normal.py 11.3 KB
Newer Older
1
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
#
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
9 10 11 12 13 14 15 16
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import math
import numpy as np
17
import paddle
18
from paddle.distribution import distribution
19 20 21 22
from paddle.fluid.data_feeder import (check_type, convert_dtype)
from paddle.fluid.framework import _non_static_mode
from paddle.fluid.layers import (elementwise_add, elementwise_div,
                                 elementwise_sub, nn, ops, tensor)
23 24 25 26
try:
    from collections.abc import Iterable
except:
    from collections import Iterable
27 28


29
class Normal(distribution.Distribution):
30 31 32 33 34 35 36 37
    r"""The Normal distribution with location `loc` and `scale` parameters.

    Mathematical details

    The probability density function (pdf) is

    .. math::

38
        pdf(x; \mu, \sigma) = \frac{1}{Z}e^{\frac {-0.5 (x - \mu)^2}  {\sigma^2} }
39 40 41 42 43 44 45 46 47 48 49 50

    .. math::

        Z = (2 \pi \sigma^2)^{0.5}

    In the above equation:

    * :math:`loc = \mu`: is the mean.
    * :math:`scale = \sigma`: is the std.
    * :math:`Z`: is the normalization constant.

    Args:
51 52
        loc(int|float|list|tuple|numpy.ndarray|Tensor): The mean of normal distribution.The data type is float32 and float64.
        scale(int|float|list|tuple|numpy.ndarray|Tensor): The std of normal distribution.The data type is float32 and float64.
53 54 55 56
        name(str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Examples:
        .. code-block:: python
57

58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
            import paddle
            from paddle.distribution import Normal

            # Define a single scalar Normal distribution.
            dist = Normal(loc=0., scale=3.)
            # Define a batch of two scalar valued Normals.
            # The first has mean 1 and standard deviation 11, the second 2 and 22.
            dist = Normal(loc=[1., 2.], scale=[11., 22.])
            # Get 3 samples, returning a 3 x 2 tensor.
            dist.sample([3])

            # Define a batch of two scalar valued Normals.
            # Both have mean 1, but different standard deviations.
            dist = Normal(loc=1., scale=[11., 22.])

            # Complete example
            value_tensor = paddle.to_tensor([0.8], dtype="float32")

            normal_a = Normal([0.], [1.])
            normal_b = Normal([0.5], [2.])
            sample = normal_a.sample([2])
            # a random tensor created by normal distribution with shape: [2, 1]
            entropy = normal_a.entropy()
            # [1.4189385] with shape: [1]
            lp = normal_a.log_prob(value_tensor)
            # [-1.2389386] with shape: [1]
            p = normal_a.probs(value_tensor)
            # [0.28969154] with shape: [1]
            kl = normal_a.kl_divergence(normal_b)
            # [0.34939718] with shape: [1]
88 89 90
    """

    def __init__(self, loc, scale, name=None):
J
Jiabin Yang 已提交
91
        if not _non_static_mode():
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
            check_type(loc, 'loc',
                       (int, float, np.ndarray, tensor.Variable, list, tuple),
                       'Normal')
            check_type(scale, 'scale',
                       (int, float, np.ndarray, tensor.Variable, list, tuple),
                       'Normal')

        self.batch_size_unknown = False
        self.all_arg_is_float = False
        self.name = name if name is not None else 'Normal'
        self.dtype = 'float32'

        if isinstance(loc, int):
            loc = float(loc)
        if isinstance(scale, int):
            scale = float(scale)

        if self._validate_args(loc, scale):
            self.batch_size_unknown = True
            self.loc = loc
            self.scale = scale
            self.dtype = convert_dtype(loc.dtype)
        else:
            if isinstance(loc, float) and isinstance(scale, float):
                self.all_arg_is_float = True
117 118
            if isinstance(loc, np.ndarray) and str(
                    loc.dtype) in ['float32', 'float64']:
119
                self.dtype = loc.dtype
120 121
            elif isinstance(scale, np.ndarray) and str(
                    scale.dtype) in ['float32', 'float64']:
122 123 124 125 126 127
                self.dtype = scale.dtype
            # pylint: disable=unbalanced-tuple-unpacking
            self.loc, self.scale = self._to_tensor(loc, scale)
            if self.dtype != convert_dtype(self.loc.dtype):
                self.loc = tensor.cast(self.loc, dtype=self.dtype)
                self.scale = tensor.cast(self.scale, dtype=self.dtype)
128
        super(Normal, self).__init__(self.loc.shape)
129

130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
    @property
    def mean(self):
        """Mean of multinomial distribuion.

        Returns:
            Tensor: mean value.
        """
        return self.loc

    @property
    def variance(self):
        """Variance of lognormal distribution.

        Returns:
            Tensor: variance value.
        """
        return self.scale.pow(2)

    def sample(self, shape=(), seed=0):
149 150 151
        """Generate samples of the specified shape.

        Args:
152
            shape (Sequence[int], optional): Shape of the generated samples.
153
            seed (int): Python integer number.
154 155

        Returns:
156
            Tensor, A tensor with prepended dimensions shape.The data type is float32.
157 158

        """
159 160 161
        if not isinstance(shape, Iterable):
            raise TypeError('sample shape must be Iterable object.')

J
Jiabin Yang 已提交
162
        if not _non_static_mode():
163 164
            check_type(seed, 'seed', (int), 'sample')

165
        shape = list(shape)
166 167 168 169 170 171 172 173 174
        batch_shape = list((self.loc + self.scale).shape)
        name = self.name + '_sample'

        if self.batch_size_unknown:
            output_shape = shape + batch_shape
            zero_tmp = tensor.fill_constant_batch_size_like(
                self.loc + self.scale, batch_shape + shape, self.dtype, 0.)
            zero_tmp_reshape = nn.reshape(zero_tmp, output_shape)
            zero_tmp_shape = nn.shape(zero_tmp_reshape)
175 176 177 178 179
            normal_random_tmp = nn.gaussian_random(zero_tmp_shape,
                                                   mean=0.,
                                                   std=1.,
                                                   seed=seed,
                                                   dtype=self.dtype)
180 181 182 183 184
            output = normal_random_tmp * (zero_tmp_reshape + self.scale)
            output = elementwise_add(output, self.loc, name=name)
            return output
        else:
            output_shape = shape + batch_shape
185 186 187
            output = nn.gaussian_random(
                output_shape, mean=0., std=1., seed=seed, dtype=self.dtype) * (
                    tensor.zeros(output_shape, dtype=self.dtype) + self.scale)
188 189 190 191 192 193
            output = elementwise_add(output, self.loc, name=name)
            if self.all_arg_is_float:
                return nn.reshape(output, shape, name=name)
            else:
                return output

194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
    def rsample(self, shape=()):
        """Generate reparameterized samples of the specified shape.

        Args:
          shape (Sequence[int], optional): Shape of the generated samples.

        Returns:
          Tensor: A tensor with prepended dimensions shape.The data type is float32.

        """
        if not isinstance(shape, Iterable):
            raise TypeError('sample shape must be Iterable object.')

        shape = self._extend_shape(tuple(shape))
        eps = paddle.normal(shape=shape)
        return (self.loc + eps * self.scale)

211 212 213 214 215 216 217
    def entropy(self):
        r"""Shannon entropy in nats.

        The entropy is

        .. math::

218
            entropy(\sigma) = 0.5 \log (2 \pi e \sigma^2)
219 220 221 222 223 224

        In the above equation:

        * :math:`scale = \sigma`: is the std.

        Returns:
225
            Tensor, Shannon entropy of normal distribution.The data type is float32.
226 227 228 229

        """
        name = self.name + '_entropy'
        batch_shape = list((self.loc + self.scale).shape)
230 231 232 233 234 235 236
        zero_tmp = tensor.fill_constant_batch_size_like(self.loc + self.scale,
                                                        batch_shape, self.dtype,
                                                        0.)
        return elementwise_add(0.5 + zero_tmp,
                               0.5 * math.log(2 * math.pi) + nn.log(
                                   (self.scale + zero_tmp)),
                               name=name)
237 238 239 240 241 242 243 244

    def log_prob(self, value):
        """Log probability density/mass function.

        Args:
          value (Tensor): The input tensor.

        Returns:
245
          Tensor: log probability.The data type is same with :attr:`value` .
246 247 248 249 250 251 252

        """
        name = self.name + '_log_prob'
        value = self._check_values_dtype_in_probs(self.loc, value)

        var = self.scale * self.scale
        log_scale = nn.log(self.scale)
253 254 255 256
        return elementwise_sub(-1. * ((value - self.loc) * (value - self.loc)) /
                               (2. * var),
                               log_scale + math.log(math.sqrt(2. * math.pi)),
                               name=name)
257 258 259 260 261

    def probs(self, value):
        """Probability density/mass function.

        Args:
262
            value (Tensor): The input tensor.
263 264

        Returns:
265
            Tensor, probability. The data type is same with :attr:`value` .
266 267 268 269 270 271

        """
        name = self.name + '_probs'
        value = self._check_values_dtype_in_probs(self.loc, value)

        var = self.scale * self.scale
272 273 274 275
        return elementwise_div(ops.exp(-1. * ((value - self.loc) *
                                              (value - self.loc)) / (2. * var)),
                               (math.sqrt(2 * math.pi) * self.scale),
                               name=name)
276 277 278 279 280 281 282 283

    def kl_divergence(self, other):
        r"""The KL-divergence between two normal distributions.

        The probability density function (pdf) is

        .. math::

284
            KL\_divergence(\mu_0, \sigma_0; \mu_1, \sigma_1) = 0.5 (ratio^2 + (\frac{diff}{\sigma_1})^2 - 1 - 2 \ln {ratio})
285 286 287

        .. math::

288
            ratio = \frac{\sigma_0}{\sigma_1}
289

290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
        .. math::

            diff = \mu_1 - \mu_0

        In the above equation:

        * :math:`loc = \mu_0`: is the mean of current Normal distribution.
        * :math:`scale = \sigma_0`: is the std of current Normal distribution.
        * :math:`loc = \mu_1`: is the mean of other Normal distribution.
        * :math:`scale = \sigma_1`: is the std of other Normal distribution.
        * :math:`ratio`: is the ratio of scales.
        * :math:`diff`: is the difference between means.

        Args:
            other (Normal): instance of Normal.

        Returns:
307
            Tensor, kl-divergence between two normal distributions.The data type is float32.
308 309

        """
J
Jiabin Yang 已提交
310
        if not _non_static_mode():
311 312 313 314 315 316 317
            check_type(other, 'other', Normal, 'kl_divergence')

        name = self.name + '_kl_divergence'
        var_ratio = self.scale / other.scale
        var_ratio = (var_ratio * var_ratio)
        t1 = (self.loc - other.loc) / other.scale
        t1 = (t1 * t1)
318 319 320
        return elementwise_add(0.5 * var_ratio,
                               0.5 * (t1 - 1. - nn.log(var_ratio)),
                               name=name)