Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
fab92824
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
fab92824
编写于
11月 30, 2021
作者:
S
Sylwester Fraczek
提交者:
GitHub
11月 30, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
refactoring matmul_v2 mkldnn hierarchy (#37622)
* refactoring matmul hierarchy * review fix * review fix * review_FIX-part2
上级
5747fd1e
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
71 addition
and
64 deletion
+71
-64
paddle/fluid/operators/mkldnn/matmul_v2_mkldnn_op.cc
paddle/fluid/operators/mkldnn/matmul_v2_mkldnn_op.cc
+71
-64
未找到文件。
paddle/fluid/operators/mkldnn/matmul_v2_mkldnn_op.cc
浏览文件 @
fab92824
...
...
@@ -25,9 +25,9 @@ using paddle::platform::MKLDNNDeviceContext;
using
paddle
::
platform
::
MKLDNNGetDataType
;
using
paddle
::
platform
::
to_void_cast
;
using
Tensor
=
paddle
::
framework
::
Tensor
;
using
paddle
::
framework
::
vectorize
;
using
paddle
::
framework
::
make_ddim
;
using
paddle
::
framework
::
GradVarName
;
using
paddle
::
framework
::
make_ddim
;
using
paddle
::
framework
::
vectorize
;
template
<
typename
T
>
class
MatMulV2MKLDNNHandler
...
...
@@ -123,45 +123,58 @@ class MatMulV2MKLDNNHandler
}
};
template
<
typename
T
>
class
MatMulV2MKLDNNKernel
:
public
paddle
::
operators
::
MatMulGradMKLDNNKernel
<
T
>
{
public:
void
Compute
(
const
ExecutionContext
&
ctx
)
const
override
{
RunKernel
(
ctx
);
}
bool
IsOutputFused
(
const
ExecutionContext
&
ctx
)
{
auto
&
fused_reshape_Out
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"fused_reshape_Out"
);
auto
&
fused_transpose_Out
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"fused_transpose_Out"
);
return
!
fused_reshape_Out
.
empty
()
&&
!
fused_transpose_Out
.
empty
();
}
float
ComputeOutputScale
(
const
ExecutionContext
&
ctx
)
{
float
scale_x
=
ctx
.
Attr
<
float
>
(
"Scale_x"
);
float
scale_y
=
ctx
.
Attr
<
float
>
(
"Scale_y"
);
bool
force_fp32_out
=
ctx
.
Attr
<
bool
>
(
"force_fp32_output"
);
float
scale_out
=
force_fp32_out
?
1.
f
:
ctx
.
Attr
<
float
>
(
"Scale_out"
);
return
scale_out
/
(
scale_x
*
scale_y
);
}
protected:
void
ExecuteMatMul
(
const
ExecutionContext
&
ctx
,
template
<
typename
T
>
void
ExecuteMatMulV2
(
const
ExecutionContext
&
ctx
,
const
MKLDNNDeviceContext
&
dev_ctx
,
const
dnnl
::
engine
onednn_engine
,
paddle
::
platform
::
Place
cpu_place
,
const
Tensor
*
x
,
std
::
vector
<
int64_t
>&
x_dims
,
bool
trans_x
,
const
Tensor
*
y
,
std
::
vector
<
int64_t
>&
y_dims
,
bool
trans_y
,
Tensor
*
out
,
std
::
vector
<
int64_t
>&
out_dims
,
int
execution_number
=
0
)
const
{
MatMulV2MKLDNNHandler
<
T
>
handler
(
onednn_engine
,
ctx
.
GetPlace
(),
x_dims
,
trans_x
,
y_dims
,
trans_y
,
IsOutputFused
(
ctx
));
int
execution_number
=
0
)
{
MatMulV2MKLDNNHandler
<
T
>
handler
(
onednn_engine
,
ctx
.
GetPlace
(),
x_dims
,
trans_x
,
y_dims
,
trans_y
,
IsOutputFused
(
ctx
));
const
auto
src_memory_p
=
handler
.
AcquireSrcMemory
(
x
);
const
auto
weights_memory_p
=
handler
.
AcquireWeightsMemory
(
y
);
const
auto
dst_memory_p
=
handler
.
AcquireDstMemory
(
out
);
const
auto
src_memory_p
=
handler
.
AcquireSrcMemory
(
x
);
const
auto
weights_memory_p
=
handler
.
AcquireWeightsMemory
(
y
);
const
auto
dst_memory_p
=
handler
.
AcquireDstMemory
(
out
);
auto
matmul_p
=
handler
.
AcquireForwardPrimitive
();
auto
matmul_p
=
handler
.
AcquireForwardPrimitive
();
std
::
unordered_map
<
int
,
memory
>
matmul_args
=
{
{
DNNL_ARG_SRC
,
*
src_memory_p
},
{
DNNL_ARG_WEIGHTS
,
*
weights_memory_p
},
{
DNNL_ARG_DST
,
*
dst_memory_p
}};
std
::
unordered_map
<
int
,
memory
>
matmul_args
=
{
{
DNNL_ARG_SRC
,
*
src_memory_p
},
{
DNNL_ARG_WEIGHTS
,
*
weights_memory_p
},
{
DNNL_ARG_DST
,
*
dst_memory_p
}};
auto
&
astream
=
MKLDNNDeviceContext
::
tls
().
get_stream
();
matmul_p
->
execute
(
astream
,
matmul_args
);
astream
.
wait
();
auto
&
astream
=
MKLDNNDeviceContext
::
tls
().
get_stream
();
matmul_p
->
execute
(
astream
,
matmul_args
);
astream
.
wait
();
auto
format
=
paddle
::
platform
::
MKLDNNFormatForSize
(
out
->
dims
().
size
(),
dnnl
::
memory
::
format_tag
::
nchw
);
out
->
set_layout
(
paddle
::
framework
::
DataLayout
::
kMKLDNN
);
out
->
set_format
(
format
);
}
auto
format
=
paddle
::
platform
::
MKLDNNFormatForSize
(
out
->
dims
().
size
(),
dnnl
::
memory
::
format_tag
::
nchw
);
out
->
set_layout
(
paddle
::
framework
::
DataLayout
::
kMKLDNN
);
out
->
set_format
(
format
);
}
template
<
typename
T
>
class
MatMulV2MKLDNNKernel
:
public
paddle
::
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
ExecutionContext
&
ctx
)
const
override
{
RunKernel
(
ctx
);
}
private:
void
CalculateMatrixDims
(
const
ExecutionContext
&
ctx
,
...
...
@@ -207,13 +220,6 @@ class MatMulV2MKLDNNKernel
}
}
bool
IsOutputFused
(
const
ExecutionContext
&
ctx
)
const
{
auto
&
fused_reshape_Out
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"fused_reshape_Out"
);
auto
&
fused_transpose_Out
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"fused_transpose_Out"
);
return
!
fused_reshape_Out
.
empty
()
&&
!
fused_transpose_Out
.
empty
();
}
void
RunKernel
(
const
ExecutionContext
&
ctx
)
const
{
const
auto
&
dev_ctx
=
ctx
.
template
device_context
<
MKLDNNDeviceContext
>();
const
auto
&
onednn_engine
=
dev_ctx
.
GetEngine
();
...
...
@@ -237,13 +243,14 @@ class MatMulV2MKLDNNKernel
CalculateMatrixDims
(
ctx
,
x_dims
,
y_dims
,
x_bd_dims
,
y_bd_dims
,
out_dims
,
out
);
ExecuteMatMul
(
ctx
,
dev_ctx
,
onednn_engine
,
ctx
.
GetPlace
(),
x
,
x_bd_dims
,
trans_x
,
y
,
y_bd_dims
,
trans_y
,
out
,
out_dims
);
ExecuteMatMulV2
<
T
>
(
ctx
,
dev_ctx
,
onednn_engine
,
ctx
.
GetPlace
(),
x
,
x_bd_dims
,
trans_x
,
y
,
y_bd_dims
,
trans_y
,
out
,
out_dims
);
}
};
template
<
typename
T
>
class
MatMulV2GradMKLDNNKernel
:
public
MatMulV2MKLDNN
Kernel
<
T
>
{
class
MatMulV2GradMKLDNNKernel
:
public
paddle
::
framework
::
Op
Kernel
<
T
>
{
public:
void
Compute
(
const
ExecutionContext
&
ctx
)
const
override
{
RunKernel
(
ctx
);
}
...
...
@@ -316,7 +323,7 @@ class MatMulV2GradMKLDNNKernel : public MatMulV2MKLDNNKernel<T> {
// if no broadcasting is needed, we can simply use matmul's grad and avoid
// using reduce_sum
if
(
!
is_broadcast
)
{
paddle
::
operators
::
MatMulGradMKLDNNKernel
<
T
>::
Compute
(
ctx
);
matmul_v1_grad_mkldnn_kernel
.
Compute
(
ctx
);
return
;
}
...
...
@@ -342,33 +349,29 @@ class MatMulV2GradMKLDNNKernel : public MatMulV2MKLDNNKernel<T> {
dy_bd_dims
);
if
(
trans_x
&&
trans_y
)
{
this
->
ExecuteMatMul
(
ctx
,
dev_ctx
,
onednn_engine
,
ctx
.
GetPlace
(),
y
,
y_dims
,
true
,
dout
,
dout_dims
,
true
,
&
dx_tmp
,
dx_bd_dims
,
1
);
this
->
ExecuteMatMul
(
ctx
,
dev_ctx
,
onednn_engine
,
ctx
.
GetPlace
(),
dout
,
dout_dims
,
true
,
x
,
x_dims
,
true
,
&
dy_tmp
,
dy_bd_dims
,
2
);
ExecuteMatMulV2
<
T
>
(
ctx
,
dev_ctx
,
onednn_engine
,
ctx
.
GetPlace
(),
y
,
y_dims
,
true
,
dout
,
dout_dims
,
true
,
&
dx_tmp
,
dx_bd_dims
,
1
);
ExecuteMatMulV2
<
T
>
(
ctx
,
dev_ctx
,
onednn_engine
,
ctx
.
GetPlace
(),
dout
,
dout_dims
,
true
,
x
,
x_dims
,
true
,
&
dy_tmp
,
dy_bd_dims
,
2
);
}
else
if
(
trans_x
)
{
this
->
ExecuteMatMul
(
ctx
,
dev_ctx
,
onednn_engine
,
ctx
.
GetPlace
(),
y
,
y_dims
,
false
,
dout
,
dout_dims
,
true
,
&
dx_tmp
,
dx_bd_dims
,
1
);
this
->
ExecuteMatMul
(
ctx
,
dev_ctx
,
onednn_engine
,
ctx
.
GetPlace
(),
x
,
x_dims
,
false
,
dout
,
dout_dims
,
false
,
&
dy_tmp
,
dy_bd_dims
,
2
);
ExecuteMatMulV2
<
T
>
(
ctx
,
dev_ctx
,
onednn_engine
,
ctx
.
GetPlace
(),
y
,
y_dims
,
false
,
dout
,
dout_dims
,
true
,
&
dx_tmp
,
dx_bd_dims
,
1
);
ExecuteMatMulV2
<
T
>
(
ctx
,
dev_ctx
,
onednn_engine
,
ctx
.
GetPlace
(),
x
,
x_dims
,
false
,
dout
,
dout_dims
,
false
,
&
dy_tmp
,
dy_bd_dims
,
2
);
}
else
if
(
trans_y
)
{
this
->
ExecuteMatMul
(
ctx
,
dev_ctx
,
onednn_engine
,
ctx
.
GetPlace
(),
dout
,
dout_dims
,
false
,
y
,
y_dims
,
false
,
&
dx_tmp
,
dx_bd_dims
,
1
);
this
->
ExecuteMatMul
(
ctx
,
dev_ctx
,
onednn_engine
,
ctx
.
GetPlace
(),
dout
,
dout_dims
,
true
,
x
,
x_dims
,
false
,
&
dy_tmp
,
dy_bd_dims
,
2
);
ExecuteMatMulV2
<
T
>
(
ctx
,
dev_ctx
,
onednn_engine
,
ctx
.
GetPlace
(),
dout
,
dout_dims
,
false
,
y
,
y_dims
,
false
,
&
dx_tmp
,
dx_bd_dims
,
1
);
ExecuteMatMulV2
<
T
>
(
ctx
,
dev_ctx
,
onednn_engine
,
ctx
.
GetPlace
(),
dout
,
dout_dims
,
true
,
x
,
x_dims
,
false
,
&
dy_tmp
,
dy_bd_dims
,
2
);
}
else
{
this
->
ExecuteMatMul
(
ctx
,
dev_ctx
,
onednn_engine
,
ctx
.
GetPlace
(),
dout
,
dout_dims
,
false
,
y
,
y_dims
,
true
,
&
dx_tmp
,
dx_bd_dims
,
1
);
this
->
ExecuteMatMul
(
ctx
,
dev_ctx
,
onednn_engine
,
ctx
.
GetPlace
(),
x
,
x_dims
,
true
,
dout
,
dout_dims
,
false
,
&
dy_tmp
,
dy_bd_dims
,
2
);
ExecuteMatMulV2
<
T
>
(
ctx
,
dev_ctx
,
onednn_engine
,
ctx
.
GetPlace
(),
dout
,
dout_dims
,
false
,
y
,
y_dims
,
true
,
&
dx_tmp
,
dx_bd_dims
,
1
);
ExecuteMatMulV2
<
T
>
(
ctx
,
dev_ctx
,
onednn_engine
,
ctx
.
GetPlace
(),
x
,
x_dims
,
true
,
dout
,
dout_dims
,
false
,
&
dy_tmp
,
dy_bd_dims
,
2
);
}
if
(
x_dims
!=
dx_bd_dims
)
{
...
...
@@ -389,8 +392,12 @@ class MatMulV2GradMKLDNNKernel : public MatMulV2MKLDNNKernel<T> {
dy
->
set_layout
(
paddle
::
framework
::
DataLayout
::
kMKLDNN
);
dy
->
set_format
(
y
->
format
());
}
private:
paddle
::
operators
::
MatMulGradMKLDNNKernel
<
T
>
matmul_v1_grad_mkldnn_kernel
;
};
}
// anonymous namespace
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_KERNEL
(
matmul_v2
,
MKLDNN
,
::
paddle
::
platform
::
CPUPlace
,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录