matmul_v2_mkldnn_op.cc 15.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/fluid/operators/mkldnn/matmul_mkldnn_op.h"
16

17
namespace {
18 19 20

using dnnl::memory;
using dnnl::primitive;
21 22 23 24 25 26 27 28
using paddle::framework::DataLayout;
using paddle::framework::ExecutionContext;
using paddle::platform::GetMKLDNNFormat;
using paddle::platform::MKLDNNDeviceContext;
using paddle::platform::MKLDNNGetDataType;
using paddle::platform::to_void_cast;
using Tensor = paddle::framework::Tensor;
using paddle::framework::GradVarName;
29 30
using paddle::framework::make_ddim;
using paddle::framework::vectorize;
31 32

template <typename T>
33
class MatMulV2MKLDNNHandler
34
    : public paddle::platform::MKLDNNHandlerNoCachingT<T, dnnl::matmul> {
35
 public:
36
  MatMulV2MKLDNNHandler(const dnnl::engine engine,
37 38
                        paddle::platform::Place cpu_place,
                        const std::vector<int64_t>& x_org_dims, bool trans_x,
39 40
                        const std::vector<int64_t>& y_org_dims, bool trans_y,
                        bool is_output_fused)
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
      : paddle::platform::MKLDNNHandlerNoCachingT<T, dnnl::matmul>(engine,
                                                                   cpu_place) {
    // M X K * K X N
    std::vector<int64_t> x_dims(x_org_dims);
    std::vector<int64_t> y_dims(y_org_dims);

    const int MB_idx = x_dims.size() - 3;
    const int H_idx = x_dims.size() - 2;
    const int W_idx = x_dims.size() - 1;

    if (trans_x) std::swap(x_dims[H_idx], x_dims[W_idx]);
    if (trans_y) std::swap(y_dims[H_idx], y_dims[W_idx]);

    const memory::dim M = x_dims[H_idx];
    const memory::dim K = x_dims[W_idx];
    const memory::dim N = y_dims[W_idx];

    std::vector<int64_t> x_strides(x_dims.size() - 3, 1);
    std::vector<int64_t> y_strides(x_dims.size() - 3, 1);
    std::vector<int64_t> out_strides(x_dims.size() - 3, 1);
    std::vector<int64_t> out_ddims(x_dims.size() - 3, 1);

    x_strides.reserve(x_dims.size());
    y_strides.reserve(x_dims.size());
    out_strides.reserve(x_dims.size());

    if (!trans_x) {
      x_strides.insert(x_strides.end(), {M * K, K, 1});
    } else {
      x_strides.insert(x_strides.end(), {M * K, 1, M});
    }
72

73 74 75 76 77
    if (!trans_y) {
      y_strides.insert(y_strides.end(), {N * K, N, 1});
    } else {
      y_strides.insert(y_strides.end(), {N * K, 1, K});
    }
78

79 80 81
    out_strides.insert(out_strides.end(), {M * N, N, 1});
    out_ddims.insert(out_ddims.end(),
                     {std::max(x_dims[MB_idx], y_dims[MB_idx]), M, N});
82

83 84 85 86 87 88
    for (int i = x_dims.size() - 4; i >= 0; --i) {
      out_ddims[i] = std::max(x_dims[i], y_dims[i]);
      x_strides[i] = x_dims[i + 1] * x_strides[i + 1];
      y_strides[i] = y_dims[i + 1] * y_strides[i + 1];
      out_strides[i] = out_ddims[i + 1] * out_strides[i + 1];
    }
89

90 91 92 93
    if (is_output_fused) {
      out_strides = FakeTransposeStrides(out_ddims);
    }

94 95 96
    auto x_md = memory::desc(x_dims, MKLDNNGetDataType<T>(), x_strides);
    auto y_md = memory::desc(y_dims, MKLDNNGetDataType<T>(), y_strides);
    auto out_md = memory::desc(out_ddims, MKLDNNGetDataType<T>(), out_strides);
97

98
    this->AcquireForwardPrimitiveDescriptor(x_md, y_md, out_md);
99 100
  }

101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
  std::vector<int64_t> FakeTransposeStrides(
      const std::vector<int64_t>& matmul_out_dims) const {
    // fuse matmul_v2 + transpose + reshape guarantees that output is 4D and
    // transpose axis are: {0, 2, 1, 3}
    std::vector<int64_t> transpose_axis = {0, 2, 1, 3};
    std::vector<int64_t> fake_strides(transpose_axis.size());
    int ndims = static_cast<int>(transpose_axis.size());

    int total_stride = 1;

    for (int i = ndims - 1; i >= 0; --i) {
      fake_strides[transpose_axis[i]] = total_stride;
      total_stride *= matmul_out_dims[transpose_axis[i]];
    }

    return fake_strides;
  }

119 120 121
  std::shared_ptr<memory> AcquireWeightsMemory(const Tensor* input) {
    const T* input_data = input->data<T>();
    return this->AcquireMemoryFromPrimitive(this->fwd_pd_->weights_desc(),
122
                                            to_void_cast<T>(input_data));
123 124 125
  }
};

126 127 128 129 130 131 132 133 134 135 136 137 138
bool IsOutputFused(const ExecutionContext& ctx) {
  auto& fused_reshape_Out = ctx.Attr<std::vector<int>>("fused_reshape_Out");
  auto& fused_transpose_Out = ctx.Attr<std::vector<int>>("fused_transpose_Out");
  return !fused_reshape_Out.empty() && !fused_transpose_Out.empty();
}

float ComputeOutputScale(const ExecutionContext& ctx) {
  float scale_x = ctx.Attr<float>("Scale_x");
  float scale_y = ctx.Attr<float>("Scale_y");
  bool force_fp32_out = ctx.Attr<bool>("force_fp32_output");
  float scale_out = force_fp32_out ? 1.f : ctx.Attr<float>("Scale_out");
  return scale_out / (scale_x * scale_y);
}
139

140 141
template <typename T>
void ExecuteMatMulV2(const ExecutionContext& ctx,
142
                     const MKLDNNDeviceContext& dev_ctx,
143
                     const dnnl::engine onednn_engine,
144 145 146 147
                     paddle::platform::Place cpu_place, const Tensor* x,
                     std::vector<int64_t>& x_dims, bool trans_x,
                     const Tensor* y, std::vector<int64_t>& y_dims,
                     bool trans_y, Tensor* out, std::vector<int64_t>& out_dims,
148 149 150 151
                     int execution_number = 0) {
  MatMulV2MKLDNNHandler<T> handler(onednn_engine, ctx.GetPlace(), x_dims,
                                   trans_x, y_dims, trans_y,
                                   IsOutputFused(ctx));
152

153 154 155
  const auto src_memory_p = handler.AcquireSrcMemory(x);
  const auto weights_memory_p = handler.AcquireWeightsMemory(y);
  const auto dst_memory_p = handler.AcquireDstMemory(out);
156

157
  auto matmul_p = handler.AcquireForwardPrimitive();
158

159 160 161 162
  std::unordered_map<int, memory> matmul_args = {
      {DNNL_ARG_SRC, *src_memory_p},
      {DNNL_ARG_WEIGHTS, *weights_memory_p},
      {DNNL_ARG_DST, *dst_memory_p}};
163

164 165 166
  auto& astream = MKLDNNDeviceContext::tls().get_stream();
  matmul_p->execute(astream, matmul_args);
  astream.wait();
167

168 169 170 171 172 173 174 175 176 177
  auto format = paddle::platform::MKLDNNFormatForSize(
      out->dims().size(), dnnl::memory::format_tag::nchw);
  out->set_layout(paddle::framework::DataLayout::kMKLDNN);
  out->set_format(format);
}

template <typename T>
class MatMulV2MKLDNNKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const ExecutionContext& ctx) const override { RunKernel(ctx); }
178

179 180 181 182 183 184 185 186 187
 private:
  void CalculateMatrixDims(const ExecutionContext& ctx,
                           const std::vector<int64_t>& x_dims,
                           const std::vector<int64_t>& y_dims,
                           std::vector<int64_t>& x_bd_dims,
                           std::vector<int64_t>& y_bd_dims,
                           std::vector<int64_t>& out_dims, Tensor* out) const {
    if (x_dims.size() == 1) {
      x_bd_dims[x_bd_dims.size() - 1] = x_dims[0];
188
    } else if (x_dims.size() == 2) {
J
jakpiase 已提交
189 190
      x_bd_dims[x_bd_dims.size() - 1] = x_dims[1];
      x_bd_dims[x_bd_dims.size() - 2] = x_dims[0];
191 192 193 194 195 196 197
    } else {
      for (size_t i = 0; i < x_dims.size(); ++i) {
        x_bd_dims[i] = x_dims[i];
      }
    }
    if (y_dims.size() == 1) {
      y_bd_dims[x_bd_dims.size() - 2] = y_dims[0];
198
    } else if (y_dims.size() == 2) {
J
jakpiase 已提交
199 200
      y_bd_dims[y_bd_dims.size() - 1] = y_dims[1];
      y_bd_dims[y_bd_dims.size() - 2] = y_dims[0];
201 202 203 204 205 206
    } else {
      for (size_t i = 0; i < y_dims.size(); ++i) {
        y_bd_dims[i] = y_dims[i];
      }
    }

207 208
    if ((y_dims.size() == x_dims.size()) && y_dims.size() > 2 &&
        !IsOutputFused(ctx)) {
209 210 211
      for (size_t i = 0; i < x_dims.size() - 2; ++i) {
        PADDLE_ENFORCE_EQ(
            x_dims[i] == y_dims[i] || x_dims[i] == 1 || y_dims[i] == 1, true,
212
            paddle::platform::errors::InvalidArgument(
213 214 215 216 217 218
                "Tensor dimensions are incorrect for broadcasting."
                "Dimensions in X and Y must be same or equal to 1, but "
                "received x_dim[%d]=%d and y_dims[%d]= %d",
                i, x_dims[i], i, y_dims[i]));
        out_dims[i] = std::max(x_dims[i], y_dims[i]);
      }
219
      out->Resize(make_ddim(out_dims));
220 221 222 223 224 225 226 227 228 229 230 231 232
    }
  }

  void RunKernel(const ExecutionContext& ctx) const {
    const auto& dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
    const auto& onednn_engine = dev_ctx.GetEngine();

    auto* x = ctx.Input<Tensor>("X");
    auto* y = ctx.Input<Tensor>("Y");
    auto* out = ctx.Output<Tensor>("Out");
    bool trans_x = ctx.Attr<bool>("trans_x");
    bool trans_y = ctx.Attr<bool>("trans_y");

233 234 235
    auto x_dims = vectorize(x->dims());
    auto y_dims = vectorize(y->dims());
    auto out_dims = vectorize(out->dims());
236 237 238 239 240 241 242 243 244 245

    int ndims = std::max(x->dims().size(), y->dims().size());
    ndims = std::max(ndims, 3);

    std::vector<int64_t> x_bd_dims(ndims, 1);
    std::vector<int64_t> y_bd_dims(ndims, 1);

    CalculateMatrixDims(ctx, x_dims, y_dims, x_bd_dims, y_bd_dims, out_dims,
                        out);

246 247 248
    ExecuteMatMulV2<T>(ctx, dev_ctx, onednn_engine, ctx.GetPlace(), x,
                       x_bd_dims, trans_x, y, y_bd_dims, trans_y, out,
                       out_dims);
249 250
  }
};
251

252
template <typename T>
253
class MatMulV2GradMKLDNNKernel : public paddle::framework::OpKernel<T> {
254 255
 public:
  void Compute(const ExecutionContext& ctx) const override { RunKernel(ctx); }
256

257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
 private:
  void CalculateGradMatrixDims(const ExecutionContext& ctx, Tensor* dx_tmp,
                               Tensor* dy_tmp,
                               const std::vector<int64_t>& dx_dims,
                               const std::vector<int64_t>& dy_dims,
                               std::vector<int64_t>& dx_bd_dims,
                               std::vector<int64_t>& dy_bd_dims) const {
    for (size_t i = 0; i < dx_dims.size() - 2; ++i) {
      if (dx_dims[i] != dy_dims[i]) {
        if (dx_dims[i] == 1) {
          dx_bd_dims[i] = dy_dims[i];
        } else {
          dy_bd_dims[i] = dx_dims[i];
        }
      }
    }
273

274 275 276 277 278 279 280 281
    dx_tmp->Resize(make_ddim(dx_bd_dims));
    dx_tmp->mutable_data<T>(ctx.GetPlace());
    dy_tmp->Resize(make_ddim(dy_bd_dims));
    dy_tmp->mutable_data<T>(ctx.GetPlace());
  }

  void ReduceSumForMatmulGradOutput(const ExecutionContext& ctx,
                                    const MKLDNNDeviceContext& dev_ctx,
282
                                    const dnnl::engine onednn_engine,
283 284 285
                                    const Tensor* dx_tmp, Tensor* dx,
                                    std::vector<int64_t> dx_dims) const {
    paddle::platform::ReductionMKLDNNHandler<T> handler(
286 287
        dnnl::algorithm::reduction_sum, 0.0f, 0.0f, onednn_engine,
        ctx.GetPlace(), dx_tmp, dx, dx_dims);
288 289 290 291 292 293

    auto src_memory_p = handler.AcquireSrcMemory(dx_tmp);
    auto dst_memory_p = handler.AcquireDstMemory(dx);

    std::unordered_map<int, dnnl::memory> reduction_args = {
        {DNNL_ARG_SRC, *src_memory_p}, {DNNL_ARG_DST, *dst_memory_p}};
294 295

    auto& astream = MKLDNNDeviceContext::tls().get_stream();
296 297 298
    auto reduction_p = handler.AcquireForwardPrimitive();

    reduction_p->execute(astream, reduction_args);
299
    astream.wait();
300
  }
301

302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
  void RunKernel(const ExecutionContext& ctx) const {
    const auto& dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
    const auto& onednn_engine = dev_ctx.GetEngine();

    auto* x = ctx.Input<Tensor>("X");
    auto* y = ctx.Input<Tensor>("Y");

    auto x_dims = vectorize(x->dims());
    auto y_dims = vectorize(y->dims());

    bool is_broadcast = true;
    if (x_dims.size() <= 2 || y_dims.size() <= 2) {
      is_broadcast = false;
    } else if (x_dims.size() != y_dims.size()) {
      is_broadcast = true;
    } else {
      is_broadcast =
          !std::equal(x_dims.cbegin(), x_dims.cbegin() + x_dims.size() - 2,
                      y_dims.cbegin());
    }

    // if no broadcasting is needed, we can simply use matmul's grad and avoid
    // using reduce_sum
    if (!is_broadcast) {
326
      matmul_v1_grad_mkldnn_kernel.Compute(ctx);
327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
      return;
    }

    auto* dout = ctx.Input<Tensor>(GradVarName("Out"));
    auto* dx = ctx.Output<Tensor>(GradVarName("X"));
    auto* dy = ctx.Output<Tensor>(GradVarName("Y"));

    bool trans_x = ctx.Attr<bool>("trans_x");
    bool trans_y = ctx.Attr<bool>("trans_y");
    auto dout_dims = vectorize(dout->dims());

    int ndims = std::max(x->dims().size(), y->dims().size());
    ndims = std::max(ndims, 3);

    // in broadcasting scenario new memory is required because
    // reduce sum must be calculated upon broadcasted dims
    Tensor dx_tmp, dy_tmp;

    std::vector<int64_t> dx_bd_dims(x_dims);
    std::vector<int64_t> dy_bd_dims(y_dims);

    CalculateGradMatrixDims(ctx, &dx_tmp, &dy_tmp, x_dims, y_dims, dx_bd_dims,
                            dy_bd_dims);

    if (trans_x && trans_y) {
352 353 354 355 356
      ExecuteMatMulV2<T>(ctx, dev_ctx, onednn_engine, ctx.GetPlace(), y, y_dims,
                         true, dout, dout_dims, true, &dx_tmp, dx_bd_dims, 1);
      ExecuteMatMulV2<T>(ctx, dev_ctx, onednn_engine, ctx.GetPlace(), dout,
                         dout_dims, true, x, x_dims, true, &dy_tmp, dy_bd_dims,
                         2);
357
    } else if (trans_x) {
358 359 360 361
      ExecuteMatMulV2<T>(ctx, dev_ctx, onednn_engine, ctx.GetPlace(), y, y_dims,
                         false, dout, dout_dims, true, &dx_tmp, dx_bd_dims, 1);
      ExecuteMatMulV2<T>(ctx, dev_ctx, onednn_engine, ctx.GetPlace(), x, x_dims,
                         false, dout, dout_dims, false, &dy_tmp, dy_bd_dims, 2);
362
    } else if (trans_y) {
363 364 365 366 367 368
      ExecuteMatMulV2<T>(ctx, dev_ctx, onednn_engine, ctx.GetPlace(), dout,
                         dout_dims, false, y, y_dims, false, &dx_tmp,
                         dx_bd_dims, 1);
      ExecuteMatMulV2<T>(ctx, dev_ctx, onednn_engine, ctx.GetPlace(), dout,
                         dout_dims, true, x, x_dims, false, &dy_tmp, dy_bd_dims,
                         2);
369
    } else {
370 371 372 373 374
      ExecuteMatMulV2<T>(ctx, dev_ctx, onednn_engine, ctx.GetPlace(), dout,
                         dout_dims, false, y, y_dims, true, &dx_tmp, dx_bd_dims,
                         1);
      ExecuteMatMulV2<T>(ctx, dev_ctx, onednn_engine, ctx.GetPlace(), x, x_dims,
                         true, dout, dout_dims, false, &dy_tmp, dy_bd_dims, 2);
375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
    }

    if (x_dims != dx_bd_dims) {
      ReduceSumForMatmulGradOutput(ctx, dev_ctx, onednn_engine, &dx_tmp, dx,
                                   x_dims);
    } else {
      *dx = std::move(dx_tmp);
    }
    if (y_dims != dy_bd_dims) {
      ReduceSumForMatmulGradOutput(ctx, dev_ctx, onednn_engine, &dy_tmp, dy,
                                   y_dims);
    } else {
      *dy = std::move(dy_tmp);
    }

    dx->set_layout(paddle::framework::DataLayout::kMKLDNN);
    dx->set_format(x->format());
    dy->set_layout(paddle::framework::DataLayout::kMKLDNN);
    dy->set_format(y->format());
394
  }
395 396 397

 private:
  paddle::operators::MatMulGradMKLDNNKernel<T> matmul_v1_grad_mkldnn_kernel;
398
};
399
}  // anonymous namespace
400

401 402 403
namespace ops = paddle::operators;

REGISTER_OP_KERNEL(matmul_v2, MKLDNN, ::paddle::platform::CPUPlace,
404 405
                   MatMulV2MKLDNNKernel<float>,
                   MatMulV2MKLDNNKernel<paddle::platform::bfloat16>);
406

407 408 409
REGISTER_OP_KERNEL(matmul_v2_grad, MKLDNN, ::paddle::platform::CPUPlace,
                   MatMulV2GradMKLDNNKernel<float>,
                   MatMulV2GradMKLDNNKernel<paddle::platform::bfloat16>);