activation_op.cc 16.7 KB
Newer Older
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Q
qijun 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Q
qijun 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Q
qijun 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Q
qijun 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/activation_op.h"
16

T
tink2123 已提交
17
#include <memory>
D
dzhwinter 已提交
18
#include <string>
19
#include <type_traits>
T
tink2123 已提交
20
#include <unordered_map>
21
#include <vector>
22

C
Charles-hit 已提交
23
#include "paddle/fluid/framework/infershape_utils.h"
24
#include "paddle/fluid/framework/op_version_registry.h"
25
#include "paddle/fluid/operators/common_infer_shape_functions.h"
26
#include "paddle/phi/backends/dynload/port.h"
27
#include "paddle/phi/core/kernel_registry.h"
C
Charles-hit 已提交
28
#include "paddle/phi/infermeta/backward.h"
Q
qijun 已提交
29

A
Adam 已提交
30 31
DECLARE_bool(use_mkldnn);

Q
qijun 已提交
32 33 34
namespace paddle {
namespace operators {

35 36
template <typename GradFunctor>
static constexpr bool CanInplaceAct() {
37 38
  return GradFunctor::FwdDeps() == ActBwdOpFwdDeps::kDepOut ||
         GradFunctor::FwdDeps() == ActBwdOpFwdDeps::kNoDeps;
39 40
}

41 42 43 44 45 46 47 48 49 50 51 52 53 54
#define REGISTER_ACTIVATION_OP_MAKER(OP_NAME, OP_COMMENT)           \
  class OP_NAME##OpMaker                                            \
      : public ::paddle::framework::OpProtoAndCheckerMaker {        \
   public:                                                          \
    void Make() override {                                          \
      AddInput("X",                                                 \
               "Input of " #OP_NAME                                 \
               " operator, an N-D Tensor, with data type float32, " \
               "float64 or float16.");                              \
      AddOutput("Out",                                              \
                "Output of " #OP_NAME                               \
                " operator, a Tensor with shape same as input.");   \
      AddComment(OP_COMMENT);                                       \
    }                                                               \
D
dzhwinter 已提交
55
  }
D
dzhwinter 已提交
56

H
hong 已提交
57 58
template <ActBwdOpFwdDeps kDepValue, typename T>
class ActivationGradOpMaker : public framework::SingleGradOpMaker<T> {
59
 public:
H
hong 已提交
60
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
61 62

 protected:
63
  void Apply(GradOpPtr<T> op) const override {
H
hong 已提交
64 65 66 67
    op->SetType(this->ForwardOpType() + "_grad");
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetAttrMap(this->Attrs());
68

A
Adam 已提交
69 70
    if ((static_cast<int>(kDepValue) &
         static_cast<int>(ActBwdOpFwdDeps::kDepX)) ||
71 72
        FLAGS_use_mkldnn ||
        (op->HasAttr("use_mkldnn") &&
R
Ruibiao Chen 已提交
73
         PADDLE_GET_CONST(bool, op->GetAttr("use_mkldnn")))) {
74
      op->SetInput("X", this->Input("X"));  // x
75 76 77 78
    }

    if (static_cast<int>(kDepValue) &
        static_cast<int>(ActBwdOpFwdDeps::kDepOut)) {
79
      op->SetInput("Out", this->Output("Out"));  // out
80
    }
D
dzhwinter 已提交
81
  }
82
};
D
dzhwinter 已提交
83

84 85 86
phi::KernelKey GetKernelType(const framework::ExecutionContext& ctx,
                             const framework::OperatorWithKernel& oper,
                             const std::string& name) {
87
  auto data_type = oper.IndicateVarDataType(ctx, name);
88 89 90 91 92 93 94 95 96 97
  // FIXME(liuwei1031) temporarily disable the code to unblock users
  // TODO(liuwei1031) figure out the reason behind
  // https://github.com/PaddlePaddle/Paddle/issues/16096
  // and re-enable this in the future
  // #ifdef PADDLE_WITH_CUDA
  //   auto it1 = oper.Attrs().find("use_cudnn");
  //   if (it1 != oper.Attrs().end() && platform::CanCUDNNBeUsed(ctx)) {
  //     library = framework::LibraryType::kCUDNN;
  //   }
  // #endif
98
  return phi::KernelKey(data_type, ctx.GetPlace());
99 100
}

Q
qijun 已提交
101 102 103 104
class ActivationOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

105
  void InferShape(framework::InferShapeContext* ctx) const override {
106
    ctx->ShareDim("X", /*->*/ "Out");
F
fengjiayi 已提交
107
    ctx->ShareLoD("X", /*->*/ "Out");
Q
qijun 已提交
108
  }
109

110
 protected:
111
  phi::KernelKey GetExpectedKernelType(
112 113 114
      const framework::ExecutionContext& ctx) const override {
    return GetKernelType(ctx, *this, "X");
  }
Q
qijun 已提交
115 116
};

C
chengduo 已提交
117 118 119
class ActivationOpInferVarType
    : public framework::PassInDtypeAndVarTypeToOutput {
 protected:
120
  std::unordered_map<std::string, std::string>& GetInputOutputWithSameType()
C
chengduo 已提交
121
      const override {
122 123
    static std::unordered_map<std::string, std::string> m{{"X", /*->*/ "Out"}};
    return m;
124 125 126
  }
};

Q
qijun 已提交
127 128 129 130
class ActivationOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

131
  void InferShape(framework::InferShapeContext* ctx) const override {
132 133 134
    auto out_grad_name = framework::GradVarName("Out");
    ctx->ShareDim(out_grad_name, framework::GradVarName("X"));
    ctx->ShareLoD(out_grad_name, framework::GradVarName("X"));
Q
qijun 已提交
135
  }
136

137
 protected:
138
  phi::KernelKey GetExpectedKernelType(
139
      const framework::ExecutionContext& ctx) const override {
140
    return GetKernelType(ctx, *this, framework::GradVarName("Out"));
141
  }
Q
qijun 已提交
142 143
};

144 145
class SoftReluOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
146
  void Make() override {
147
    AddInput("X", "Input of SoftRelu operator");
F
fengjiayi 已提交
148
    AddOutput("Out", "Output of SoftRelu operator");
149 150
    AddAttr<float>("threshold", "The threshold value of SoftRelu")
        .SetDefault(40.0f);
K
Kexin Zhao 已提交
151
    AddComment(R"DOC(
K
kexinzhao 已提交
152
SoftRelu Activation Operator.
K
Kexin Zhao 已提交
153

154
$$out = \ln(1 + \exp(\max(\min(x, threshold), -threshold)))$$
K
Kexin Zhao 已提交
155 156

)DOC");
157 158 159
  }
};

160 161
class Relu6OpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
162
  void Make() override {
Z
zhupengyang 已提交
163 164 165 166 167 168 169 170
    AddInput("X",
             "Input of relu6 operator, an N-D Tensor, "
             "with data type float32, float64.");
    AddOutput(
        "Out",
        "Output of relu6 operator, a Tensor with the same shape as input.");
    AddAttr<float>("threshold",
                   "The threshold value of Relu6. Default is 6.0. ")
171
        .SetDefault(6.0f);
K
Kexin Zhao 已提交
172
    AddComment(R"DOC(
K
kexinzhao 已提交
173
Relu6 Activation Operator.
K
Kexin Zhao 已提交
174

175
$$out = \min(\max(0, x), threshold)$$
K
Kexin Zhao 已提交
176 177

)DOC");
178 179 180
  }
};

A
Abhinav Arora 已提交
181 182
class SwishOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
183
  void Make() override {
A
Abhinav Arora 已提交
184
    AddInput("X", "Input of Swish operator");
F
fengjiayi 已提交
185
    AddOutput("Out", "Output of Swish operator");
A
Abhinav Arora 已提交
186 187 188 189
    AddAttr<float>("beta", "Constant beta of swish operator").SetDefault(1.0f);
    AddComment(R"DOC(
Swish Activation Operator.

190
$$out = \\frac{x}{1 + e^{- \beta \ x}}$$
A
Abhinav Arora 已提交
191 192 193 194 195

)DOC");
  }
};

196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
class MishOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "Input of Mish operator");
    AddOutput("Out", "Output of Mish operator");
    AddAttr<float>(
        "threshold",
        "Constant threshold of softplus in Mish operator. Approximate value "
        "of softplus will be used if absolute value of input is greater than "
        ":attr:`threshold`")
        .SetDefault(20.f);
    AddComment(R"DOC(
Mish Activation Operator.

..  math::
    softplus(x) = \begin{cases}
            x, \text{if } x > \text{threshold} \\
            \ln(1 + e^{x}),  \text{otherwise}
          \end{cases}

    out = x * \tanh(softplus(x))

)DOC");
  }
};

H
huangjun12 已提交
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
class HardSwishOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "Input of HardSwish operator");
    AddOutput("Out", "Output of HardSwish operator");
    AddAttr<float>("threshold", "The threshold parameter of HardSwish operator")
        .SetDefault(6.0f);
    AddAttr<float>("scale", "The scale parameter of HardSwish operator")
        .SetDefault(6.0f);
    AddAttr<float>("offset", "The offset parameter of HardSwish operator")
        .SetDefault(3.0f);
    AddComment(R"DOC(
HardSwish Activation Operator.

The hard version of swish(https://arxiv.org/pdf/1905.02244.pdf).

238
$$out = \frac{x * (min(max(0, x+offset), threshold))}{scale}$$
H
huangjun12 已提交
239 240 241 242 243 244 245 246 247

The threshold and scale should be positive. The offset can be either positive or negative.
The default parameters are set according to the above reference.
It is recommended to use the defaults for this activation.

)DOC");
  }
};

248
template <ActBwdOpFwdDeps kDepValue>
249 250 251 252 253
class ActivationOpDoubleGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
254 255
    if (static_cast<int>(kDepValue) &
        static_cast<int>(ActBwdOpFwdDeps::kDepX)) {
256
      if (ctx->HasOutput("DX")) {
257 258 259
        ctx->ShareDim("X", "DX");
        ctx->ShareLoD("X", "DX");
      }
260
      if (ctx->HasOutput("DDOut")) {
261 262 263
        ctx->ShareDim("X", "DDOut");
        ctx->ShareLoD("X", "DDOut");
      }
264
    }
265 266
    if (static_cast<int>(kDepValue) &
        static_cast<int>(ActBwdOpFwdDeps::kDepOut)) {
267
      if (ctx->HasOutput("DOut")) {
268 269 270
        ctx->ShareDim("Out", "DOut");
        ctx->ShareLoD("Out", "DOut");
      }
271 272 273 274
      if (ctx->HasOutput("DDOut")) {
        ctx->ShareDim("Out", "DDOut");
        ctx->ShareLoD("Out", "DDOut");
      }
275 276 277 278
      if (ctx->HasOutput("DOutNew")) {
        ctx->ShareDim("Out", "DOutNew");
        ctx->ShareLoD("Out", "DOutNew");
      }
279 280 281 282
    }
  }

 protected:
283
  phi::KernelKey GetExpectedKernelType(
284 285 286 287 288 289 290 291 292 293 294
      const framework::ExecutionContext& ctx) const override {
    return GetKernelType(ctx, *this, "DDX");
  }
};

template <ActBwdOpFwdDeps kDepValue>
class ActivationOpDoubleGrad2 : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
295 296
    if (static_cast<int>(kDepValue) &
        static_cast<int>(ActBwdOpFwdDeps::kDepX)) {
297 298 299 300 301
      if (ctx->HasOutput("DDOut")) {
        ctx->ShareDim("X", "DDOut");
        ctx->ShareLoD("X", "DDOut");
      }
    }
302 303
    if (static_cast<int>(kDepValue) &
        static_cast<int>(ActBwdOpFwdDeps::kDepOut)) {
304
      if (ctx->HasOutput("DDOut")) {
305 306 307
        ctx->ShareDim("Out", "DDOut");
        ctx->ShareLoD("Out", "DDOut");
      }
308 309 310 311
    }
  }

 protected:
312
  phi::KernelKey GetExpectedKernelType(
313 314 315 316 317
      const framework::ExecutionContext& ctx) const override {
    return GetKernelType(ctx, *this, "DDX");
  }
};

318 319 320 321 322 323
template <ActBwdOpFwdDeps kDepValue>
class ActivationOpTripleGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
324 325
    if (static_cast<int>(kDepValue) &
        static_cast<int>(ActBwdOpFwdDeps::kDepX)) {
326 327 328 329 330 331 332 333 334
      if (ctx->HasOutput("DX")) {
        ctx->ShareDim("X", "DX");
        ctx->ShareLoD("X", "DX");
      }
      if (ctx->HasOutput("DDOut")) {
        ctx->ShareDim("X", "DDOut");
        ctx->ShareLoD("X", "DDOut");
      }
    }
335 336
    if (static_cast<int>(kDepValue) &
        static_cast<int>(ActBwdOpFwdDeps::kDepOut)) {
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
      if (ctx->HasOutput("D_DOut")) {
        ctx->ShareDim("Out", "D_DOut");
        ctx->ShareLoD("Out", "D_DOut");
      }
      if (ctx->HasOutput("D_OutNew")) {
        ctx->ShareDim("Out", "D_OutNew");
        ctx->ShareLoD("Out", "D_OutNew");
      }
      if (ctx->HasOutput("D_DDx")) {
        ctx->ShareDim("DDX", "D_DDx");
        ctx->ShareLoD("DDX", "D_DDx");
      }
    }
  }

 protected:
353
  phi::KernelKey GetExpectedKernelType(
354 355 356 357 358
      const framework::ExecutionContext& ctx) const override {
    return GetKernelType(ctx, *this, "DDX");
  }
};

359
DECLARE_INPLACE_OP_INFERER(ActivationGradOpInplaceInferer,
360 361
                           {framework::GradVarName("Out"),  // dout
                            framework::GradVarName("X")});  // dx
362
DECLARE_INPLACE_OP_INFERER(ActivationDoubleGradOpInplaceInferer,
363
                           {"DDX", "DDOut"});
364 365
DECLARE_INPLACE_OP_INFERER(ActivationTripleGradOpInplaceInferer,
                           {"DDX", "D_DOut"});
366

367
DECLARE_INPLACE_OP_INFERER(ActFwdInplaceInferer, {"X", "Out"});
368 369 370 371 372 373 374 375 376 377 378 379

#define DEFINE_ACTIVATION_CPU_KERNEL(op_name, functor, grad_functor)           \
  template <typename T, typename DeviceContext>                                \
  class op_name##Kernel : public ActivationKernel<DeviceContext, functor<T>> { \
  };                                                                           \
                                                                               \
  template <typename T, typename DeviceContext>                                \
  class op_name##GradKernel                                                    \
      : public ActivationGradKernel<DeviceContext, grad_functor<T>> {};

DEFINE_ACTIVATION_CPU_KERNEL(SoftRelu, SoftReluFunctor, SoftReluGradFunctor)

Q
qijun 已提交
380 381 382 383
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
384
namespace plat = paddle::platform;
385

386 387
#define REGISTER_ACTIVATION_OP(KERNEL_TYPE, OP_NAME, functor, grad_functor) \
  REGISTER_OPERATOR(                                                        \
388 389 390
      KERNEL_TYPE,                                                          \
      ops::ActivationOp,                                                    \
      ops::OP_NAME##OpMaker,                                                \
391
      ops::ActivationOpInferVarType,                                        \
H
hong 已提交
392 393 394 395
      ops::ActivationGradOpMaker<ops::grad_functor<float>::FwdDeps(),       \
                                 paddle::framework::OpDesc>,                \
      ops::ActivationGradOpMaker<ops::grad_functor<float>::FwdDeps(),       \
                                 paddle::imperative::OpBase>,               \
396
      std::conditional<ops::CanInplaceAct<ops::grad_functor<float>>(),      \
397 398 399 400
                       ops::ActFwdInplaceInferer,                           \
                       void>::type);                                        \
  REGISTER_OPERATOR(KERNEL_TYPE##_grad,                                     \
                    ops::ActivationOpGrad,                                  \
401
                    ops::ActivationGradOpInplaceInferer);
402 403

FOR_EACH_ACTIVATION_OP(REGISTER_ACTIVATION_OP);
404 405 406 407 408 409 410 411 412 413 414 415

#define REGISTER_ACTIVATION_CPU_KERNEL(act_type, op_name)                \
  PD_REGISTER_STRUCT_KERNEL(                                             \
      act_type, CPU, ALL_LAYOUT, ops::op_name##Kernel, float, double) {} \
  PD_REGISTER_STRUCT_KERNEL(act_type##_grad,                             \
                            CPU,                                         \
                            ALL_LAYOUT,                                  \
                            ops::op_name##GradKernel,                    \
                            float,                                       \
                            double) {}

REGISTER_ACTIVATION_CPU_KERNEL(soft_relu, SoftRelu)
416

417
REGISTER_ACTIVATION_OP(relu6, Relu6, Relu6Functor, Relu6GradFunctor);
418
REGISTER_ACTIVATION_OP(mish, Mish, MishFunctor, MishGradFunctor);
419 420 421
REGISTER_ACTIVATION_OP(hard_swish,
                       HardSwish,
                       HardSwishFunctor,
Y
YuanRisheng 已提交
422 423
                       HardSwishGradFunctor);
REGISTER_ACTIVATION_OP(swish, Swish, SwishFunctor, SwishGradFunctor);
424

425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
/* ==========================  register checkpoint ===========================*/
REGISTER_OP_VERSION(leaky_relu)
    .AddCheckpoint(
        R"ROC(fix leaky_relu, bahavior changed when alpha < 0 or alpha > 1)ROC",
        paddle::framework::compatible::OpVersionDesc()
            .BugfixWithBehaviorChanged(
                "leaky_relu calculate formula before checkponit: out = max(x, "
                "alpha * x); after checkpoint: out = x if x > 0 else alpha * "
                "x"));

REGISTER_OP_VERSION(hard_shrink)
    .AddCheckpoint(
        R"ROC(fix hard_shrink, bahavior changed when threshold<0)ROC",
        paddle::framework::compatible::OpVersionDesc()
            .BugfixWithBehaviorChanged(
                "hard_shrink calculate formula before checkponit: out = x * "
                "((x < -threshold) + (x > threshold)); after checkpoint: out = "
                "x * (((x < -threshold) + (x > threshold)) > 0)"));

444 445
REGISTER_OP_VERSION(softplus).AddCheckpoint(
    R"ROC(add new attributes [beta] and [threshold], and the formula is changed to "
446 447
         " softplus(x) = \\frac{1}{beta} * \\log(1 + e^{beta * x}) \\\\ \\text{For numerical"
         " stability, the implementation reverts to the linear function when: beta * x > threshold.})ROC",
448 449 450 451 452 453 454
    paddle::framework::compatible::OpVersionDesc()
        .NewAttr("beta", "The beta value of the new formula", 1.0f)
        .NewAttr("threshold", "The threshold value of the new formula", 20.0f));

REGISTER_OP_VERSION(mish).AddCheckpoint(
    R"ROC(add new attributes [use_mkldnn], and when computing softplus the formula is changed as the new veriosn of softplus)ROC",
    paddle::framework::compatible::OpVersionDesc().NewAttr(
455 456
        "use_mkldnn",
        "(bool, default false) Only used in mkldnn kernel",
457
        false));
458

459
/* ========================================================================== */