normal.py 10.5 KB
Newer Older
1
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
#
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
9 10 11 12 13 14 15 16 17 18
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import math
import warnings

import numpy as np
19
from paddle import _C_ops, _legacy_C_ops
20 21 22 23 24 25 26 27
from paddle.distribution import distribution
from paddle.fluid import core
from paddle.fluid.data_feeder import (check_dtype, check_type,
                                      check_variable_and_dtype, convert_dtype)
from paddle.fluid.framework import _non_static_mode, in_dygraph_mode
from paddle.fluid.layers import (control_flow, elementwise_add, elementwise_div,
                                 elementwise_mul, elementwise_sub, nn, ops,
                                 tensor)
28 29


30
class Normal(distribution.Distribution):
31 32 33 34 35 36 37 38
    r"""The Normal distribution with location `loc` and `scale` parameters.

    Mathematical details

    The probability density function (pdf) is

    .. math::

39
        pdf(x; \mu, \sigma) = \frac{1}{Z}e^{\frac {-0.5 (x - \mu)^2}  {\sigma^2} }
40 41 42 43 44 45 46 47 48 49 50 51

    .. math::

        Z = (2 \pi \sigma^2)^{0.5}

    In the above equation:

    * :math:`loc = \mu`: is the mean.
    * :math:`scale = \sigma`: is the std.
    * :math:`Z`: is the normalization constant.

    Args:
52 53
        loc(int|float|list|tuple|numpy.ndarray|Tensor): The mean of normal distribution.The data type is float32 and float64.
        scale(int|float|list|tuple|numpy.ndarray|Tensor): The std of normal distribution.The data type is float32 and float64.
54 55 56 57
        name(str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Examples:
        .. code-block:: python
58

59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
            import paddle
            from paddle.distribution import Normal

            # Define a single scalar Normal distribution.
            dist = Normal(loc=0., scale=3.)
            # Define a batch of two scalar valued Normals.
            # The first has mean 1 and standard deviation 11, the second 2 and 22.
            dist = Normal(loc=[1., 2.], scale=[11., 22.])
            # Get 3 samples, returning a 3 x 2 tensor.
            dist.sample([3])

            # Define a batch of two scalar valued Normals.
            # Both have mean 1, but different standard deviations.
            dist = Normal(loc=1., scale=[11., 22.])

            # Complete example
            value_tensor = paddle.to_tensor([0.8], dtype="float32")

            normal_a = Normal([0.], [1.])
            normal_b = Normal([0.5], [2.])
            sample = normal_a.sample([2])
            # a random tensor created by normal distribution with shape: [2, 1]
            entropy = normal_a.entropy()
            # [1.4189385] with shape: [1]
            lp = normal_a.log_prob(value_tensor)
            # [-1.2389386] with shape: [1]
            p = normal_a.probs(value_tensor)
            # [0.28969154] with shape: [1]
            kl = normal_a.kl_divergence(normal_b)
            # [0.34939718] with shape: [1]
89 90 91
    """

    def __init__(self, loc, scale, name=None):
J
Jiabin Yang 已提交
92
        if not _non_static_mode():
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
            check_type(loc, 'loc',
                       (int, float, np.ndarray, tensor.Variable, list, tuple),
                       'Normal')
            check_type(scale, 'scale',
                       (int, float, np.ndarray, tensor.Variable, list, tuple),
                       'Normal')

        self.batch_size_unknown = False
        self.all_arg_is_float = False
        self.name = name if name is not None else 'Normal'
        self.dtype = 'float32'

        if isinstance(loc, int):
            loc = float(loc)
        if isinstance(scale, int):
            scale = float(scale)

        if self._validate_args(loc, scale):
            self.batch_size_unknown = True
            self.loc = loc
            self.scale = scale
            self.dtype = convert_dtype(loc.dtype)
        else:
            if isinstance(loc, float) and isinstance(scale, float):
                self.all_arg_is_float = True
118 119
            if isinstance(loc, np.ndarray) and str(
                    loc.dtype) in ['float32', 'float64']:
120
                self.dtype = loc.dtype
121 122
            elif isinstance(scale, np.ndarray) and str(
                    scale.dtype) in ['float32', 'float64']:
123 124 125 126 127 128
                self.dtype = scale.dtype
            # pylint: disable=unbalanced-tuple-unpacking
            self.loc, self.scale = self._to_tensor(loc, scale)
            if self.dtype != convert_dtype(self.loc.dtype):
                self.loc = tensor.cast(self.loc, dtype=self.dtype)
                self.scale = tensor.cast(self.scale, dtype=self.dtype)
129
        super(Normal, self).__init__(self.loc.shape)
130 131 132 133 134

    def sample(self, shape, seed=0):
        """Generate samples of the specified shape.

        Args:
135 136
            shape (list): 1D `int32`. Shape of the generated samples.
            seed (int): Python integer number.
137 138

        Returns:
139
            Tensor, A tensor with prepended dimensions shape.The data type is float32.
140 141

        """
J
Jiabin Yang 已提交
142
        if not _non_static_mode():
143 144 145 146 147 148 149 150 151 152 153 154
            check_type(shape, 'shape', (list), 'sample')
            check_type(seed, 'seed', (int), 'sample')

        batch_shape = list((self.loc + self.scale).shape)
        name = self.name + '_sample'

        if self.batch_size_unknown:
            output_shape = shape + batch_shape
            zero_tmp = tensor.fill_constant_batch_size_like(
                self.loc + self.scale, batch_shape + shape, self.dtype, 0.)
            zero_tmp_reshape = nn.reshape(zero_tmp, output_shape)
            zero_tmp_shape = nn.shape(zero_tmp_reshape)
155 156 157 158 159
            normal_random_tmp = nn.gaussian_random(zero_tmp_shape,
                                                   mean=0.,
                                                   std=1.,
                                                   seed=seed,
                                                   dtype=self.dtype)
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
            output = normal_random_tmp * (zero_tmp_reshape + self.scale)
            output = elementwise_add(output, self.loc, name=name)
            return output
        else:
            output_shape = shape + batch_shape
            output = nn.gaussian_random(output_shape, mean=0., std=1., seed=seed, dtype=self.dtype) * \
                     (tensor.zeros(output_shape, dtype=self.dtype) + self.scale)
            output = elementwise_add(output, self.loc, name=name)
            if self.all_arg_is_float:
                return nn.reshape(output, shape, name=name)
            else:
                return output

    def entropy(self):
        r"""Shannon entropy in nats.

        The entropy is

        .. math::

180
            entropy(\sigma) = 0.5 \log (2 \pi e \sigma^2)
181 182 183 184 185 186

        In the above equation:

        * :math:`scale = \sigma`: is the std.

        Returns:
187
            Tensor, Shannon entropy of normal distribution.The data type is float32.
188 189 190 191

        """
        name = self.name + '_entropy'
        batch_shape = list((self.loc + self.scale).shape)
192 193 194 195 196 197 198
        zero_tmp = tensor.fill_constant_batch_size_like(self.loc + self.scale,
                                                        batch_shape, self.dtype,
                                                        0.)
        return elementwise_add(0.5 + zero_tmp,
                               0.5 * math.log(2 * math.pi) + nn.log(
                                   (self.scale + zero_tmp)),
                               name=name)
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214

    def log_prob(self, value):
        """Log probability density/mass function.

        Args:
          value (Tensor): The input tensor.

        Returns:
          Tensor: log probability.The data type is same with value.

        """
        name = self.name + '_log_prob'
        value = self._check_values_dtype_in_probs(self.loc, value)

        var = self.scale * self.scale
        log_scale = nn.log(self.scale)
215 216 217 218
        return elementwise_sub(-1. * ((value - self.loc) * (value - self.loc)) /
                               (2. * var),
                               log_scale + math.log(math.sqrt(2. * math.pi)),
                               name=name)
219 220 221 222 223

    def probs(self, value):
        """Probability density/mass function.

        Args:
224
            value (Tensor): The input tensor.
225 226

        Returns:
227
            Tensor, probability. The data type is same with value.
228 229 230 231 232 233

        """
        name = self.name + '_probs'
        value = self._check_values_dtype_in_probs(self.loc, value)

        var = self.scale * self.scale
234 235 236 237
        return elementwise_div(ops.exp(-1. * ((value - self.loc) *
                                              (value - self.loc)) / (2. * var)),
                               (math.sqrt(2 * math.pi) * self.scale),
                               name=name)
238 239 240 241 242 243 244 245

    def kl_divergence(self, other):
        r"""The KL-divergence between two normal distributions.

        The probability density function (pdf) is

        .. math::

246
            KL\_divergence(\mu_0, \sigma_0; \mu_1, \sigma_1) = 0.5 (ratio^2 + (\frac{diff}{\sigma_1})^2 - 1 - 2 \ln {ratio})
247 248 249

        .. math::

250
            ratio = \frac{\sigma_0}{\sigma_1}
251

252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
        .. math::

            diff = \mu_1 - \mu_0

        In the above equation:

        * :math:`loc = \mu_0`: is the mean of current Normal distribution.
        * :math:`scale = \sigma_0`: is the std of current Normal distribution.
        * :math:`loc = \mu_1`: is the mean of other Normal distribution.
        * :math:`scale = \sigma_1`: is the std of other Normal distribution.
        * :math:`ratio`: is the ratio of scales.
        * :math:`diff`: is the difference between means.

        Args:
            other (Normal): instance of Normal.

        Returns:
269
            Tensor, kl-divergence between two normal distributions.The data type is float32.
270 271

        """
J
Jiabin Yang 已提交
272
        if not _non_static_mode():
273 274 275 276 277 278 279
            check_type(other, 'other', Normal, 'kl_divergence')

        name = self.name + '_kl_divergence'
        var_ratio = self.scale / other.scale
        var_ratio = (var_ratio * var_ratio)
        t1 = (self.loc - other.loc) / other.scale
        t1 = (t1 * t1)
280 281 282
        return elementwise_add(0.5 * var_ratio,
                               0.5 * (t1 - 1. - nn.log(var_ratio)),
                               name=name)