
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


81
class TestTanhTripleGradCheck(unittest.TestCase):
82 83 84
    def tanh_wrapper(self, x):
        return paddle.tanh(x[0])

85 86 87 88 89
    @prog_scope()
    def func(self, place):
        shape = [2, 3, 7, 9]
        eps = 0.0005
        dtype = np.float64
G
GGBond8488 已提交
90
        x = paddle.static.data('x', shape, dtype=dtype)
91
        x.persistable = True
92
        y = paddle.tanh(x)
93 94
        x_arr = np.random.random(shape).astype(dtype)
        x_arr[np.abs(x_arr) < 0.005] = 0.002
95 96 97 98 99 100
        gradient_checker.triple_grad_check(
            [x], y, x_init=x_arr, place=place, eps=eps
        )
        gradient_checker.triple_grad_check_for_dygraph(
            self.tanh_wrapper, [x], y, x_init=x_arr, place=place
        )
101 102

    def test_grad(self):
103
        paddle.enable_static()
104 105 106 107 108 109 110
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


111
class TestTanhDoubleGradCheck(unittest.TestCase):
112 113 114
    def tanh_wrapper(self, x):
        return paddle.tanh(x[0])

115 116 117 118 119
    @prog_scope()
    def func(self, place):
        shape = [2, 3, 7, 9]
        eps = 0.0005
        dtype = np.float64
G
GGBond8488 已提交
120
        x = paddle.static.data('x', shape, dtype=dtype)
121 122 123 124
        x.persistable = True
        y = paddle.tanh(x)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
        x_arr[np.abs(x_arr) < 0.005] = 0.002
125 126 127 128 129 130
        gradient_checker.double_grad_check(
            [x], y, x_init=x_arr, place=place, eps=eps
        )
        gradient_checker.double_grad_check_for_dygraph(
            self.tanh_wrapper, [x], y, x_init=x_arr, place=place
        )
131 132

    def test_grad(self):
133
        paddle.enable_static()
134 135 136 137 138 139 140
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


141 142 143 144 145 146 147 148 149
class TestAbsDoubleGradCheck(unittest.TestCase):
    def abs_wrapper(self, x):
        return paddle.abs(x[0])

    @prog_scope()
    def func(self, place):
        shape = [2, 3, 7, 9]
        eps = 0.0005
        dtype = np.float64
G
GGBond8488 已提交
150
        x = paddle.static.data('x', shape, dtype=dtype)
151 152 153 154
        x.persistable = True
        y = paddle.abs(x)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
        x_arr[np.abs(x_arr) < 0.005] = 0.002
155 156 157 158 159 160
        gradient_checker.double_grad_check(
            [x], y, x_init=x_arr, place=place, eps=eps
        )
        gradient_checker.double_grad_check_for_dygraph(
            self.abs_wrapper, [x], y, x_init=x_arr, place=place
        )
161 162 163 164 165 166 167 168 169 170

    def test_grad(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


171 172 173 174 175 176 177
class TestReluDoubleGradCheck(unittest.TestCase):
    @prog_scope()
    def func(self, place):
        shape = [2, 3, 7, 9]
        eps = 0.005
        dtype = np.float64

G
GGBond8488 已提交
178
        x = paddle.static.data('x', shape, dtype)
179
        x.persistable = True
180
        y = F.relu(x)
181 182 183
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
        x_arr[np.abs(x_arr) < 0.005] = 0.02

184 185 186
        gradient_checker.double_grad_check(
            [x], y, x_init=x_arr, place=place, eps=eps
        )
187 188

    def test_grad(self):
189
        paddle.enable_static()
190 191 192 193 194 195 196 197
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestLeakyReluDoubleGradCheck(unittest.TestCase):
198 199 200
    def leaky_relu_wrapper(self, x):
        return paddle.nn.functional.leaky_relu(x[0], negative_slope=0.2)

201 202 203 204 205 206 207
    @prog_scope()
    def func(self, place):
        shape = [2, 3, 7, 9]
        eps = 0.005
        alpha = 0.2
        dtype = np.float64

G
GGBond8488 已提交
208
        x = paddle.static.data('x', shape, dtype)
209 210
        x.persistable = True

211
        y = paddle.nn.functional.leaky_relu(x, alpha)
212 213 214
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
        x_arr[np.abs(x_arr) < 0.005] = 0.02

215 216 217 218 219 220
        gradient_checker.double_grad_check(
            [x], y, x_init=x_arr, place=place, eps=eps
        )
        gradient_checker.double_grad_check_for_dygraph(
            self.leaky_relu_wrapper, [x], y, x_init=x_arr, place=place
        )
221 222

    def test_grad(self):
223
        paddle.enable_static()
224 225 226 227 228 229 230
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places = [fluid.CUDAPlace(0)]
        for p in places:
            self.func(p)


D
Double_V 已提交
231
class TestELUDoubleGradCheck(unittest.TestCase):
232 233 234
    def elu_wrapper(self, x):
        return paddle.nn.functional.elu(x[0], alpha=0.2)

D
Double_V 已提交
235 236
    @prog_scope()
    def func(self, place):
237
        shape = [2, 4, 4, 4]
D
Double_V 已提交
238
        eps = 1e-6
239
        alpha = 0.2
D
Double_V 已提交
240
        dtype = np.float64
241
        SEED = 0
D
Double_V 已提交
242

G
GGBond8488 已提交
243
        x = paddle.static.data('x', shape, dtype)
D
Double_V 已提交
244 245
        x.persistable = True

246
        y = paddle.nn.functional.elu(x, alpha=alpha)
247
        np.random.RandomState(SEED)
D
Double_V 已提交
248
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
249 250 251 252 253 254
        gradient_checker.double_grad_check(
            [x], y, x_init=x_arr, place=place, eps=eps
        )
        gradient_checker.double_grad_check_for_dygraph(
            self.elu_wrapper, [x], y, x_init=x_arr, place=place
        )
D
Double_V 已提交
255 256

    def test_grad(self):
257
        paddle.enable_static()
D
Double_V 已提交
258 259 260 261 262 263 264
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


265
class TestCELUDoubleGradCheck(unittest.TestCase):
266 267 268
    def celu_wrapper(self, x):
        return paddle.nn.functional.celu(x[0], alpha=0.2)

269 270 271 272 273 274 275 276
    @prog_scope()
    def func(self, place):
        shape = [2, 4, 4, 4]
        eps = 1e-6
        alpha = 0.2
        dtype = np.float64
        SEED = 0

G
GGBond8488 已提交
277
        x = paddle.static.data('x', shape, dtype)
278 279 280 281 282
        x.persistable = True

        y = F.celu(x, alpha=alpha)
        np.random.RandomState(SEED)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
283 284 285 286 287 288
        gradient_checker.double_grad_check(
            [x], y, x_init=x_arr, place=place, eps=eps
        )
        gradient_checker.double_grad_check_for_dygraph(
            self.celu_wrapper, [x], y, x_init=x_arr, place=place
        )
289 290

    def test_grad(self):
291
        paddle.enable_static()
292 293 294 295 296 297 298
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


W
will-jl944 已提交
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
class TestSoftplusDoubleGradCheck(unittest.TestCase):
    def softplus_wrapper(self, x):
        return F.softplus(x[0], beta=1, threshold=20)

    @prog_scope()
    def func(self, place):
        shape = [2, 4, 4, 4]
        eps = 1e-6
        beta = 1
        threshold = 20
        dtype = np.float64
        SEED = 0

        x = paddle.static.data('x', shape, dtype)
        x.persistable = True

        y = F.softplus(x, beta=beta, threshold=threshold)
        np.random.RandomState(SEED)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
        gradient_checker.double_grad_check(
            [x], y, x_init=x_arr, place=place, eps=eps
        )
        gradient_checker.double_grad_check_for_dygraph(
            self.softplus_wrapper, [x], y, x_init=x_arr, place=place
        )

    def test_grad(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


334
class TestSqrtDoubleGradCheck(unittest.TestCase):
335 336 337
    def sqrt_wrapper(self, x):
        return paddle.sqrt(x[0])

338 339 340 341 342 343
    @prog_scope()
    def func(self, place):
        shape = [2, 3, 7, 9]
        eps = 0.0001
        dtype = np.float64

G
GGBond8488 已提交
344
        x = paddle.static.data('x', shape, dtype)
345 346
        x.persistable = True

347
        y = paddle.sqrt(x)
348 349
        x_arr = np.random.uniform(0.1, 1, shape).astype(dtype)

350 351 352 353 354 355
        gradient_checker.double_grad_check(
            [x], y, x_init=x_arr, place=place, eps=eps
        )
        gradient_checker.double_grad_check_for_dygraph(
            self.sqrt_wrapper, [x], y, x_init=x_arr, place=place
        )
356 357

    def test_grad(self):
358
        paddle.enable_static()
359 360 361 362 363 364 365
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places = [fluid.CUDAPlace(0)]
        for p in places:
            self.func(p)


W
whs 已提交
366
class TestRsqrtDoubleGradCheck(unittest.TestCase):
367 368 369
    def rsqrt_wrapper(self, x):
        return paddle.rsqrt(x[0])

W
whs 已提交
370 371 372 373 374 375
    @prog_scope()
    def func(self, place):
        shape = [2, 3, 7, 9]
        eps = 0.0001
        dtype = np.float64

G
GGBond8488 已提交
376
        x = paddle.static.data('x', shape, dtype)
W
whs 已提交
377 378
        x.persistable = True

379
        y = paddle.rsqrt(x)
W
whs 已提交
380 381
        x_arr = np.random.uniform(0.1, 1, shape).astype(dtype)

382 383 384 385 386 387
        gradient_checker.double_grad_check(
            [x], y, x_init=x_arr, place=place, eps=eps
        )
        gradient_checker.double_grad_check_for_dygraph(
            self.rsqrt_wrapper, [x], y, x_init=x_arr, place=place
        )
W
whs 已提交
388 389

    def test_grad(self):
390
        paddle.enable_static()
W
whs 已提交
391 392 393 394 395 396 397
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places = [fluid.CUDAPlace(0)]
        for p in places:
            self.func(p)


398
class TestSquareDoubleGradCheck(unittest.TestCase):
399 400 401
    def square_wrapper(self, x):
        return paddle.square(x[0])

402 403
    @prog_scope()
    def func(self, place):
T
tianshuo78520a 已提交
404
        # the shape of input variable should be clearly specified, not inlcude -1.
405 406 407 408
        shape = [2, 3, 7, 9]
        eps = 0.005
        dtype = np.float64

G
GGBond8488 已提交
409
        x = paddle.static.data('x', shape, dtype)
410
        x.persistable = True
411
        y = paddle.square(x)
412 413
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)

414 415 416 417 418 419
        gradient_checker.double_grad_check(
            [x], y, x_init=x_arr, place=place, eps=eps
        )
        gradient_checker.double_grad_check_for_dygraph(
            self.square_wrapper, [x], y, x_init=x_arr, place=place
        )
420 421

    def test_grad(self):
422
        paddle.enable_static()
423 424 425 426 427 428 429
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


430
class TestLogDoubleGradCheck(unittest.TestCase):
431 432 433
    def log_wrapper(self, x):
        return paddle.log(x[0])

434 435 436 437 438 439
    @prog_scope()
    def func(self, place):
        shape = [2, 3, 7, 9]
        eps = 1e-6
        dtype = np.float64

G
GGBond8488 已提交
440
        x = paddle.static.data('x', shape, dtype)
441
        x.persistable = True
442
        y = paddle.log(x)
443 444 445

        x_arr = np.random.uniform(0.1, 1, shape).astype(dtype)

446 447 448 449 450 451
        gradient_checker.double_grad_check(
            [x], y, x_init=x_arr, place=place, eps=eps
        )
        gradient_checker.double_grad_check_for_dygraph(
            self.log_wrapper, [x], y, x_init=x_arr, place=place
        )
452 453

    def test_grad(self):
454
        paddle.enable_static()
455 456 457 458 459 460 461
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


462 463 464 465 466 467 468 469 470
class TestSinDoubleGradCheck(unittest.TestCase):
    def sin_wrapper(self, x):
        return paddle.sin(x[0])

    @prog_scope()
    def func(self, place):
        shape = [2, 3, 7, 9]
        eps = 0.0005
        dtype = np.float64
G
GGBond8488 已提交
471
        x = paddle.static.data('x', shape, dtype=dtype)
472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
        x.persistable = True
        y = paddle.sin(x)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
        x_arr[np.abs(x_arr) < 0.005] = 0.002
        gradient_checker.double_grad_check(
            [x], y, x_init=x_arr, place=place, eps=eps
        )
        gradient_checker.double_grad_check_for_dygraph(
            self.sin_wrapper, [x], y, x_init=x_arr, place=place
        )

    def test_grad(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


492 493 494 495 496 497 498 499 500
class TestCosDoubleGradCheck(unittest.TestCase):
    def cos_wrapper(self, x):
        return paddle.cos(x[0])

    @prog_scope()
    def func(self, place):
        shape = [2, 3, 7, 9]
        eps = 0.0005
        dtype = np.float64
G
GGBond8488 已提交
501
        x = paddle.static.data('x', shape, dtype=dtype)
502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
        x.persistable = True
        y = paddle.cos(x)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
        x_arr[np.abs(x_arr) < 0.005] = 0.002
        gradient_checker.double_grad_check(
            [x], y, x_init=x_arr, place=place, eps=eps
        )
        gradient_checker.double_grad_check_for_dygraph(
            self.cos_wrapper, [x], y, x_init=x_arr, place=place
        )

    def test_grad(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


C
Charles-hit 已提交
522 523 524 525 526 527 528 529 530
class TestPowDoubleGradCheck1(unittest.TestCase):
    def pow_wrapper(self, x):
        return paddle.pow(x[0], 2)

    @prog_scope()
    def func(self, place):
        shape = [2, 3, 7, 9]
        eps = 1e-6
        dtype = np.float64
G
GGBond8488 已提交
531
        x = paddle.static.data('x', shape, dtype=dtype)
C
Charles-hit 已提交
532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559
        x.persistable = True
        y = paddle.pow(x, 2)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
        gradient_checker.double_grad_check(
            [x], y, x_init=x_arr, place=place, eps=eps
        )
        gradient_checker.double_grad_check_for_dygraph(
            self.pow_wrapper, [x], y, x_init=x_arr, place=place
        )

    def test_grad(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestPowDoubleGradCheck2(unittest.TestCase):
    def pow_wrapper(self, x):
        return paddle.pow(x[0], 1)

    @prog_scope()
    def func(self, place):
        shape = [2, 3, 7, 9]
        eps = 1e-6
        dtype = np.float64
G
GGBond8488 已提交
560
        x = paddle.static.data('x', shape, dtype=dtype)
C
Charles-hit 已提交
561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
        x.persistable = True
        y = paddle.pow(x, 1)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
        gradient_checker.double_grad_check(
            [x], y, x_init=x_arr, place=place, eps=eps
        )
        gradient_checker.double_grad_check_for_dygraph(
            self.pow_wrapper, [x], y, x_init=x_arr, place=place
        )

    def test_grad(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


580 581 582 583 584 585 586 587 588
class TestSinTripleGradCheck(unittest.TestCase):
    def sin_wrapper(self, x):
        return paddle.sin(x[0])

    @prog_scope()
    def func(self, place):
        shape = [2, 3, 7, 9]
        eps = 0.0005
        dtype = np.float64
G
GGBond8488 已提交
589
        x = paddle.static.data('x', shape, dtype=dtype)
590
        x.persistable = True
591
        y = paddle.sin(x)
592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609
        x_arr = np.random.random(shape).astype(dtype)
        x_arr[np.abs(x_arr) < 0.005] = 0.002
        gradient_checker.triple_grad_check(
            [x], y, x_init=x_arr, place=place, eps=eps
        )
        gradient_checker.triple_grad_check_for_dygraph(
            self.sin_wrapper, [x], y, x_init=x_arr, place=place
        )

    def test_grad(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


C
Charles-hit 已提交
610 611 612 613 614 615 616 617 618
class TestPowTripleGradCheck1(unittest.TestCase):
    def pow_wrapper(self, x):
        return paddle.pow(x[0], 1)

    @prog_scope()
    def func(self, place):
        shape = [2, 3, 7, 9]
        eps = 1e-6
        dtype = np.float64
G
GGBond8488 已提交
619
        x = paddle.static.data('x', shape, dtype=dtype)
C
Charles-hit 已提交
620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647
        x.persistable = True
        y = paddle.pow(x, 1)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
        gradient_checker.triple_grad_check(
            [x], y, x_init=x_arr, place=place, eps=eps
        )
        gradient_checker.triple_grad_check_for_dygraph(
            self.pow_wrapper, [x], y, x_init=x_arr, place=place
        )

    def test_grad(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestPowTripleGradCheck2(unittest.TestCase):
    def pow_wrapper(self, x):
        return paddle.pow(x[0], 2)

    @prog_scope()
    def func(self, place):
        shape = [2, 3, 7, 9]
        eps = 1e-6
        dtype = np.float64
G
GGBond8488 已提交
648
        x = paddle.static.data('x', shape, dtype=dtype)
C
Charles-hit 已提交
649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676
        x.persistable = True
        y = paddle.pow(x, 2)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
        gradient_checker.triple_grad_check(
            [x], y, x_init=x_arr, place=place, eps=eps
        )
        gradient_checker.triple_grad_check_for_dygraph(
            self.pow_wrapper, [x], y, x_init=x_arr, place=place
        )

    def test_grad(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


class TestPowTripleGradCheck3(unittest.TestCase):
    def pow_wrapper(self, x):
        return paddle.pow(x[0], 4)

    @prog_scope()
    def func(self, place):
        shape = [2, 3, 7, 9]
        eps = 1e-6
        dtype = np.float64
G
GGBond8488 已提交
677
        x = paddle.static.data('x', shape, dtype=dtype)
C
Charles-hit 已提交
678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696
        x.persistable = True
        y = paddle.pow(x, 4)
        x_arr = np.random.uniform(-1, 1, shape).astype(dtype)
        gradient_checker.triple_grad_check(
            [x], y, x_init=x_arr, place=place, eps=eps
        )
        gradient_checker.triple_grad_check_for_dygraph(
            self.pow_wrapper, [x], y, x_init=x_arr, place=place
        )

    def test_grad(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


697 698 699 700 701 702 703 704 705
class TestCosTripleGradCheck(unittest.TestCase):
    def cos_wrapper(self, x):
        return paddle.cos(x[0])

    @prog_scope()
    def func(self, place):
        shape = [2, 3, 7, 9]
        eps = 0.0005
        dtype = np.float64
G
GGBond8488 已提交
706
        x = paddle.static.data('x', shape, dtype=dtype)
707
        x.persistable = True
708
        y = paddle.cos(x)
709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726
        x_arr = np.random.random(shape).astype(dtype)
        x_arr[np.abs(x_arr) < 0.005] = 0.002
        gradient_checker.triple_grad_check(
            [x], y, x_init=x_arr, place=place, eps=eps
        )
        gradient_checker.triple_grad_check_for_dygraph(
            self.cos_wrapper, [x], y, x_init=x_arr, place=place
        )

    def test_grad(self):
        paddle.enable_static()
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for p in places:
            self.func(p)


727 728
if __name__ == "__main__":
    unittest.main()