matmul_v2_mkldnn_op.cc 45.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14
#include "paddle/fluid/operators/mkldnn/matmul_mkldnn_op.h"
15

16
namespace {
17
using dnnl::memory;
18 19 20
using paddle::framework::DataLayout;
using paddle::framework::ExecutionContext;
using paddle::platform::GetMKLDNNFormat;
21
using paddle::platform::MatMulV2MKLDNNHandler;
22
using paddle::platform::MKLDNNDeviceContext;
23
using paddle::platform::MKLDNNFormatForSize;
24 25
using paddle::platform::MKLDNNGetDataType;
using paddle::platform::to_void_cast;
26
using phi::vectorize;
27 28
using Tensor = paddle::framework::Tensor;
using paddle::framework::GradVarName;
29
using phi::make_ddim;
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90

// Reshape a rank-3 tensor from P x M x N to (P * M) x N.
// Identity op if the tensor is not of rank 3.
static Tensor FoldOuterDims(const Tensor &input) {
  auto output = input;
  auto in_dims = input.dims();
  if (in_dims.size() == 3) {
    output.Resize({in_dims[0] * in_dims[1], in_dims[2]});
  }
  return output;
}

// Reshape a rank-3 tensor from P x M x N to M x (P * N).
// (Warning: This requires transposing data and writes into new memory.)
// Identity op if the tensor is not of rank 3.
template <typename T>
static Tensor FoldFirstAndLastDims(const MKLDNNDeviceContext &dev_ctx,
                                   const Tensor *input) {
  auto input_dims = vectorize(input->dims());
  if (input_dims.size() != 3) {
    return *input;
  }

  Tensor output;
  output.Resize({input_dims[1], input_dims[0], input_dims[2]});

  auto output_dims = vectorize(output.dims());

  memory::data_type input_type = paddle::framework::ToMKLDNNDataType(
      paddle::framework::TransToProtoVarType(input->dtype()));
  paddle::platform::ReorderMKLDNNHandler reorder_handler(
      output_dims,
      paddle::framework::TransToProtoVarType(input->dtype()),
      input_type,
      dev_ctx.GetEngine());

  auto reorder_src_memory_p = reorder_handler.AcquireSrcMemory(
      memory::format_tag::abc,
      paddle::platform::to_void_cast(input->data<T>()));
  auto reorder_dst_memory_p = reorder_handler.AcquireDstMemory(
      &output, memory::format_tag::bac, dev_ctx.GetPlace());
  auto reorder_p = reorder_handler.AcquireReorder(reorder_src_memory_p,
                                                  reorder_dst_memory_p);

  auto &astream = MKLDNNDeviceContext::tls().get_stream();
  reorder_p->execute(astream, *reorder_src_memory_p, *reorder_dst_memory_p);
  astream.wait();

  output.Resize({input_dims[1], input_dims[0] * input_dims[2]});
  return output;
}

template <typename T>
constexpr bool IsInt8() {
  return std::is_same<T, int8_t>::value || std::is_same<T, uint8_t>::value;
}

template <typename T>
constexpr bool IsBfloat16() {
  return std::is_same<T, paddle::platform::bfloat16>::value;
}
91

92 93
// Get row matrix shape from a vector shape. If the rank of x_dim > 1, the
// original x_dim is returned.
94 95
static paddle::framework::DDim RowMatrixDimsFromVector(
    const paddle::framework::DDim &x_dim) {
96
  return x_dim.size() > 1 ? x_dim : phi::make_ddim({1, x_dim[0]});
97 98 99 100
}

// Get column matrix shape from a vector shape. If the ran of y_dim > 1, the
// original y_dim is returned.
101 102
static paddle::framework::DDim ColumnMatrixDimsFromVector(
    const paddle::framework::DDim &y_dim) {
103
  return y_dim.size() > 1 ? y_dim : phi::make_ddim({y_dim[0], 1});
104 105
}

J
Jacek Czaja 已提交
106 107 108 109 110 111 112 113 114 115
phi::DDim GetDimForInput(const ExecutionContext &ctx, std::string input_name) {
  auto shape = ctx.Attr<std::vector<int>>("fused_reshape_" + input_name);
  auto axis = ctx.Attr<std::vector<int>>("fused_transpose_" + input_name);
  auto input_dims = ctx.Input<Tensor>(input_name)->dims();
  if (!shape.empty() && !axis.empty()) {
    return input_dims.reshape(shape).transpose(axis);
  }
  return input_dims;
}

116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
template <typename XT, typename YT, typename OT>
class MatMulMKLDNNHandler
    : public paddle::platform::MKLDNNHandlerNoCachingT<XT, dnnl::matmul> {
 public:
  MatMulMKLDNNHandler(const dnnl::engine engine,
                      paddle::platform::Place cpu_place,
                      Tensor *x,
                      bool trans_x,
                      Tensor *y,
                      bool trans_y,
                      Tensor *out,
                      float scale)
      : paddle::platform::MKLDNNHandlerNoCachingT<XT, dnnl::matmul>(engine,
                                                                    cpu_place) {
    auto mat_dim_x = phi::funcs::CreateMatrixDescriptor(x->dims(), 0, trans_x);
    auto mat_dim_y = phi::funcs::CreateMatrixDescriptor(y->dims(), 0, trans_y);

    memory::dim x_bs = mat_dim_x.batch_size_;
    memory::dim y_bs = mat_dim_y.batch_size_;

    memory::dim out_bs = x_bs || y_bs ? std::max(x_bs, y_bs) : 1;
    const memory::dim M = mat_dim_x.height_;
    const memory::dim N = mat_dim_y.width_;
    const memory::dim K = mat_dim_x.width_;

    memory::dims x_dims = {x_bs > 0 ? x_bs : 1, M, K};
    memory::dims y_dims = {y_bs > 0 ? y_bs : 1, K, N};
    memory::dims out_dims = {out_bs, M, N};

    memory::dims x_strides =
        !trans_x ? memory::dims{M * K, K, 1} : memory::dims{M * K, 1, M};

    memory::dims y_strides =
        !trans_y ? memory::dims{N * K, N, 1} : memory::dims{N * K, 1, K};
    memory::dims out_strides = memory::dims{M * N, N, 1};

    auto x_md = memory::desc(x_dims, MKLDNNGetDataType<XT>(), x_strides);
    auto y_md = memory::desc(y_dims, MKLDNNGetDataType<YT>(), y_strides);
    auto out_md = memory::desc(out_dims, MKLDNNGetDataType<OT>(), out_strides);

    dnnl::primitive_attr attrs;
    if (scale != 1.0f) attrs.set_output_scales(0, {scale});

    this->AcquireForwardPrimitiveDescriptor(attrs, x_md, y_md, out_md);
  }
  // Constructor for FWD MatMul
  MatMulMKLDNNHandler(const dnnl::engine engine, const ExecutionContext &ctx)
      : paddle::platform::MKLDNNHandlerNoCachingT<XT, dnnl::matmul>(
            engine, ctx.GetPlace()) {
    const dnnl::primitive_attr matmul_attrs = CreateMatmulAttrs(ctx);

    auto matmul_dims_ = GetMatmulDims(ctx);
    auto x_md = memory::desc(
        matmul_dims_.x_dims, MKLDNNGetDataType<XT>(), matmul_dims_.x_strides);
    auto y_md = memory::desc(
        matmul_dims_.y_dims, MKLDNNGetDataType<YT>(), matmul_dims_.y_strides);
    auto out_md = memory::desc(matmul_dims_.out_dims,
                               MKLDNNGetDataType<OT>(),
                               matmul_dims_.out_strides);
    this->AcquireForwardPrimitiveDescriptor(matmul_attrs, x_md, y_md, out_md);
  }

  std::shared_ptr<memory> AcquireWeightsMemory(const Tensor *input) {
    const YT *input_data = input->data<YT>();
    return this->AcquireMemoryFromPrimitive(this->fwd_pd_->weights_desc(),
                                            to_void_cast<YT>(input_data));
  }

 public:
  void Execute(const paddle::framework::Tensor *x,
               const paddle::framework::Tensor *y,
               paddle::framework::Tensor *out) {
    const auto src_memory_p = this->AcquireSrcMemory(x);
    const auto weights_memory_p = this->AcquireWeightsMemory(y);
    const auto dst_memory_p = this->AcquireDstMemory(out);

    auto matmul_p = this->AcquireForwardPrimitive();

    std::unordered_map<int, dnnl::memory> matmul_args = {
        {DNNL_ARG_SRC, *src_memory_p},
        {DNNL_ARG_WEIGHTS, *weights_memory_p},
        {DNNL_ARG_DST, *dst_memory_p}};

    auto &astream = paddle::platform::MKLDNNDeviceContext::tls().get_stream();

    // Simulate batch matmul by processing in loop
    void *x_ptr = src_memory_p->get_data_handle();
    void *y_ptr = weights_memory_p->get_data_handle();
    void *out_ptr = dst_memory_p->get_data_handle();
    auto offsets = this->GetOffsets();
    for (uint16_t i = 0; i < this->GetBatchSize(); ++i) {
      src_memory_p->set_data_handle(x_ptr);
      weights_memory_p->set_data_handle(y_ptr);
      dst_memory_p->set_data_handle(out_ptr);
210
      matmul_p->execute(astream, matmul_args);
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
      x_ptr = static_cast<char *>(x_ptr) + std::get<0>(offsets);
      y_ptr = static_cast<char *>(y_ptr) + std::get<1>(offsets);
      out_ptr = static_cast<char *>(out_ptr) + std::get<2>(offsets);
    }
    astream.wait();

    auto format =
        MKLDNNFormatForSize(out->dims().size(), dnnl::memory::format_tag::nchw);
    out->set_format(format);
    out->set_layout(DataLayout::kMKLDNN);
  }

  std::shared_ptr<dnnl::memory> AcquireDstMemory(
      paddle::framework::Tensor *output) {
    // We cannot use base AcquireDstMemory as it makes an allocation request
    // base on DST memory primitive size. This is fine in general, but in MatMul
    // we have primitive that covers only one batch of Data and then shift
    // pointer for every new batch. Hence Tensor size is bigger that dst memory
    // primitive size. So would we request less memory that is there and it
    // triggers an
    // assertion.  So as there is no 'any' format here we can leave default size
    // of Tensor as computed in ComputeInferShape
    OT *ptr = output->mutable_data<OT>(this->place_);
    return this->AcquireMemoryFromPrimitive(this->fwd_pd_->dst_desc(), ptr);
  }

 private:
  struct MatMulDims {
    const memory::dims x_dims, y_dims, out_dims, x_strides, y_strides,
        out_strides;
  };

  std::pair<phi::funcs::MatDescriptor, memory::dims> GetInputDimsAndStrides(
      const ExecutionContext &ctx, std::string input_name) {
    auto shape = ctx.Attr<std::vector<int>>("fused_reshape_" + input_name);
    auto axis = ctx.Attr<std::vector<int>>("fused_transpose_" + input_name);
    auto input_dims = ctx.Input<Tensor>(input_name)->dims();
    auto new_dims = input_dims;
    if (!shape.empty() && !axis.empty()) {
      new_dims = input_dims.reshape(shape).transpose(axis);
    }

    auto &MatrixDimsFromVector = input_name == "X" ? RowMatrixDimsFromVector
                                                   : ColumnMatrixDimsFromVector;
    phi::funcs::MatDescriptor mat_dim = phi::funcs::CreateMatrixDescriptor(
        MatrixDimsFromVector(new_dims),
        0,
        ctx.Attr<bool>("transpose_" + input_name));

    memory::dims strides;
    if (!shape.empty()) {
      auto shape2 = input_dims.reshape(shape);
      strides.push_back(1);
      for (auto i = shape2.size() - 1; i > 0; --i) {
        strides.insert(strides.begin(), strides.front() * shape2[i]);
      }
      strides = Transpose(strides, axis);
      if (shape.size() == 4)
        strides.erase(strides.begin());
      else if (shape.size() == 2)
        strides.insert(strides.begin(), shape[0] * shape[1]);
      mat_dim.stride_ = strides[0];
      if (mat_dim.trans_) std::swap(*strides.rbegin(), *(++strides.rbegin()));
    }
    return std::make_pair(mat_dim, strides);
  }

  float ComputeOutputScale(const ExecutionContext &ctx) {
    float scale_x = ctx.Attr<float>("Scale_x");
    float scale_y = ctx.Attr<float>("Scale_y");
    bool force_fp32_out = ctx.Attr<bool>("force_fp32_output");
    float scale_out = force_fp32_out ? 1.f : ctx.Attr<float>("Scale_out");
    float alpha = ctx.Attr<float>("alpha");
    return alpha * scale_out / (scale_x * scale_y);
  }

  bool IsInputFused(const ExecutionContext &ctx) const {
    return !(ctx.Attr<std::vector<int>>("fused_reshape_X").empty() &&
             ctx.Attr<std::vector<int>>("fused_reshape_Y").empty());
  }

  bool IsOutputFused(const ExecutionContext &ctx) const {
    auto &fused_reshape_Out = ctx.Attr<std::vector<int>>("fused_reshape_Out");
    auto &fused_transpose_Out =
        ctx.Attr<std::vector<int>>("fused_transpose_Out");
    return !fused_reshape_Out.empty() && !fused_transpose_Out.empty();
  }

  MatMulDims GetMatmulDims(const ExecutionContext &ctx) {
    phi::funcs::MatDescriptor mat_dim_x;
    memory::dims strides_x;
    std::tie(mat_dim_x, strides_x) = GetInputDimsAndStrides(ctx, "X");
    phi::funcs::MatDescriptor mat_dim_y;
    memory::dims strides_y;
    std::tie(mat_dim_y, strides_y) = GetInputDimsAndStrides(ctx, "Y");

    auto x_bs = mat_dim_x.batch_size_;
    auto y_bs = mat_dim_y.batch_size_;
    PADDLE_ENFORCE_EQ(x_bs > 0 && y_bs > 0 && x_bs != y_bs,
                      false,
                      paddle::platform::errors::InvalidArgument(
                          "If batch sizes of X and Y are positive,"
                          "they have to be equal."));

    memory::dim out_bs = x_bs || y_bs ? std::max(x_bs, y_bs) : 1;
    const memory::dim M = mat_dim_x.height_;
    const memory::dim N = mat_dim_y.width_;
    const memory::dim K = mat_dim_x.width_;

    batch_size_ = 1;
    if (out_bs > 1 && (IsOutputFused(ctx) || IsInputFused(ctx))) {
      auto x_dims = GetDimForInput(ctx, "X");
      auto y_dims = GetDimForInput(ctx, "Y");
      batch_size_ = x_bs > y_bs ? x_dims[0] : y_dims[0];
      x_bs /= batch_size_;
      y_bs /= batch_size_;
      out_bs /= batch_size_;
    }
    memory::dims x_dims = {x_bs > 0 ? x_bs : 1, M, K};
    memory::dims y_dims = {y_bs > 0 ? y_bs : 1, K, N};
    memory::dims out_dims = {out_bs, M, N};

    x_offset_ = x_bs * M * K * sizeof(XT);
    y_offset_ = y_bs * K * N * sizeof(YT);
    out_offset_ = out_bs * M * N * sizeof(OT);

    // Translate transA and transB
    if (strides_x.empty())
      strides_x = !ctx.Attr<bool>("transpose_X") ? memory::dims{M * K, K, 1}
                                                 : memory::dims{M * K, 1, M};
    if (strides_y.empty())
      strides_y = !ctx.Attr<bool>("transpose_Y") ? memory::dims{N * K, N, 1}
                                                 : memory::dims{N * K, 1, K};
    memory::dims out_strides = memory::dims{M * N, N, 1};

    CorrectStridesWhenFloatOutputFused(ctx, N, out_bs, &out_strides);

    return {x_dims, y_dims, out_dims, strides_x, strides_y, out_strides};
  }

  std::vector<int64_t> Transpose(const std::vector<int64_t> &x,
                                 const std::vector<int> &axis) {
    size_t in_rank = x.size();
    size_t axis_size = axis.size();

    auto axis_set = std::set<int>(axis.begin(), axis.end());
    PADDLE_ENFORCE_EQ(axis_set.size(),
                      axis_size,
                      paddle::platform::errors::InvalidArgument(
                          "In an axis array, elements must be unique."));

    PADDLE_ENFORCE_EQ(in_rank,
                      axis_size,
                      paddle::platform::errors::InvalidArgument(
                          "The input dimension's size "
                          "should be equal to the axis's size. "
                          "But received dimension is %d, "
                          "axis's size is %d",
                          in_rank,
                          axis_size));

    PADDLE_ENFORCE_LT(*std::max_element(axis.begin(), axis.end()),
                      axis_size,
                      paddle::platform::errors::InvalidArgument(
                          "Axis values must be ranging from 0 to (dims - 1)."));

    std::vector<int64_t> new_x(x.size());
    for (size_t i = 0; i < x.size(); i++) {
      new_x[i] = x[axis[i]];
    }
    return new_x;
  }

  void CorrectStridesWhenFloatOutputFused(const ExecutionContext &ctx,
                                          const memory::dim N,
                                          memory::dim b,
                                          memory::dims *out_strides) const {
    if (!IsInt8<OT>() && !IsBfloat16<OT>() && IsOutputFused(ctx)) {
      *out_strides = {N, b * N, 1};
    }
  }

  uint16_t GetBatchSize(void) const { return batch_size_; }

  std::tuple<uint32_t, uint32_t, uint32_t> GetOffsets() const {
    return std::make_tuple(x_offset_, y_offset_, out_offset_);
  }

  dnnl::primitive_attr CreateMatmulAttrs(const ExecutionContext &ctx) {
    dnnl::primitive_attr matmul_attrs;
    dnnl::post_ops post_operations;

    float scale_out = ComputeOutputScale(ctx);
    if (scale_out != 1.0f) {
      matmul_attrs.set_output_scales(0, {scale_out});
    }
    paddle::platform::AppendActivation(ctx, post_operations);

    matmul_attrs.set_post_ops(post_operations);
    return matmul_attrs;
  }

 private:
  uint32_t x_offset_;
  uint32_t y_offset_;
  uint32_t out_offset_;
  uint16_t batch_size_;
};

/**
 * Reshape a tensor to 3-D or 2-D tensor by matrix descriptor.
 *
 * The shape would be [BatchSize, H, W] or [H, W].
 * If transposed, `H,W` will be swapped.
 */
static void ReshapeTensorToMatrixSequence(
    Tensor *x, const phi::funcs::MatDescriptor &descriptor) {
  int64_t h, w;
  h = descriptor.height_;
  w = descriptor.width_;
  if (descriptor.trans_) {
    std::swap(w, h);
  }
  if (descriptor.batch_size_) {
    x->Resize({descriptor.batch_size_, h, w});
  } else {
    x->Resize({h, w});
  }
}

/**
 * Reshape the x,y,out tensor to 3-D or 2-D tensor by matrix descriptor
 * Out = matmul(x, y)
 *
 * This method will first calculate X,Y matrix sequence, and then calculate
 * the out shape.
 *
 * Assume X = [BatchSize, H1, W1], Y = [BatchSize, H2, W2]
 * The out = [BatchSize, H1, W2]
 *
 * If there is no batch size in `X` and `Y`, the out will be [H1, W2]
 * If any of `X` and `Y` has batch size BatchSize, the out will have the
 * BatchSize.
 */
static void ReshapeXYOutToMatrixSequence(
    Tensor *x, Tensor *y, Tensor *out, bool trans_x, bool trans_y) {
  auto x_dim = RowMatrixDimsFromVector(x->dims());
  auto y_dim = ColumnMatrixDimsFromVector(y->dims());
  auto mat_dim_x = phi::funcs::CreateMatrixDescriptor(x_dim, 0, trans_x);
  auto mat_dim_y = phi::funcs::CreateMatrixDescriptor(y_dim, 0, trans_y);
  if (mat_dim_x.batch_size_ == 0 && mat_dim_y.batch_size_ == 0) {
    out->Resize({mat_dim_x.height_, mat_dim_y.width_});
  } else {
    out->Resize({std::max(mat_dim_x.batch_size_, mat_dim_y.batch_size_),
                 mat_dim_x.height_,
                 mat_dim_y.width_});
  }

  ReshapeTensorToMatrixSequence(x, mat_dim_x);
  ReshapeTensorToMatrixSequence(y, mat_dim_y);
}

// Choose appropriate Handler instances based on inferred
// output type (uint8, int8 or float).
template <typename XT, typename YT>
static void ExecuteMatMul(const ExecutionContext &ctx) {
  constexpr bool is_int8 = IsInt8<XT>();
  constexpr bool is_bfloat16 = IsBfloat16<XT>();
  const bool force_fp32_output = ctx.Attr<bool>("force_fp32_output");
480 481 482 483
  const bool fuse_relu =
      ctx.HasAttr("fuse_activation")
          ? ctx.Attr<std::string>("fuse_activation") == "relu"
          : false;
484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
  auto *x = ctx.Input<Tensor>("X");
  auto *y = ctx.Input<Tensor>("Y");
  auto *out = ctx.Output<Tensor>("Out");
  const auto &dev_ctx =
      ctx.template device_context<paddle::platform::MKLDNNDeviceContext>();
  const auto &onednn_engine = dev_ctx.GetEngine();

  if (force_fp32_output || ((!is_int8) && (!is_bfloat16))) {
    MatMulMKLDNNHandler<XT, YT, float>(onednn_engine, ctx).Execute(x, y, out);
  } else if (is_bfloat16) {
    MatMulMKLDNNHandler<XT, YT, paddle::platform::bfloat16>(onednn_engine, ctx)
        .Execute(x, y, out);
  } else if (fuse_relu) {
    MatMulMKLDNNHandler<XT, YT, uint8_t>(onednn_engine, ctx).Execute(x, y, out);
  } else {
    MatMulMKLDNNHandler<XT, YT, int8_t>(onednn_engine, ctx).Execute(x, y, out);
  }
}

template <typename T>
class MatMulMKLDNNKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const ExecutionContext &ctx) const override {
    if (ctx.HasAttr("head_number")) {
      PADDLE_ENFORCE_EQ(
          ctx.Attr<int>("head_number"),
          1,
          paddle::platform::errors::Unimplemented(
              "oneDNN matmul doesn't support multiple heads. Expected "
              "head_number=1. But received `head_number` is %d",
              ctx.Attr<int>("head_number")));
    }
    ExecuteMatMul<T, T>(ctx);
  }
};

static std::vector<int64_t> Transpose(const std::vector<int64_t> &x,
                                      const std::vector<int> &axis) {
522 523 524 525
  size_t in_rank = x.size();
  size_t axis_size = axis.size();

  auto axis_set = std::set<int>(axis.begin(), axis.end());
526 527
  PADDLE_ENFORCE_EQ(axis_set.size(),
                    axis_size,
528 529 530
                    paddle::platform::errors::InvalidArgument(
                        "In an axis array, elements must be unique."));

531 532
  PADDLE_ENFORCE_EQ(in_rank,
                    axis_size,
533 534 535 536 537
                    paddle::platform::errors::InvalidArgument(
                        "The input dimension's size "
                        "should be equal to the axis's size. "
                        "But received dimension is %d, "
                        "axis's size is %d",
538 539
                        in_rank,
                        axis_size));
540

541 542
  PADDLE_ENFORCE_LT(*std::max_element(axis.begin(), axis.end()),
                    axis_size,
543 544 545 546 547 548 549 550 551 552
                    paddle::platform::errors::InvalidArgument(
                        "Axis values must be ranging from 0 to (dims - 1)."));

  std::vector<int64_t> new_x(x.size());
  for (size_t i = 0; i < x.size(); i++) {
    new_x[i] = x[axis[i]];
  }
  return new_x;
}

553
std::vector<int64_t> GetInputStrides(const ExecutionContext &ctx,
554 555 556 557 558 559 560 561 562
                                     const std::string input_name) {
  auto shape = ctx.Attr<std::vector<int>>("fused_reshape_" + input_name);
  auto axis = ctx.Attr<std::vector<int>>("fused_transpose_" + input_name);
  auto input_dims = ctx.Input<Tensor>(input_name)->dims();
  auto new_dims = input_dims;
  if (!shape.empty() && !axis.empty()) {
    new_dims = input_dims.reshape(shape).transpose(axis);
  }

563
  auto &MatrixDimsFromVector =
564
      input_name == "X" ? RowMatrixDimsFromVector : ColumnMatrixDimsFromVector;
565
  phi::funcs::MatDescriptor mat_dim = phi::funcs::CreateMatrixDescriptor(
566 567
      MatrixDimsFromVector(new_dims),
      0,
568 569 570 571
      ctx.HasAttr("trans_x")
          ? ctx.Attr<bool>(std::string("trans_") +
                           static_cast<char>(std::tolower(input_name[0])))
          : ctx.Attr<bool>(std::string("transpose_") + input_name[0]));
572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590

  std::vector<int64_t> strides;
  if (!shape.empty()) {
    auto shape2 = input_dims.reshape(shape);
    strides.push_back(1);
    for (auto i = shape2.size() - 1; i > 0; --i) {
      strides.insert(strides.begin(),
                     strides.front() * static_cast<int64_t>(shape2[i]));
    }
    strides = Transpose(strides, axis);
    if (shape.size() == 2)
      strides.insert(strides.begin(),
                     static_cast<int64_t>(shape[0] * shape[1]));
    mat_dim.stride_ = strides[0];
    if (mat_dim.trans_) std::swap(*strides.rbegin(), *(++strides.rbegin()));
  }
  return strides;
}

591 592 593
bool IsOutputFused(const ExecutionContext &ctx) {
  auto &fused_reshape_Out = ctx.Attr<std::vector<int>>("fused_reshape_Out");
  auto &fused_transpose_Out = ctx.Attr<std::vector<int>>("fused_transpose_Out");
594 595 596
  return !fused_reshape_Out.empty() && !fused_transpose_Out.empty();
}

597
float ComputeOutputScale(const ExecutionContext &ctx) {
598 599 600 601
  float scale_x = ctx.Attr<float>("Scale_x");
  float scale_y = ctx.Attr<float>("Scale_y");
  bool force_fp32_out = ctx.Attr<bool>("force_fp32_output");
  float scale_out = force_fp32_out ? 1.f : ctx.Attr<float>("Scale_out");
602 603
  float alpha = ctx.HasAttr("alpha") ? ctx.Attr<float>("alpha") : 1.0f;
  return alpha * scale_out / (scale_x * scale_y);
604
}
605

606
template <typename T, typename T_out>
607 608
void ExecuteMatMulV2(const ExecutionContext &ctx,
                     const MKLDNNDeviceContext &dev_ctx,
609
                     const dnnl::engine onednn_engine,
610
                     paddle::platform::Place cpu_place,
611 612
                     const Tensor *x,
                     const std::vector<int64_t> &x_dims,
613
                     bool trans_x,
614 615
                     const Tensor *y,
                     const std::vector<int64_t> &y_dims,
616
                     bool trans_y,
617 618
                     Tensor *out,
                     const std::vector<int64_t> &out_dims,
619
                     int execution_number = 0) {
620 621
  std::vector<int64_t> x_strides_override = GetInputStrides(ctx, "X");
  std::vector<int64_t> y_strides_override = GetInputStrides(ctx, "Y");
622 623 624 625 626 627 628 629 630 631
  MatMulV2MKLDNNHandler<T, T, T_out> handler(ctx,
                                             onednn_engine,
                                             ctx.GetPlace(),
                                             x_dims,
                                             trans_x,
                                             y_dims,
                                             trans_y,
                                             IsOutputFused(ctx),
                                             x_strides_override,
                                             y_strides_override);
632

633 634 635
  const auto src_memory_p = handler.AcquireSrcMemory(x);
  const auto weights_memory_p = handler.AcquireWeightsMemory(y);
  const auto dst_memory_p = handler.AcquireDstMemory(out);
636

637
  auto matmul_p = handler.AcquireForwardPrimitive();
638

639 640 641 642
  std::unordered_map<int, memory> matmul_args = {
      {DNNL_ARG_SRC, *src_memory_p},
      {DNNL_ARG_WEIGHTS, *weights_memory_p},
      {DNNL_ARG_DST, *dst_memory_p}};
643

644 645 646 647 648 649 650
  if (ctx.HasInput("ResidualData")) {
    auto *residual_data = ctx.Input<Tensor>("ResidualData");
    const auto residual_data_memory_p = handler.AcquireSrcMemory(residual_data);
    matmul_args.insert({DNNL_ARG_ATTR_MULTIPLE_POST_OP(0) | DNNL_ARG_SRC_1,
                        *residual_data_memory_p});
  }

651
  auto &astream = MKLDNNDeviceContext::tls().get_stream();
652 653
  matmul_p->execute(astream, matmul_args);
  astream.wait();
654 655
  auto format =
      MKLDNNFormatForSize(out->dims().size(), dnnl::memory::format_tag::nchw);
656
  out->set_format(format);
657
  out->set_layout(DataLayout::kMKLDNN);
658 659 660 661 662
}

template <typename T>
class MatMulV2MKLDNNKernel : public paddle::framework::OpKernel<T> {
 public:
663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
  void Compute(const ExecutionContext &ctx) const override {
    if (ctx.HasAttr("head_number")) {
      PADDLE_ENFORCE_EQ(
          ctx.Attr<int>("head_number"),
          1,
          paddle::platform::errors::Unimplemented(
              "oneDNN matmul doesn't support multiple heads. Expected "
              "head_number=1. But received `head_number` is %d",
              ctx.Attr<int>("head_number")));
    }
    constexpr bool is_int8 = IsInt8<T>();
    constexpr bool is_bfloat16 = IsBfloat16<T>();
    const bool force_fp32_output = ctx.HasAttr("force_fp32_output")
                                       ? ctx.Attr<bool>("force_fp32_output")
                                       : false;
    constexpr bool fuse_relu = false;  // TODO(intel): Enable eltwise fuses
    if (force_fp32_output || ((!is_int8) && (!is_bfloat16))) {
      RunKernel<float>(ctx);
    } else if (is_bfloat16) {
      RunKernel<paddle::platform::bfloat16>(ctx);
    } else if (fuse_relu) {
      RunKernel<uint8_t>(ctx);
    } else {
      RunKernel<int8_t>(ctx);
    }
  }
689

690
 private:
691 692 693 694 695 696 697
  void CalculateMatrixDims(const ExecutionContext &ctx,
                           const std::vector<int64_t> &x_dims,
                           const std::vector<int64_t> &y_dims,
                           std::vector<int64_t> *x_bd_dims,
                           std::vector<int64_t> *y_bd_dims,
                           std::vector<int64_t> *out_dims,
                           Tensor *out) const {
698
    if (x_dims.size() == 1) {
699
      (*x_bd_dims)[(*x_bd_dims).size() - 1] = x_dims[0];
700
    } else if (x_dims.size() == 2) {
701 702
      (*x_bd_dims)[(*x_bd_dims).size() - 1] = x_dims[1];
      (*x_bd_dims)[(*x_bd_dims).size() - 2] = x_dims[0];
703 704
    } else {
      for (size_t i = 0; i < x_dims.size(); ++i) {
705
        (*x_bd_dims)[(*x_bd_dims).size() - x_dims.size() + i] = x_dims[i];
706 707 708
      }
    }
    if (y_dims.size() == 1) {
709
      (*y_bd_dims)[(*x_bd_dims).size() - 2] = y_dims[0];
710
    } else if (y_dims.size() == 2) {
711 712
      (*y_bd_dims)[(*y_bd_dims).size() - 1] = y_dims[1];
      (*y_bd_dims)[(*y_bd_dims).size() - 2] = y_dims[0];
713 714
    } else {
      for (size_t i = 0; i < y_dims.size(); ++i) {
715
        (*y_bd_dims)[(*y_bd_dims).size() - y_dims.size() + i] = y_dims[i];
716 717 718
      }
    }

719
    if (!IsOutputFused(ctx) && x_dims.size() > 2 && y_dims.size() > 2) {
720
      for (size_t i = 0; i < (*x_bd_dims).size() - 2; ++i) {
721
        PADDLE_ENFORCE_EQ(
722 723
            (*x_bd_dims)[i] == (*y_bd_dims)[i] || (*x_bd_dims)[i] == 1 ||
                (*y_bd_dims)[i] == 1,
724 725 726 727 728
            true,
            paddle::platform::errors::InvalidArgument(
                "Tensor dimensions are incorrect for broadcasting."
                "Dimensions in X and Y must be same or equal to 1, but "
                "received x_dim[%d]=%d and y_dims[%d]= %d",
729 730 731 732 733
                i,
                (*x_bd_dims)[i],
                i,
                (*y_bd_dims)[i]));
        (*out_dims)[i] = std::max((*x_bd_dims)[i], (*y_bd_dims)[i]);
734
      }
735
      out->Resize(phi::make_ddim((*out_dims)));
736 737 738
    }
  }

739
  template <typename T_out>
740 741 742
  void RunKernel(const ExecutionContext &ctx) const {
    const auto &dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
    const auto &onednn_engine = dev_ctx.GetEngine();
743

744 745 746 747 748 749 750
    auto *x = ctx.Input<Tensor>("X");
    auto *y = ctx.Input<Tensor>("Y");
    auto *out = ctx.Output<Tensor>("Out");
    bool trans_x = ctx.HasAttr("trans_x") ? ctx.Attr<bool>("trans_x")
                                          : ctx.Attr<bool>("transpose_X");
    bool trans_y = ctx.HasAttr("trans_y") ? ctx.Attr<bool>("trans_y")
                                          : ctx.Attr<bool>("transpose_Y");
751

752 753
    auto x_dims = vectorize(GetDimForInput(ctx, "X"));
    auto y_dims = vectorize(GetDimForInput(ctx, "Y"));
754
    auto out_dims = vectorize(out->dims());
755

756
    int ndims = std::max(x_dims.size(), y_dims.size());
757 758 759 760 761
    ndims = std::max(ndims, 3);

    std::vector<int64_t> x_bd_dims(ndims, 1);
    std::vector<int64_t> y_bd_dims(ndims, 1);

762 763 764
    CalculateMatrixDims(
        ctx, x_dims, y_dims, &x_bd_dims, &y_bd_dims, &out_dims, out);

765 766 767 768 769 770 771 772 773 774 775 776
    ExecuteMatMulV2<T, T_out>(ctx,
                              dev_ctx,
                              onednn_engine,
                              ctx.GetPlace(),
                              x,
                              x_bd_dims,
                              trans_x,
                              y,
                              y_bd_dims,
                              trans_y,
                              out,
                              out_dims);
777 778
  }
};
779

780
template <typename T>
781
class MatMulV2GradMKLDNNKernel : public paddle::framework::OpKernel<T> {
782
 public:
783
  void Compute(const ExecutionContext &ctx) const override { RunKernel(ctx); }
784

785
 private:
786 787 788 789 790 791 792
  void CalculateGradMatrixDims(const ExecutionContext &ctx,
                               Tensor *dx_tmp,
                               Tensor *dy_tmp,
                               const std::vector<int64_t> &dx_dims,
                               const std::vector<int64_t> &dy_dims,
                               std::vector<int64_t> *dx_bd_dims,
                               std::vector<int64_t> *dy_bd_dims) const {
793 794 795
    for (size_t i = 0; i < dx_dims.size() - 2; ++i) {
      if (dx_dims[i] != dy_dims[i]) {
        if (dx_dims[i] == 1) {
796
          (*dx_bd_dims)[i] = dy_dims[i];
797
        } else {
798
          (*dy_bd_dims)[i] = dx_dims[i];
799 800 801
        }
      }
    }
802

803
    dx_tmp->Resize(phi::make_ddim((*dx_bd_dims)));
804
    dx_tmp->mutable_data<T>(ctx.GetPlace());
805
    dy_tmp->Resize(phi::make_ddim((*dy_bd_dims)));
806 807 808
    dy_tmp->mutable_data<T>(ctx.GetPlace());
  }

809
  void ReduceSumForMatmulGradOutput(
810 811
      const ExecutionContext &ctx,
      const MKLDNNDeviceContext &dev_ctx,
812
      const dnnl::engine onednn_engine,
813 814 815 816
      const Tensor *dx_tmp,
      Tensor *dx,
      const std::vector<int64_t> &dx_dims,
      const std::vector<int64_t> &squeezed_dims) const {
817
    paddle::platform::ReductionMKLDNNHandler<T> handler(
818 819 820 821 822 823 824 825
        dnnl::algorithm::reduction_sum,
        0.0f,
        0.0f,
        onednn_engine,
        ctx.GetPlace(),
        dx_tmp,
        dx,
        dx_dims);
826 827 828 829 830 831

    auto src_memory_p = handler.AcquireSrcMemory(dx_tmp);
    auto dst_memory_p = handler.AcquireDstMemory(dx);

    std::unordered_map<int, dnnl::memory> reduction_args = {
        {DNNL_ARG_SRC, *src_memory_p}, {DNNL_ARG_DST, *dst_memory_p}};
832

833
    auto &astream = MKLDNNDeviceContext::tls().get_stream();
834 835 836
    auto reduction_p = handler.AcquireForwardPrimitive();

    reduction_p->execute(astream, reduction_args);
837
    astream.wait();
838 839 840 841 842

    dx->set_format(paddle::platform::GetMKLDNNFormat(
        dst_memory_p->get_desc().reshape(squeezed_dims)));
  }

843
  std::vector<int64_t> ExtendDimsWithOnes(const std::vector<int64_t> &dims,
844 845 846 847 848 849 850
                                          int new_size) const {
    std::vector<int64_t> new_dims(new_size, 1);
    for (size_t i = 0; i < dims.size(); ++i) {
      new_dims[new_size - dims.size() + i] = dims[i];
    }

    return new_dims;
851
  }
852

853 854 855
  void RunKernel(const ExecutionContext &ctx) const {
    const auto &dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
    const auto &onednn_engine = dev_ctx.GetEngine();
856

857 858
    auto *x = ctx.Input<Tensor>("X");
    auto *y = ctx.Input<Tensor>("Y");
859 860 861 862 863 864 865 866 867 868

    auto x_dims = vectorize(x->dims());
    auto y_dims = vectorize(y->dims());

    bool is_broadcast = true;
    if (x_dims.size() <= 2 || y_dims.size() <= 2) {
      is_broadcast = false;
    } else if (x_dims.size() != y_dims.size()) {
      is_broadcast = true;
    } else {
869 870 871
      is_broadcast = !std::equal(x_dims.cbegin(),
                                 x_dims.cbegin() + x_dims.size() - 2,
                                 y_dims.cbegin());
872 873 874 875 876
    }

    // if no broadcasting is needed, we can simply use matmul's grad and avoid
    // using reduce_sum
    if (!is_broadcast) {
877
      matmul_v1_grad_mkldnn_kernel.Compute(ctx);
878 879 880
      return;
    }

881 882 883
    auto *dout = ctx.Input<Tensor>(GradVarName("Out"));
    auto *dx = ctx.Output<Tensor>(GradVarName("X"));
    auto *dy = ctx.Output<Tensor>(GradVarName("Y"));
884

885 886 887 888
    bool trans_x = ctx.HasAttr("trans_x") ? ctx.Attr<bool>("trans_x")
                                          : ctx.Attr<bool>("transpose_X");
    bool trans_y = ctx.HasAttr("trans_y") ? ctx.Attr<bool>("trans_y")
                                          : ctx.Attr<bool>("transpose_Y");
889 890
    auto dout_dims = vectorize(dout->dims());

891 892 893 894 895 896 897 898
    size_t ndims = std::max(x->dims().size(), y->dims().size());
    ndims = std::max<size_t>(ndims, 3);

    if (x_dims.size() != ndims) {
      x_dims = ExtendDimsWithOnes(x_dims, ndims);
    } else if (y_dims.size() != ndims) {
      y_dims = ExtendDimsWithOnes(y_dims, ndims);
    }
899 900 901 902 903 904 905 906

    // in broadcasting scenario new memory is required because
    // reduce sum must be calculated upon broadcasted dims
    Tensor dx_tmp, dy_tmp;

    std::vector<int64_t> dx_bd_dims(x_dims);
    std::vector<int64_t> dy_bd_dims(y_dims);

907 908
    CalculateGradMatrixDims(
        ctx, &dx_tmp, &dy_tmp, x_dims, y_dims, &dx_bd_dims, &dy_bd_dims);
909 910

    if (trans_x && trans_y) {
911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936
      ExecuteMatMulV2<T, T>(ctx,
                            dev_ctx,
                            onednn_engine,
                            ctx.GetPlace(),
                            y,
                            y_dims,
                            true,
                            dout,
                            dout_dims,
                            true,
                            &dx_tmp,
                            dx_bd_dims,
                            1);
      ExecuteMatMulV2<T, T>(ctx,
                            dev_ctx,
                            onednn_engine,
                            ctx.GetPlace(),
                            dout,
                            dout_dims,
                            true,
                            x,
                            x_dims,
                            true,
                            &dy_tmp,
                            dy_bd_dims,
                            2);
937
    } else if (trans_x) {
938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963
      ExecuteMatMulV2<T, T>(ctx,
                            dev_ctx,
                            onednn_engine,
                            ctx.GetPlace(),
                            y,
                            y_dims,
                            false,
                            dout,
                            dout_dims,
                            true,
                            &dx_tmp,
                            dx_bd_dims,
                            1);
      ExecuteMatMulV2<T, T>(ctx,
                            dev_ctx,
                            onednn_engine,
                            ctx.GetPlace(),
                            x,
                            x_dims,
                            false,
                            dout,
                            dout_dims,
                            false,
                            &dy_tmp,
                            dy_bd_dims,
                            2);
964
    } else if (trans_y) {
965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990
      ExecuteMatMulV2<T, T>(ctx,
                            dev_ctx,
                            onednn_engine,
                            ctx.GetPlace(),
                            dout,
                            dout_dims,
                            false,
                            y,
                            y_dims,
                            false,
                            &dx_tmp,
                            dx_bd_dims,
                            1);
      ExecuteMatMulV2<T, T>(ctx,
                            dev_ctx,
                            onednn_engine,
                            ctx.GetPlace(),
                            dout,
                            dout_dims,
                            true,
                            x,
                            x_dims,
                            false,
                            &dy_tmp,
                            dy_bd_dims,
                            2);
991
    } else {
992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
      ExecuteMatMulV2<T, T>(ctx,
                            dev_ctx,
                            onednn_engine,
                            ctx.GetPlace(),
                            dout,
                            dout_dims,
                            false,
                            y,
                            y_dims,
                            true,
                            &dx_tmp,
                            dx_bd_dims,
                            1);
      ExecuteMatMulV2<T, T>(ctx,
                            dev_ctx,
                            onednn_engine,
                            ctx.GetPlace(),
                            x,
                            x_dims,
                            true,
                            dout,
                            dout_dims,
                            false,
                            &dy_tmp,
                            dy_bd_dims,
                            2);
1018 1019 1020
    }

    if (x_dims != dx_bd_dims) {
1021 1022 1023 1024 1025 1026 1027
      ReduceSumForMatmulGradOutput(ctx,
                                   dev_ctx,
                                   onednn_engine,
                                   &dx_tmp,
                                   dx,
                                   x_dims,
                                   phi::vectorize(x->dims()));
1028 1029 1030 1031
    } else {
      *dx = std::move(dx_tmp);
    }
    if (y_dims != dy_bd_dims) {
1032 1033 1034 1035 1036 1037 1038
      ReduceSumForMatmulGradOutput(ctx,
                                   dev_ctx,
                                   onednn_engine,
                                   &dy_tmp,
                                   dy,
                                   y_dims,
                                   phi::vectorize(y->dims()));
1039 1040 1041 1042
    } else {
      *dy = std::move(dy_tmp);
    }

1043 1044
    dx->Resize(x->dims());
    dy->Resize(y->dims());
1045
  }
1046 1047 1048

 private:
  paddle::operators::MatMulGradMKLDNNKernel<T> matmul_v1_grad_mkldnn_kernel;
1049
};
1050
}  // anonymous namespace
1051

1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
namespace paddle {
namespace operators {

template <typename T>
void MatMulGradMKLDNNKernel<T>::Compute(const ExecutionContext &ctx) const {
  if (ctx.HasAttr("head_number")) {
    PADDLE_ENFORCE_EQ(
        ctx.Attr<int>("head_number"),
        1,
        platform::errors::Unimplemented(
            "oneDNN matmul doesn't support multiple heads. Expected "
            "head_number=1. But received `head_number` is %d",
            ctx.Attr<int>("head_number")));
  }
  RunKernel(ctx);
}

template <typename T>
void MatMulGradMKLDNNKernel<T>::ExecuteMatMulGrad(
    const ExecutionContext &ctx,
    const MKLDNNDeviceContext &dev_ctx,
    const dnnl::engine &engine,
    Tensor *x,
    bool trans_x,
    bool is_fold_init_dims_x,
    Tensor *y,
    bool trans_y,
    bool is_fold_init_dims_y,
    Tensor *out) const {
  // gradient is calculated in a different way when broadcasting is used
  bool need_combine = (x->dims().size() == 3 || y->dims().size() == 3) &&
                      out->dims().size() == 2;

  Tensor x_combined, y_combined;
  if (!need_combine) {
    x_combined = *x;
    y_combined = *y;
  } else {
    x_combined = is_fold_init_dims_x ? FoldOuterDims(*x)
                                     : FoldFirstAndLastDims<T>(dev_ctx, x);
    y_combined = is_fold_init_dims_y ? FoldOuterDims(*y)
                                     : FoldFirstAndLastDims<T>(dev_ctx, y);
  }

  float alpha = ctx.HasAttr("alpha") ? ctx.Attr<float>("alpha") : 1.0f;

  MatMulMKLDNNHandler<T, T, T> handler(engine,
                                       ctx.GetPlace(),
                                       &x_combined,
                                       trans_x,
                                       &y_combined,
                                       trans_y,
                                       out,
                                       alpha);

  const auto src_memory_p = handler.AcquireSrcMemory(&x_combined);
  const auto weights_memory_p = handler.AcquireWeightsMemory(&y_combined);
  const auto dst_memory_p = handler.AcquireDstMemory(out);

  auto matmul_p = handler.AcquireForwardPrimitive();

  std::unordered_map<int, dnnl::memory> matmul_args = {
      {DNNL_ARG_SRC, *src_memory_p},
      {DNNL_ARG_WEIGHTS, *weights_memory_p},
      {DNNL_ARG_DST, *dst_memory_p}};

  auto &astream = platform::MKLDNNDeviceContext::tls().get_stream();
  matmul_p->execute(astream, matmul_args);
  astream.wait();

  out->set_layout(framework::DataLayout::kMKLDNN);
  out->set_format(platform::GetMKLDNNFormat(
      dst_memory_p->get_desc().reshape(vectorize<int64_t>(out->dims()))));
}

template <typename T>
void MatMulGradMKLDNNKernel<T>::RunKernel(const ExecutionContext &ctx) const {
  const auto &dev_ctx =
      ctx.template device_context<platform::MKLDNNDeviceContext>();
  const auto &onednn_engine = dev_ctx.GetEngine();

  auto x = *ctx.Input<Tensor>("X");
  auto y = *ctx.Input<Tensor>("Y");
  auto dout = *ctx.Input<Tensor>(framework::GradVarName("Out"));
  auto *dx = ctx.Output<Tensor>(framework::GradVarName("X"));
  auto *dy = ctx.Output<Tensor>(framework::GradVarName("Y"));

  bool transpose_x = ctx.HasAttr("transpose_X") ? ctx.Attr<bool>("transpose_X")
                                                : ctx.Attr<bool>("trans_x");
  bool transpose_y = ctx.HasAttr("transpose_Y") ? ctx.Attr<bool>("transpose_Y")
                                                : ctx.Attr<bool>("trans_y");

  ReshapeXYOutToMatrixSequence(&x, &y, &dout, transpose_x, transpose_y);

  framework::DDim dx_dims;
  if (dx) {
    dx_dims = dx->dims();
    if (dx_dims != x.dims()) {
      dx->Resize(x.dims());
    }
  }

  framework::DDim dy_dims;
  if (dy) {
    dy_dims = dy->dims();
    if (dy_dims != y.dims()) {
      dy->Resize(y.dims());
    }
  }

  if (transpose_x && transpose_y) {
    this->ExecuteMatMulGrad(
        ctx, dev_ctx, onednn_engine, &y, true, true, &dout, true, false, dx);
    this->ExecuteMatMulGrad(
        ctx, dev_ctx, onednn_engine, &dout, true, true, &x, true, false, dy);
  } else if (transpose_x) {
    this->ExecuteMatMulGrad(
        ctx, dev_ctx, onednn_engine, &y, false, false, &dout, true, false, dx);
    this->ExecuteMatMulGrad(
        ctx, dev_ctx, onednn_engine, &x, false, false, &dout, false, true, dy);
  } else if (transpose_y) {
    this->ExecuteMatMulGrad(
        ctx, dev_ctx, onednn_engine, &dout, false, false, &y, false, true, dx);
    this->ExecuteMatMulGrad(
        ctx, dev_ctx, onednn_engine, &dout, true, true, &x, false, true, dy);
  } else {
    this->ExecuteMatMulGrad(
        ctx, dev_ctx, onednn_engine, &dout, false, false, &y, true, false, dx);
    this->ExecuteMatMulGrad(
        ctx, dev_ctx, onednn_engine, &x, true, true, &dout, false, true, dy);
  }

  if (dx) {
    if (dx_dims != x.dims()) {
      dx->Resize(dx_dims);
      dx->set_format(x.format());
    }
  }
  if (dy) {
    if (dy_dims != y.dims()) {
      dy->Resize(dy_dims);
      dy->set_format(y.format());
    }
  }
}

template class MatMulGradMKLDNNKernel<float>;
template class MatMulGradMKLDNNKernel<paddle::platform::bfloat16>;

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

1206 1207 1208 1209 1210 1211 1212
REGISTER_OP_KERNEL(matmul,
                   MKLDNN,
                   ::paddle::platform::CPUPlace,
                   MatMulV2MKLDNNKernel<float>,
                   MatMulV2MKLDNNKernel<paddle::platform::bfloat16>,
                   MatMulV2MKLDNNKernel<int8_t>,
                   MatMulV2MKLDNNKernel<uint8_t>);
1213 1214 1215 1216 1217 1218 1219

REGISTER_OP_KERNEL(matmul_grad,
                   MKLDNN,
                   ::paddle::platform::CPUPlace,
                   ops::MatMulGradMKLDNNKernel<float>,
                   ops::MatMulGradMKLDNNKernel<paddle::platform::bfloat16>);

1220 1221 1222
REGISTER_OP_KERNEL(matmul_v2,
                   MKLDNN,
                   ::paddle::platform::CPUPlace,
1223
                   MatMulV2MKLDNNKernel<float>,
1224 1225 1226
                   MatMulV2MKLDNNKernel<paddle::platform::bfloat16>,
                   MatMulV2MKLDNNKernel<int8_t>,
                   MatMulV2MKLDNNKernel<uint8_t>);
1227

1228 1229 1230
REGISTER_OP_KERNEL(matmul_v2_grad,
                   MKLDNN,
                   ::paddle::platform::CPUPlace,
1231 1232
                   MatMulV2GradMKLDNNKernel<float>,
                   MatMulV2GradMKLDNNKernel<paddle::platform::bfloat16>);