normal.py 11.0 KB
Newer Older
1
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
#
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
9 10 11 12 13 14 15 16
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import math
import numpy as np
17
import paddle
18
from paddle.distribution import distribution
19
from paddle.fluid.data_feeder import check_type, convert_dtype
20
from paddle.fluid.framework import _non_static_mode
21 22 23 24 25 26 27 28 29
from paddle.fluid.layers import (
    elementwise_add,
    elementwise_div,
    elementwise_sub,
    nn,
    ops,
    tensor,
)

30 31 32 33
try:
    from collections.abc import Iterable
except:
    from collections import Iterable
34 35


36
class Normal(distribution.Distribution):
37 38 39 40 41 42 43 44
    r"""The Normal distribution with location `loc` and `scale` parameters.

    Mathematical details

    The probability density function (pdf) is

    .. math::

45
        pdf(x; \mu, \sigma) = \frac{1}{Z}e^{\frac {-0.5 (x - \mu)^2}  {\sigma^2} }
46 47 48 49 50 51 52 53 54 55 56 57

    .. math::

        Z = (2 \pi \sigma^2)^{0.5}

    In the above equation:

    * :math:`loc = \mu`: is the mean.
    * :math:`scale = \sigma`: is the std.
    * :math:`Z`: is the normalization constant.

    Args:
58 59
        loc(int|float|list|tuple|numpy.ndarray|Tensor): The mean of normal distribution.The data type is float32 and float64.
        scale(int|float|list|tuple|numpy.ndarray|Tensor): The std of normal distribution.The data type is float32 and float64.
60 61 62 63
        name(str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Examples:
        .. code-block:: python
64

65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
            import paddle
            from paddle.distribution import Normal

            # Define a single scalar Normal distribution.
            dist = Normal(loc=0., scale=3.)
            # Define a batch of two scalar valued Normals.
            # The first has mean 1 and standard deviation 11, the second 2 and 22.
            dist = Normal(loc=[1., 2.], scale=[11., 22.])
            # Get 3 samples, returning a 3 x 2 tensor.
            dist.sample([3])

            # Define a batch of two scalar valued Normals.
            # Both have mean 1, but different standard deviations.
            dist = Normal(loc=1., scale=[11., 22.])

            # Complete example
            value_tensor = paddle.to_tensor([0.8], dtype="float32")

            normal_a = Normal([0.], [1.])
            normal_b = Normal([0.5], [2.])
            sample = normal_a.sample([2])
            # a random tensor created by normal distribution with shape: [2, 1]
            entropy = normal_a.entropy()
            # [1.4189385] with shape: [1]
            lp = normal_a.log_prob(value_tensor)
            # [-1.2389386] with shape: [1]
            p = normal_a.probs(value_tensor)
            # [0.28969154] with shape: [1]
            kl = normal_a.kl_divergence(normal_b)
            # [0.34939718] with shape: [1]
95 96 97
    """

    def __init__(self, loc, scale, name=None):
J
Jiabin Yang 已提交
98
        if not _non_static_mode():
99 100 101 102 103 104 105 106 107 108 109 110
            check_type(
                loc,
                'loc',
                (int, float, np.ndarray, tensor.Variable, list, tuple),
                'Normal',
            )
            check_type(
                scale,
                'scale',
                (int, float, np.ndarray, tensor.Variable, list, tuple),
                'Normal',
            )
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129

        self.batch_size_unknown = False
        self.all_arg_is_float = False
        self.name = name if name is not None else 'Normal'
        self.dtype = 'float32'

        if isinstance(loc, int):
            loc = float(loc)
        if isinstance(scale, int):
            scale = float(scale)

        if self._validate_args(loc, scale):
            self.batch_size_unknown = True
            self.loc = loc
            self.scale = scale
            self.dtype = convert_dtype(loc.dtype)
        else:
            if isinstance(loc, float) and isinstance(scale, float):
                self.all_arg_is_float = True
130 131 132 133
            if isinstance(loc, np.ndarray) and str(loc.dtype) in [
                'float32',
                'float64',
            ]:
134
                self.dtype = loc.dtype
135 136 137 138
            elif isinstance(scale, np.ndarray) and str(scale.dtype) in [
                'float32',
                'float64',
            ]:
139 140 141 142 143 144
                self.dtype = scale.dtype
            # pylint: disable=unbalanced-tuple-unpacking
            self.loc, self.scale = self._to_tensor(loc, scale)
            if self.dtype != convert_dtype(self.loc.dtype):
                self.loc = tensor.cast(self.loc, dtype=self.dtype)
                self.scale = tensor.cast(self.scale, dtype=self.dtype)
145
        super(Normal, self).__init__(self.loc.shape)
146

147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
    @property
    def mean(self):
        """Mean of multinomial distribuion.

        Returns:
            Tensor: mean value.
        """
        return self.loc

    @property
    def variance(self):
        """Variance of lognormal distribution.

        Returns:
            Tensor: variance value.
        """
        return self.scale.pow(2)

    def sample(self, shape=(), seed=0):
166 167 168
        """Generate samples of the specified shape.

        Args:
169
            shape (Sequence[int], optional): Shape of the generated samples.
170
            seed (int): Python integer number.
171 172

        Returns:
173
            Tensor, A tensor with prepended dimensions shape.The data type is float32.
174 175

        """
176 177 178
        if not isinstance(shape, Iterable):
            raise TypeError('sample shape must be Iterable object.')

J
Jiabin Yang 已提交
179
        if not _non_static_mode():
180 181
            check_type(seed, 'seed', (int), 'sample')

182
        shape = list(shape)
183 184 185 186 187 188
        batch_shape = list((self.loc + self.scale).shape)
        name = self.name + '_sample'

        if self.batch_size_unknown:
            output_shape = shape + batch_shape
            zero_tmp = tensor.fill_constant_batch_size_like(
189 190
                self.loc + self.scale, batch_shape + shape, self.dtype, 0.0
            )
191 192
            zero_tmp_reshape = nn.reshape(zero_tmp, output_shape)
            zero_tmp_shape = nn.shape(zero_tmp_reshape)
193 194 195
            normal_random_tmp = nn.gaussian_random(
                zero_tmp_shape, mean=0.0, std=1.0, seed=seed, dtype=self.dtype
            )
196 197 198 199 200
            output = normal_random_tmp * (zero_tmp_reshape + self.scale)
            output = elementwise_add(output, self.loc, name=name)
            return output
        else:
            output_shape = shape + batch_shape
201
            output = nn.gaussian_random(
202 203
                output_shape, mean=0.0, std=1.0, seed=seed, dtype=self.dtype
            ) * (tensor.zeros(output_shape, dtype=self.dtype) + self.scale)
204 205 206 207 208 209
            output = elementwise_add(output, self.loc, name=name)
            if self.all_arg_is_float:
                return nn.reshape(output, shape, name=name)
            else:
                return output

210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
    def rsample(self, shape=()):
        """Generate reparameterized samples of the specified shape.

        Args:
          shape (Sequence[int], optional): Shape of the generated samples.

        Returns:
          Tensor: A tensor with prepended dimensions shape.The data type is float32.

        """
        if not isinstance(shape, Iterable):
            raise TypeError('sample shape must be Iterable object.')

        shape = self._extend_shape(tuple(shape))
        eps = paddle.normal(shape=shape)
225
        return self.loc + eps * self.scale
226

227 228 229 230 231 232 233
    def entropy(self):
        r"""Shannon entropy in nats.

        The entropy is

        .. math::

234
            entropy(\sigma) = 0.5 \log (2 \pi e \sigma^2)
235 236 237 238 239 240

        In the above equation:

        * :math:`scale = \sigma`: is the std.

        Returns:
241
            Tensor, Shannon entropy of normal distribution.The data type is float32.
242 243 244 245

        """
        name = self.name + '_entropy'
        batch_shape = list((self.loc + self.scale).shape)
246 247 248 249 250 251 252 253
        zero_tmp = tensor.fill_constant_batch_size_like(
            self.loc + self.scale, batch_shape, self.dtype, 0.0
        )
        return elementwise_add(
            0.5 + zero_tmp,
            0.5 * math.log(2 * math.pi) + nn.log((self.scale + zero_tmp)),
            name=name,
        )
254 255 256 257 258 259 260 261

    def log_prob(self, value):
        """Log probability density/mass function.

        Args:
          value (Tensor): The input tensor.

        Returns:
262
          Tensor: log probability.The data type is same with :attr:`value` .
263 264 265 266 267 268 269

        """
        name = self.name + '_log_prob'
        value = self._check_values_dtype_in_probs(self.loc, value)

        var = self.scale * self.scale
        log_scale = nn.log(self.scale)
270 271 272 273 274
        return elementwise_sub(
            -1.0 * ((value - self.loc) * (value - self.loc)) / (2.0 * var),
            log_scale + math.log(math.sqrt(2.0 * math.pi)),
            name=name,
        )
275 276 277 278 279

    def probs(self, value):
        """Probability density/mass function.

        Args:
280
            value (Tensor): The input tensor.
281 282

        Returns:
283
            Tensor, probability. The data type is same with :attr:`value` .
284 285 286 287 288 289

        """
        name = self.name + '_probs'
        value = self._check_values_dtype_in_probs(self.loc, value)

        var = self.scale * self.scale
290 291 292 293 294 295 296
        return elementwise_div(
            ops.exp(
                -1.0 * ((value - self.loc) * (value - self.loc)) / (2.0 * var)
            ),
            (math.sqrt(2 * math.pi) * self.scale),
            name=name,
        )
297 298 299 300 301 302 303 304

    def kl_divergence(self, other):
        r"""The KL-divergence between two normal distributions.

        The probability density function (pdf) is

        .. math::

305
            KL\_divergence(\mu_0, \sigma_0; \mu_1, \sigma_1) = 0.5 (ratio^2 + (\frac{diff}{\sigma_1})^2 - 1 - 2 \ln {ratio})
306 307 308

        .. math::

309
            ratio = \frac{\sigma_0}{\sigma_1}
310

311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
        .. math::

            diff = \mu_1 - \mu_0

        In the above equation:

        * :math:`loc = \mu_0`: is the mean of current Normal distribution.
        * :math:`scale = \sigma_0`: is the std of current Normal distribution.
        * :math:`loc = \mu_1`: is the mean of other Normal distribution.
        * :math:`scale = \sigma_1`: is the std of other Normal distribution.
        * :math:`ratio`: is the ratio of scales.
        * :math:`diff`: is the difference between means.

        Args:
            other (Normal): instance of Normal.

        Returns:
328
            Tensor, kl-divergence between two normal distributions.The data type is float32.
329 330

        """
J
Jiabin Yang 已提交
331
        if not _non_static_mode():
332 333 334 335
            check_type(other, 'other', Normal, 'kl_divergence')

        name = self.name + '_kl_divergence'
        var_ratio = self.scale / other.scale
336
        var_ratio = var_ratio * var_ratio
337
        t1 = (self.loc - other.loc) / other.scale
338 339 340 341
        t1 = t1 * t1
        return elementwise_add(
            0.5 * var_ratio, 0.5 * (t1 - 1.0 - nn.log(var_ratio)), name=name
        )