activation.py 7.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from paddle.nn import Layer

17 18
from .. import functional as F

19 20 21 22 23
__all__ = []


class ReLU(Layer):
    """
U
ustiniankw 已提交
24

25
    Sparse ReLU Activation, requiring x to be a SparseCooTensor or SparseCsrTensor.
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

    .. math::

        ReLU(x) = max(x, 0)

    Parameters:
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Sparse Tensor with any shape.
        - output: Sparse Tensor with the same shape as input.

    Examples:
        .. code-block:: python

            import paddle
43 44 45

            dense_x = paddle.to_tensor([-2., 0., 1.])
            sparse_x = dense_x.to_sparse_coo(1)
46
            relu = paddle.sparse.nn.ReLU()
47 48
            out = relu(sparse_x)
            # [0., 0., 1.]
U
ustiniankw 已提交
49

50 51 52
    """

    def __init__(self, name=None):
53
        super().__init__()
54 55 56 57 58 59
        self._name = name

    def forward(self, x):
        return F.relu(x, self._name)

    def extra_repr(self):
60
        name_str = f'name={self._name}' if self._name else ''
61
        return name_str
62 63 64


class Softmax(Layer):
65
    r"""
U
ustiniankw 已提交
66

67
    Sparse Softmax Activation, requiring x to be a SparseCooTensor or SparseCsrTensor.
68 69

    Note:
70
        Only support axis=-1 for SparseCsrTensor, which is faster when read data
71 72
        by row (axis=-1).

73 74
    Transform x to dense matix, and :math:`i` is row index, :math:`j` is column index.
    If axis=-1, We have:
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92

    .. math::

        softmax_ij = \frac{\exp(x_ij - max_j(x_ij))}{\sum_j(exp(x_ij - max_j(x_ij))}

    Parameters:
        axis (int, optional): The axis along which to perform softmax calculations. Only support -1 for SparseCsrTensor.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: SparseCooTensor / SparseCsrTensor with any shape.
        - output: Sparse Tensor with the same shape as input.

    Examples:
        .. code-block:: python

            import paddle
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
            paddle.seed(2022)

            mask = paddle.rand((3, 4)) < 0.7
            x = paddle.rand((3, 4)) * mask
            print(x)
            # Tensor(shape=[3, 4], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[0.08325022, 0.27030438, 0.        , 0.83883715],
            #         [0.        , 0.95856029, 0.24004589, 0.        ],
            #         [0.14500992, 0.17088132, 0.        , 0.        ]])

            csr = x.to_sparse_csr()
            print(csr)
            # Tensor(shape=[3, 4], dtype=paddle.float32, place=Place(gpu:0), stop_gradient=True,
            #        crows=[0, 3, 5, 7],
            #        cols=[0, 1, 3, 1, 2, 0, 1],
            #        values=[0.08325022, 0.27030438, 0.83883715, 0.95856029, 0.24004589,
            #                0.14500992, 0.17088132])
110

111
            softmax = paddle.sparse.nn.Softmax()
112
            out = softmax(csr)
113 114 115 116 117 118
            print(out)
            # Tensor(shape=[3, 4], dtype=paddle.float32, place=Place(gpu:0), stop_gradient=True,
            #        crows=[0, 3, 5, 7],
            #        cols=[0, 1, 3, 1, 2, 0, 1],
            #        values=[0.23070428, 0.27815846, 0.49113727, 0.67227983, 0.32772022,
            #                0.49353254, 0.50646752])
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134

            coo = x.to_sparse_coo(sparse_dim=2)
            print(coo)
            # Tensor(shape=[3, 4], dtype=paddle.float32, place=Place(gpu:0), stop_gradient=True,
            #        indices=[[0, 0, 0, 1, 1, 1, 2, 2, 2, 2],
            #                 [0, 1, 3, 0, 2, 3, 0, 1, 2, 3]],
            #        values=[0.83438963, 0.70008713, 0.88831252, 0.02200012, 0.75432241,
            #                0.65136462, 0.96088767, 0.82938021, 0.35367414, 0.86653489])

            out = softmax(coo)
            print(out)
            # Tensor(shape=[3, 4], dtype=paddle.float32, place=Place(gpu:0), stop_gradient=True,
            #        indices=[[0, 0, 0, 1, 1, 1, 2, 2, 2, 2],
            #                 [0, 1, 3, 0, 2, 3, 0, 1, 2, 3]],
            #        values=[0.34132853, 0.29843226, 0.36023924, 0.20176250, 0.41964683,
            #                0.37859073, 0.30015597, 0.26316857, 0.16354507, 0.27313042])
135 136 137
    """

    def __init__(self, axis=-1, name=None):
138
        super().__init__()
139 140 141 142 143 144 145
        self._axis = axis
        self._name = name

    def forward(self, x):
        return F.softmax(x, self._axis, self._name)

    def extra_repr(self):
146
        name_str = f'name={self._name}' if self._name else ''
147
        return name_str
148 149 150 151


class ReLU6(Layer):
    """
U
ustiniankw 已提交
152

153 154 155 156
    Sparse ReLU6 Activation, requiring x to be a SparseCooTensor or SparseCsrTensor.

    .. math::

157
        ReLU6(x) = min(max(0,x), 6)
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173

    Parameters:
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Sparse Tensor with any shape.
        - output: Sparse Tensor with the same shape as input.

    Examples:
        .. code-block:: python

            import paddle

            dense_x = paddle.to_tensor([-2., 0., 8.])
            sparse_x = dense_x.to_sparse_coo(1)
174
            relu6 = paddle.sparse.nn.ReLU6()
175
            out = relu6(sparse_x)
U
ustiniankw 已提交
176

177 178 179
    """

    def __init__(self, name=None):
180
        super().__init__()
181 182 183 184 185 186
        self._name = name

    def forward(self, x):
        return F.relu6(x, self._name)

    def extra_repr(self):
187
        name_str = f'name={self._name}' if self._name else ''
188 189 190 191
        return name_str


class LeakyReLU(Layer):
192
    r"""
U
ustiniankw 已提交
193

194
    Sparse Leaky ReLU Activation, requiring x to be a SparseCooTensor or SparseCsrTensor.
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222

    .. math::

        LeakyReLU(x)=
            \left\{
                \begin{array}{rcl}
                    x, & & if \ x >= 0 \\
                    negative\_slope * x, & & otherwise \\
                \end{array}
            \right.

    Parameters:
        negative_slope (float, optional): Slope of the activation function at
            :math:`x < 0` . Default is 0.01.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Sparse Tensor with any shape.
        - output: Sparse Tensor with the same shape as input.

    Examples:
        .. code-block:: python

            import paddle

            dense_x = paddle.to_tensor([-2., 0., 5.])
            sparse_x = dense_x.to_sparse_coo(1)
223
            leaky_relu = paddle.sparse.nn.LeakyReLU(0.5)
224
            out = leaky_relu(sparse_x)
U
ustiniankw 已提交
225

226 227 228
    """

    def __init__(self, negative_slope=0.01, name=None):
229
        super().__init__()
230 231 232 233 234 235 236
        self._negative_slope = negative_slope
        self._name = name

    def forward(self, x):
        return F.leaky_relu(x, self._negative_slope, self._name)

    def extra_repr(self):
237
        name_str = f'name={self._name}' if self._name else ''
238
        return name_str