normal.py 10.9 KB
Newer Older
1
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
#
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
9 10 11 12 13 14 15
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import math
16 17
from collections.abc import Iterable

18
import numpy as np
19

20
import paddle
21
from paddle.distribution import distribution
22
from paddle.fluid.data_feeder import check_type, convert_dtype
23
from paddle.fluid.framework import _non_static_mode
24 25
from paddle.fluid.layers import tensor
from paddle.tensor import random
26

27

28
class Normal(distribution.Distribution):
29 30 31 32 33 34 35 36
    r"""The Normal distribution with location `loc` and `scale` parameters.

    Mathematical details

    The probability density function (pdf) is

    .. math::

37
        pdf(x; \mu, \sigma) = \frac{1}{Z}e^{\frac {-0.5 (x - \mu)^2}  {\sigma^2} }
38 39 40 41 42 43 44 45 46 47 48 49

    .. math::

        Z = (2 \pi \sigma^2)^{0.5}

    In the above equation:

    * :math:`loc = \mu`: is the mean.
    * :math:`scale = \sigma`: is the std.
    * :math:`Z`: is the normalization constant.

    Args:
50 51
        loc(int|float|list|tuple|numpy.ndarray|Tensor): The mean of normal distribution.The data type is float32 and float64.
        scale(int|float|list|tuple|numpy.ndarray|Tensor): The std of normal distribution.The data type is float32 and float64.
52 53 54 55
        name(str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Examples:
        .. code-block:: python
56

57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
            import paddle
            from paddle.distribution import Normal

            # Define a single scalar Normal distribution.
            dist = Normal(loc=0., scale=3.)
            # Define a batch of two scalar valued Normals.
            # The first has mean 1 and standard deviation 11, the second 2 and 22.
            dist = Normal(loc=[1., 2.], scale=[11., 22.])
            # Get 3 samples, returning a 3 x 2 tensor.
            dist.sample([3])

            # Define a batch of two scalar valued Normals.
            # Both have mean 1, but different standard deviations.
            dist = Normal(loc=1., scale=[11., 22.])

            # Complete example
            value_tensor = paddle.to_tensor([0.8], dtype="float32")

            normal_a = Normal([0.], [1.])
            normal_b = Normal([0.5], [2.])
            sample = normal_a.sample([2])
            # a random tensor created by normal distribution with shape: [2, 1]
            entropy = normal_a.entropy()
80
            # [1.4189385] with shape: [1]
81 82 83 84 85
            lp = normal_a.log_prob(value_tensor)
            # [-1.2389386] with shape: [1]
            p = normal_a.probs(value_tensor)
            # [0.28969154] with shape: [1]
            kl = normal_a.kl_divergence(normal_b)
86
            # [0.34939718] with shape: [1]
87 88 89
    """

    def __init__(self, loc, scale, name=None):
J
Jiabin Yang 已提交
90
        if not _non_static_mode():
91 92 93 94 95 96 97 98 99 100 101 102
            check_type(
                loc,
                'loc',
                (int, float, np.ndarray, tensor.Variable, list, tuple),
                'Normal',
            )
            check_type(
                scale,
                'scale',
                (int, float, np.ndarray, tensor.Variable, list, tuple),
                'Normal',
            )
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119

        self.all_arg_is_float = False
        self.name = name if name is not None else 'Normal'
        self.dtype = 'float32'

        if isinstance(loc, int):
            loc = float(loc)
        if isinstance(scale, int):
            scale = float(scale)

        if self._validate_args(loc, scale):
            self.loc = loc
            self.scale = scale
            self.dtype = convert_dtype(loc.dtype)
        else:
            if isinstance(loc, float) and isinstance(scale, float):
                self.all_arg_is_float = True
120 121 122 123
            if isinstance(loc, np.ndarray) and str(loc.dtype) in [
                'float32',
                'float64',
            ]:
124
                self.dtype = loc.dtype
125 126 127 128
            elif isinstance(scale, np.ndarray) and str(scale.dtype) in [
                'float32',
                'float64',
            ]:
129 130 131 132
                self.dtype = scale.dtype
            # pylint: disable=unbalanced-tuple-unpacking
            self.loc, self.scale = self._to_tensor(loc, scale)
            if self.dtype != convert_dtype(self.loc.dtype):
133 134
                self.loc = paddle.cast(self.loc, dtype=self.dtype)
                self.scale = paddle.cast(self.scale, dtype=self.dtype)
135
        super().__init__(self.loc.shape)
136

137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
    @property
    def mean(self):
        """Mean of multinomial distribuion.

        Returns:
            Tensor: mean value.
        """
        return self.loc

    @property
    def variance(self):
        """Variance of lognormal distribution.

        Returns:
            Tensor: variance value.
        """
        return self.scale.pow(2)

    def sample(self, shape=(), seed=0):
156 157 158
        """Generate samples of the specified shape.

        Args:
159
            shape (Sequence[int], optional): Shape of the generated samples.
160
            seed (int): Python integer number.
161 162

        Returns:
163
            Tensor, A tensor with prepended dimensions shape.The data type is float32.
164 165

        """
166 167 168
        if not isinstance(shape, Iterable):
            raise TypeError('sample shape must be Iterable object.')

J
Jiabin Yang 已提交
169
        if not _non_static_mode():
170 171
            check_type(seed, 'seed', (int), 'sample')

172
        shape = list(shape)
173 174
        batch_shape = list((self.loc + self.scale).shape)
        name = self.name + '_sample'
175
        if -1 in batch_shape:
176 177
            output_shape = shape + batch_shape
            zero_tmp = tensor.fill_constant_batch_size_like(
178 179
                self.loc + self.scale, batch_shape + shape, self.dtype, 0.0
            )
180
            zero_tmp_reshape = paddle.reshape(zero_tmp, output_shape)
181

2
201716010711 已提交
182
            zero_tmp_shape = paddle.shape(zero_tmp_reshape)
183
            normal_random_tmp = random.gaussian(
184 185
                zero_tmp_shape, mean=0.0, std=1.0, seed=seed, dtype=self.dtype
            )
186
            output = normal_random_tmp * (zero_tmp_reshape + self.scale)
187
            output = paddle.add(output, self.loc, name=name)
188 189 190
            return output
        else:
            output_shape = shape + batch_shape
191
            output = random.gaussian(
192
                output_shape, mean=0.0, std=1.0, seed=seed, dtype=self.dtype
193
            ) * (paddle.zeros(output_shape, dtype=self.dtype) + self.scale)
194
            output = paddle.add(output, self.loc, name=name)
195
            if self.all_arg_is_float:
196
                return paddle.reshape(output, shape, name=name)
197 198 199
            else:
                return output

200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
    def rsample(self, shape=()):
        """Generate reparameterized samples of the specified shape.

        Args:
          shape (Sequence[int], optional): Shape of the generated samples.

        Returns:
          Tensor: A tensor with prepended dimensions shape.The data type is float32.

        """
        if not isinstance(shape, Iterable):
            raise TypeError('sample shape must be Iterable object.')

        shape = self._extend_shape(tuple(shape))
        eps = paddle.normal(shape=shape)
215
        return self.loc + eps * self.scale
216

217 218 219 220 221 222 223
    def entropy(self):
        r"""Shannon entropy in nats.

        The entropy is

        .. math::

224
            entropy(\sigma) = 0.5 \log (2 \pi e \sigma^2)
225 226 227 228 229 230

        In the above equation:

        * :math:`scale = \sigma`: is the std.

        Returns:
231
            Tensor, Shannon entropy of normal distribution.The data type is float32.
232 233 234 235

        """
        name = self.name + '_entropy'
        batch_shape = list((self.loc + self.scale).shape)
236 237 238 239 240 241
        if -1 in batch_shape:
            zero_tmp = tensor.fill_constant_batch_size_like(
                self.loc + self.scale, batch_shape, self.dtype, 0.0
            )
        else:
            zero_tmp = paddle.full(batch_shape, 0.0, self.dtype)
242
        return paddle.add(
243
            0.5 + zero_tmp,
244
            0.5 * math.log(2 * math.pi) + paddle.log(self.scale + zero_tmp),
245 246
            name=name,
        )
247 248 249 250 251 252 253 254

    def log_prob(self, value):
        """Log probability density/mass function.

        Args:
          value (Tensor): The input tensor.

        Returns:
255
          Tensor: log probability.The data type is same with :attr:`value` .
256 257 258 259 260 261

        """
        name = self.name + '_log_prob'
        value = self._check_values_dtype_in_probs(self.loc, value)

        var = self.scale * self.scale
262
        log_scale = paddle.log(self.scale)
263
        return paddle.subtract(
264 265 266 267
            -1.0 * ((value - self.loc) * (value - self.loc)) / (2.0 * var),
            log_scale + math.log(math.sqrt(2.0 * math.pi)),
            name=name,
        )
268 269 270 271 272

    def probs(self, value):
        """Probability density/mass function.

        Args:
273
            value (Tensor): The input tensor.
274 275

        Returns:
276
            Tensor, probability. The data type is same with :attr:`value` .
277 278 279 280 281 282

        """
        name = self.name + '_probs'
        value = self._check_values_dtype_in_probs(self.loc, value)

        var = self.scale * self.scale
283
        return paddle.divide(
284
            paddle.exp(
285 286 287 288 289
                -1.0 * ((value - self.loc) * (value - self.loc)) / (2.0 * var)
            ),
            (math.sqrt(2 * math.pi) * self.scale),
            name=name,
        )
290 291 292 293 294 295 296 297

    def kl_divergence(self, other):
        r"""The KL-divergence between two normal distributions.

        The probability density function (pdf) is

        .. math::

298
            KL\_divergence(\mu_0, \sigma_0; \mu_1, \sigma_1) = 0.5 (ratio^2 + (\frac{diff}{\sigma_1})^2 - 1 - 2 \ln {ratio})
299 300 301

        .. math::

302
            ratio = \frac{\sigma_0}{\sigma_1}
303

304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
        .. math::

            diff = \mu_1 - \mu_0

        In the above equation:

        * :math:`loc = \mu_0`: is the mean of current Normal distribution.
        * :math:`scale = \sigma_0`: is the std of current Normal distribution.
        * :math:`loc = \mu_1`: is the mean of other Normal distribution.
        * :math:`scale = \sigma_1`: is the std of other Normal distribution.
        * :math:`ratio`: is the ratio of scales.
        * :math:`diff`: is the difference between means.

        Args:
            other (Normal): instance of Normal.

        Returns:
321
            Tensor, kl-divergence between two normal distributions.The data type is float32.
322 323

        """
J
Jiabin Yang 已提交
324
        if not _non_static_mode():
325 326 327 328
            check_type(other, 'other', Normal, 'kl_divergence')

        name = self.name + '_kl_divergence'
        var_ratio = self.scale / other.scale
329
        var_ratio = var_ratio * var_ratio
330
        t1 = (self.loc - other.loc) / other.scale
331
        t1 = t1 * t1
332
        return paddle.add(
333
            0.5 * var_ratio, 0.5 * (t1 - 1.0 - paddle.log(var_ratio)), name=name
334
        )