matmul_v2_mkldnn_op.cc 15.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/fluid/operators/mkldnn/matmul_mkldnn_op.h"
16

17
namespace {
18 19 20

using dnnl::memory;
using dnnl::primitive;
21 22 23 24 25 26 27 28 29 30
using paddle::framework::DataLayout;
using paddle::framework::ExecutionContext;
using paddle::platform::GetMKLDNNFormat;
using paddle::platform::MKLDNNDeviceContext;
using paddle::platform::MKLDNNGetDataType;
using paddle::platform::to_void_cast;
using Tensor = paddle::framework::Tensor;
using paddle::framework::vectorize;
using paddle::framework::make_ddim;
using paddle::framework::GradVarName;
31 32

template <typename T>
33
class MatMulV2MKLDNNHandler
34
    : public paddle::platform::MKLDNNHandlerNoCachingT<T, dnnl::matmul> {
35
 public:
36
  MatMulV2MKLDNNHandler(const dnnl::engine engine,
37 38
                        paddle::platform::Place cpu_place,
                        const std::vector<int64_t>& x_org_dims, bool trans_x,
39 40
                        const std::vector<int64_t>& y_org_dims, bool trans_y,
                        bool is_output_fused)
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
      : paddle::platform::MKLDNNHandlerNoCachingT<T, dnnl::matmul>(engine,
                                                                   cpu_place) {
    // M X K * K X N
    std::vector<int64_t> x_dims(x_org_dims);
    std::vector<int64_t> y_dims(y_org_dims);

    const int MB_idx = x_dims.size() - 3;
    const int H_idx = x_dims.size() - 2;
    const int W_idx = x_dims.size() - 1;

    if (trans_x) std::swap(x_dims[H_idx], x_dims[W_idx]);
    if (trans_y) std::swap(y_dims[H_idx], y_dims[W_idx]);

    const memory::dim M = x_dims[H_idx];
    const memory::dim K = x_dims[W_idx];
    const memory::dim N = y_dims[W_idx];

    std::vector<int64_t> x_strides(x_dims.size() - 3, 1);
    std::vector<int64_t> y_strides(x_dims.size() - 3, 1);
    std::vector<int64_t> out_strides(x_dims.size() - 3, 1);
    std::vector<int64_t> out_ddims(x_dims.size() - 3, 1);

    x_strides.reserve(x_dims.size());
    y_strides.reserve(x_dims.size());
    out_strides.reserve(x_dims.size());

    if (!trans_x) {
      x_strides.insert(x_strides.end(), {M * K, K, 1});
    } else {
      x_strides.insert(x_strides.end(), {M * K, 1, M});
    }
72

73 74 75 76 77
    if (!trans_y) {
      y_strides.insert(y_strides.end(), {N * K, N, 1});
    } else {
      y_strides.insert(y_strides.end(), {N * K, 1, K});
    }
78

79 80 81
    out_strides.insert(out_strides.end(), {M * N, N, 1});
    out_ddims.insert(out_ddims.end(),
                     {std::max(x_dims[MB_idx], y_dims[MB_idx]), M, N});
82

83 84 85 86 87 88
    for (int i = x_dims.size() - 4; i >= 0; --i) {
      out_ddims[i] = std::max(x_dims[i], y_dims[i]);
      x_strides[i] = x_dims[i + 1] * x_strides[i + 1];
      y_strides[i] = y_dims[i + 1] * y_strides[i + 1];
      out_strides[i] = out_ddims[i + 1] * out_strides[i + 1];
    }
89

90 91 92 93
    if (is_output_fused) {
      out_strides = FakeTransposeStrides(out_ddims);
    }

94 95 96
    auto x_md = memory::desc(x_dims, MKLDNNGetDataType<T>(), x_strides);
    auto y_md = memory::desc(y_dims, MKLDNNGetDataType<T>(), y_strides);
    auto out_md = memory::desc(out_ddims, MKLDNNGetDataType<T>(), out_strides);
97

98
    this->AcquireForwardPrimitiveDescriptor(x_md, y_md, out_md);
99 100
  }

101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
  std::vector<int64_t> FakeTransposeStrides(
      const std::vector<int64_t>& matmul_out_dims) const {
    // fuse matmul_v2 + transpose + reshape guarantees that output is 4D and
    // transpose axis are: {0, 2, 1, 3}
    std::vector<int64_t> transpose_axis = {0, 2, 1, 3};
    std::vector<int64_t> fake_strides(transpose_axis.size());
    int ndims = static_cast<int>(transpose_axis.size());

    int total_stride = 1;

    for (int i = ndims - 1; i >= 0; --i) {
      fake_strides[transpose_axis[i]] = total_stride;
      total_stride *= matmul_out_dims[transpose_axis[i]];
    }

    return fake_strides;
  }

119 120 121
  std::shared_ptr<memory> AcquireWeightsMemory(const Tensor* input) {
    const T* input_data = input->data<T>();
    return this->AcquireMemoryFromPrimitive(this->fwd_pd_->weights_desc(),
122
                                            to_void_cast<T>(input_data));
123 124 125 126
  }
};

template <typename T>
127 128
class MatMulV2MKLDNNKernel
    : public paddle::operators::MatMulGradMKLDNNKernel<T> {
129 130 131
 public:
  void Compute(const ExecutionContext& ctx) const override { RunKernel(ctx); }

132 133 134
 protected:
  void ExecuteMatMul(const ExecutionContext& ctx,
                     const MKLDNNDeviceContext& dev_ctx,
135
                     const dnnl::engine onednn_engine,
136 137 138 139 140
                     paddle::platform::Place cpu_place, const Tensor* x,
                     std::vector<int64_t>& x_dims, bool trans_x,
                     const Tensor* y, std::vector<int64_t>& y_dims,
                     bool trans_y, Tensor* out, std::vector<int64_t>& out_dims,
                     int execution_number = 0) const {
141
    MatMulV2MKLDNNHandler<T> handler(onednn_engine, ctx.GetPlace(), x_dims,
142 143
                                     trans_x, y_dims, trans_y,
                                     IsOutputFused(ctx));
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159

    const auto src_memory_p = handler.AcquireSrcMemory(x);
    const auto weights_memory_p = handler.AcquireWeightsMemory(y);
    const auto dst_memory_p = handler.AcquireDstMemory(out);

    auto matmul_p = handler.AcquireForwardPrimitive();

    std::unordered_map<int, memory> matmul_args = {
        {DNNL_ARG_SRC, *src_memory_p},
        {DNNL_ARG_WEIGHTS, *weights_memory_p},
        {DNNL_ARG_DST, *dst_memory_p}};

    auto& astream = MKLDNNDeviceContext::tls().get_stream();
    matmul_p->execute(astream, matmul_args);
    astream.wait();

160 161
    auto format = paddle::platform::MKLDNNFormatForSize(
        out->dims().size(), dnnl::memory::format_tag::nchw);
162
    out->set_layout(paddle::framework::DataLayout::kMKLDNN);
163
    out->set_format(format);
164 165
  }

166 167 168 169 170 171 172 173 174
 private:
  void CalculateMatrixDims(const ExecutionContext& ctx,
                           const std::vector<int64_t>& x_dims,
                           const std::vector<int64_t>& y_dims,
                           std::vector<int64_t>& x_bd_dims,
                           std::vector<int64_t>& y_bd_dims,
                           std::vector<int64_t>& out_dims, Tensor* out) const {
    if (x_dims.size() == 1) {
      x_bd_dims[x_bd_dims.size() - 1] = x_dims[0];
175
    } else if (x_dims.size() == 2) {
J
jakpiase 已提交
176 177
      x_bd_dims[x_bd_dims.size() - 1] = x_dims[1];
      x_bd_dims[x_bd_dims.size() - 2] = x_dims[0];
178 179 180 181 182 183 184
    } else {
      for (size_t i = 0; i < x_dims.size(); ++i) {
        x_bd_dims[i] = x_dims[i];
      }
    }
    if (y_dims.size() == 1) {
      y_bd_dims[x_bd_dims.size() - 2] = y_dims[0];
185
    } else if (y_dims.size() == 2) {
J
jakpiase 已提交
186 187
      y_bd_dims[y_bd_dims.size() - 1] = y_dims[1];
      y_bd_dims[y_bd_dims.size() - 2] = y_dims[0];
188 189 190 191 192 193
    } else {
      for (size_t i = 0; i < y_dims.size(); ++i) {
        y_bd_dims[i] = y_dims[i];
      }
    }

194 195
    if ((y_dims.size() == x_dims.size()) && y_dims.size() > 2 &&
        !IsOutputFused(ctx)) {
196 197 198
      for (size_t i = 0; i < x_dims.size() - 2; ++i) {
        PADDLE_ENFORCE_EQ(
            x_dims[i] == y_dims[i] || x_dims[i] == 1 || y_dims[i] == 1, true,
199
            paddle::platform::errors::InvalidArgument(
200 201 202 203 204 205
                "Tensor dimensions are incorrect for broadcasting."
                "Dimensions in X and Y must be same or equal to 1, but "
                "received x_dim[%d]=%d and y_dims[%d]= %d",
                i, x_dims[i], i, y_dims[i]));
        out_dims[i] = std::max(x_dims[i], y_dims[i]);
      }
206
      out->Resize(make_ddim(out_dims));
207 208 209
    }
  }

210 211 212 213 214 215 216
  bool IsOutputFused(const ExecutionContext& ctx) const {
    auto& fused_reshape_Out = ctx.Attr<std::vector<int>>("fused_reshape_Out");
    auto& fused_transpose_Out =
        ctx.Attr<std::vector<int>>("fused_transpose_Out");
    return !fused_reshape_Out.empty() && !fused_transpose_Out.empty();
  }

217 218 219 220 221 222 223 224 225 226
  void RunKernel(const ExecutionContext& ctx) const {
    const auto& dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
    const auto& onednn_engine = dev_ctx.GetEngine();

    auto* x = ctx.Input<Tensor>("X");
    auto* y = ctx.Input<Tensor>("Y");
    auto* out = ctx.Output<Tensor>("Out");
    bool trans_x = ctx.Attr<bool>("trans_x");
    bool trans_y = ctx.Attr<bool>("trans_y");

227 228 229
    auto x_dims = vectorize(x->dims());
    auto y_dims = vectorize(y->dims());
    auto out_dims = vectorize(out->dims());
230 231 232 233 234 235 236 237 238 239

    int ndims = std::max(x->dims().size(), y->dims().size());
    ndims = std::max(ndims, 3);

    std::vector<int64_t> x_bd_dims(ndims, 1);
    std::vector<int64_t> y_bd_dims(ndims, 1);

    CalculateMatrixDims(ctx, x_dims, y_dims, x_bd_dims, y_bd_dims, out_dims,
                        out);

240 241 242 243
    ExecuteMatMul(ctx, dev_ctx, onednn_engine, ctx.GetPlace(), x, x_bd_dims,
                  trans_x, y, y_bd_dims, trans_y, out, out_dims);
  }
};
244

245 246 247 248
template <typename T>
class MatMulV2GradMKLDNNKernel : public MatMulV2MKLDNNKernel<T> {
 public:
  void Compute(const ExecutionContext& ctx) const override { RunKernel(ctx); }
249

250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
 private:
  void CalculateGradMatrixDims(const ExecutionContext& ctx, Tensor* dx_tmp,
                               Tensor* dy_tmp,
                               const std::vector<int64_t>& dx_dims,
                               const std::vector<int64_t>& dy_dims,
                               std::vector<int64_t>& dx_bd_dims,
                               std::vector<int64_t>& dy_bd_dims) const {
    for (size_t i = 0; i < dx_dims.size() - 2; ++i) {
      if (dx_dims[i] != dy_dims[i]) {
        if (dx_dims[i] == 1) {
          dx_bd_dims[i] = dy_dims[i];
        } else {
          dy_bd_dims[i] = dx_dims[i];
        }
      }
    }
266

267 268 269 270 271 272 273 274
    dx_tmp->Resize(make_ddim(dx_bd_dims));
    dx_tmp->mutable_data<T>(ctx.GetPlace());
    dy_tmp->Resize(make_ddim(dy_bd_dims));
    dy_tmp->mutable_data<T>(ctx.GetPlace());
  }

  void ReduceSumForMatmulGradOutput(const ExecutionContext& ctx,
                                    const MKLDNNDeviceContext& dev_ctx,
275
                                    const dnnl::engine onednn_engine,
276 277 278
                                    const Tensor* dx_tmp, Tensor* dx,
                                    std::vector<int64_t> dx_dims) const {
    paddle::platform::ReductionMKLDNNHandler<T> handler(
279 280
        dnnl::algorithm::reduction_sum, 0.0f, 0.0f, onednn_engine,
        ctx.GetPlace(), dx_tmp, dx, dx_dims);
281 282 283 284 285 286

    auto src_memory_p = handler.AcquireSrcMemory(dx_tmp);
    auto dst_memory_p = handler.AcquireDstMemory(dx);

    std::unordered_map<int, dnnl::memory> reduction_args = {
        {DNNL_ARG_SRC, *src_memory_p}, {DNNL_ARG_DST, *dst_memory_p}};
287 288

    auto& astream = MKLDNNDeviceContext::tls().get_stream();
289 290 291
    auto reduction_p = handler.AcquireForwardPrimitive();

    reduction_p->execute(astream, reduction_args);
292
    astream.wait();
293
  }
294

295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
  void RunKernel(const ExecutionContext& ctx) const {
    const auto& dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
    const auto& onednn_engine = dev_ctx.GetEngine();

    auto* x = ctx.Input<Tensor>("X");
    auto* y = ctx.Input<Tensor>("Y");

    auto x_dims = vectorize(x->dims());
    auto y_dims = vectorize(y->dims());

    bool is_broadcast = true;
    if (x_dims.size() <= 2 || y_dims.size() <= 2) {
      is_broadcast = false;
    } else if (x_dims.size() != y_dims.size()) {
      is_broadcast = true;
    } else {
      is_broadcast =
          !std::equal(x_dims.cbegin(), x_dims.cbegin() + x_dims.size() - 2,
                      y_dims.cbegin());
    }

    // if no broadcasting is needed, we can simply use matmul's grad and avoid
    // using reduce_sum
    if (!is_broadcast) {
      paddle::operators::MatMulGradMKLDNNKernel<T>::Compute(ctx);
      return;
    }

    auto* dout = ctx.Input<Tensor>(GradVarName("Out"));
    auto* dx = ctx.Output<Tensor>(GradVarName("X"));
    auto* dy = ctx.Output<Tensor>(GradVarName("Y"));

    bool trans_x = ctx.Attr<bool>("trans_x");
    bool trans_y = ctx.Attr<bool>("trans_y");
    auto dout_dims = vectorize(dout->dims());

    int ndims = std::max(x->dims().size(), y->dims().size());
    ndims = std::max(ndims, 3);

    // in broadcasting scenario new memory is required because
    // reduce sum must be calculated upon broadcasted dims
    Tensor dx_tmp, dy_tmp;

    std::vector<int64_t> dx_bd_dims(x_dims);
    std::vector<int64_t> dy_bd_dims(y_dims);

    CalculateGradMatrixDims(ctx, &dx_tmp, &dy_tmp, x_dims, y_dims, dx_bd_dims,
                            dy_bd_dims);

    if (trans_x && trans_y) {
      this->ExecuteMatMul(ctx, dev_ctx, onednn_engine, ctx.GetPlace(), y,
                          y_dims, true, dout, dout_dims, true, &dx_tmp,
                          dx_bd_dims, 1);
      this->ExecuteMatMul(ctx, dev_ctx, onednn_engine, ctx.GetPlace(), dout,
                          dout_dims, true, x, x_dims, true, &dy_tmp, dy_bd_dims,
                          2);
    } else if (trans_x) {
      this->ExecuteMatMul(ctx, dev_ctx, onednn_engine, ctx.GetPlace(), y,
                          y_dims, false, dout, dout_dims, true, &dx_tmp,
                          dx_bd_dims, 1);
      this->ExecuteMatMul(ctx, dev_ctx, onednn_engine, ctx.GetPlace(), x,
                          x_dims, false, dout, dout_dims, false, &dy_tmp,
                          dy_bd_dims, 2);
    } else if (trans_y) {
      this->ExecuteMatMul(ctx, dev_ctx, onednn_engine, ctx.GetPlace(), dout,
                          dout_dims, false, y, y_dims, false, &dx_tmp,
                          dx_bd_dims, 1);
      this->ExecuteMatMul(ctx, dev_ctx, onednn_engine, ctx.GetPlace(), dout,
                          dout_dims, true, x, x_dims, false, &dy_tmp,
                          dy_bd_dims, 2);
    } else {
      this->ExecuteMatMul(ctx, dev_ctx, onednn_engine, ctx.GetPlace(), dout,
                          dout_dims, false, y, y_dims, true, &dx_tmp,
                          dx_bd_dims, 1);
      this->ExecuteMatMul(ctx, dev_ctx, onednn_engine, ctx.GetPlace(), x,
                          x_dims, true, dout, dout_dims, false, &dy_tmp,
                          dy_bd_dims, 2);
    }

    if (x_dims != dx_bd_dims) {
      ReduceSumForMatmulGradOutput(ctx, dev_ctx, onednn_engine, &dx_tmp, dx,
                                   x_dims);
    } else {
      *dx = std::move(dx_tmp);
    }
    if (y_dims != dy_bd_dims) {
      ReduceSumForMatmulGradOutput(ctx, dev_ctx, onednn_engine, &dy_tmp, dy,
                                   y_dims);
    } else {
      *dy = std::move(dy_tmp);
    }

    dx->set_layout(paddle::framework::DataLayout::kMKLDNN);
    dx->set_format(x->format());
    dy->set_layout(paddle::framework::DataLayout::kMKLDNN);
    dy->set_format(y->format());
391 392
  }
};
393
}  // anonymous namespace
394 395 396
namespace ops = paddle::operators;

REGISTER_OP_KERNEL(matmul_v2, MKLDNN, ::paddle::platform::CPUPlace,
397 398
                   MatMulV2MKLDNNKernel<float>,
                   MatMulV2MKLDNNKernel<paddle::platform::bfloat16>);
399

400 401 402
REGISTER_OP_KERNEL(matmul_v2_grad, MKLDNN, ::paddle::platform::CPUPlace,
                   MatMulV2GradMKLDNNKernel<float>,
                   MatMulV2GradMKLDNNKernel<paddle::platform::bfloat16>);