activation.py 6.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from .. import functional as F
from paddle.nn import Layer

__all__ = []


class ReLU(Layer):
    """
23
    Sparse ReLU Activation, requiring x to be a SparseCooTensor or SparseCsrTensor.
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

    .. math::

        ReLU(x) = max(x, 0)

    Parameters:
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Sparse Tensor with any shape.
        - output: Sparse Tensor with the same shape as input.

    Examples:
        .. code-block:: python

            import paddle
41 42 43

            dense_x = paddle.to_tensor([-2., 0., 1.])
            sparse_x = dense_x.to_sparse_coo(1)
44
            relu = paddle.sparse.nn.ReLU()
45 46
            out = relu(sparse_x)
            # [0., 0., 1.]
47 48 49
    """

    def __init__(self, name=None):
50
        super().__init__()
51 52 53 54 55 56 57 58
        self._name = name

    def forward(self, x):
        return F.relu(x, self._name)

    def extra_repr(self):
        name_str = 'name={}'.format(self._name) if self._name else ''
        return name_str
59 60 61


class Softmax(Layer):
62
    r"""
63
    Sparse Softmax Activation, requiring x to be a SparseCooTensor or SparseCsrTensor.
64 65

    Note:
66
        Only support axis=-1 for SparseCsrTensor, which is faster when read data
67 68
        by row (axis=-1).

69 70
    Transform x to dense matix, and :math:`i` is row index, :math:`j` is column index.
    If axis=-1, We have:
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88

    .. math::

        softmax_ij = \frac{\exp(x_ij - max_j(x_ij))}{\sum_j(exp(x_ij - max_j(x_ij))}

    Parameters:
        axis (int, optional): The axis along which to perform softmax calculations. Only support -1 for SparseCsrTensor.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: SparseCooTensor / SparseCsrTensor with any shape.
        - output: Sparse Tensor with the same shape as input.

    Examples:
        .. code-block:: python

            import paddle
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
            paddle.seed(2022)

            mask = paddle.rand((3, 4)) < 0.7
            x = paddle.rand((3, 4)) * mask
            print(x)
            # Tensor(shape=[3, 4], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[0.08325022, 0.27030438, 0.        , 0.83883715],
            #         [0.        , 0.95856029, 0.24004589, 0.        ],
            #         [0.14500992, 0.17088132, 0.        , 0.        ]])

            csr = x.to_sparse_csr()
            print(csr)
            # Tensor(shape=[3, 4], dtype=paddle.float32, place=Place(gpu:0), stop_gradient=True,
            #        crows=[0, 3, 5, 7],
            #        cols=[0, 1, 3, 1, 2, 0, 1],
            #        values=[0.08325022, 0.27030438, 0.83883715, 0.95856029, 0.24004589,
            #                0.14500992, 0.17088132])
106

107
            softmax = paddle.sparse.nn.Softmax()
108
            out = softmax(csr)
109 110 111 112 113 114
            print(out)
            # Tensor(shape=[3, 4], dtype=paddle.float32, place=Place(gpu:0), stop_gradient=True,
            #        crows=[0, 3, 5, 7],
            #        cols=[0, 1, 3, 1, 2, 0, 1],
            #        values=[0.23070428, 0.27815846, 0.49113727, 0.67227983, 0.32772022,
            #                0.49353254, 0.50646752])
115 116 117
    """

    def __init__(self, axis=-1, name=None):
118
        super().__init__()
119 120 121 122 123 124 125 126 127
        self._axis = axis
        self._name = name

    def forward(self, x):
        return F.softmax(x, self._axis, self._name)

    def extra_repr(self):
        name_str = 'name={}'.format(self._name) if self._name else ''
        return name_str
128 129 130 131 132 133 134 135


class ReLU6(Layer):
    """
    Sparse ReLU6 Activation, requiring x to be a SparseCooTensor or SparseCsrTensor.

    .. math::

136
        ReLU6(x) = min(max(0,x), 6)
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152

    Parameters:
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Sparse Tensor with any shape.
        - output: Sparse Tensor with the same shape as input.

    Examples:
        .. code-block:: python

            import paddle

            dense_x = paddle.to_tensor([-2., 0., 8.])
            sparse_x = dense_x.to_sparse_coo(1)
153
            relu6 = paddle.sparse.nn.ReLU6()
154 155 156 157
            out = relu6(sparse_x)
    """

    def __init__(self, name=None):
158
        super().__init__()
159 160 161 162 163 164 165 166 167 168 169
        self._name = name

    def forward(self, x):
        return F.relu6(x, self._name)

    def extra_repr(self):
        name_str = 'name={}'.format(self._name) if self._name else ''
        return name_str


class LeakyReLU(Layer):
170
    r"""
171
    Sparse Leaky ReLU Activation, requiring x to be a SparseCooTensor or SparseCsrTensor.
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199

    .. math::

        LeakyReLU(x)=
            \left\{
                \begin{array}{rcl}
                    x, & & if \ x >= 0 \\
                    negative\_slope * x, & & otherwise \\
                \end{array}
            \right.

    Parameters:
        negative_slope (float, optional): Slope of the activation function at
            :math:`x < 0` . Default is 0.01.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        - input: Sparse Tensor with any shape.
        - output: Sparse Tensor with the same shape as input.

    Examples:
        .. code-block:: python

            import paddle

            dense_x = paddle.to_tensor([-2., 0., 5.])
            sparse_x = dense_x.to_sparse_coo(1)
200
            leaky_relu = paddle.sparse.nn.LeakyReLU(0.5)
201 202 203 204
            out = leaky_relu(sparse_x)
    """

    def __init__(self, negative_slope=0.01, name=None):
205
        super().__init__()
206 207 208 209 210 211 212 213 214
        self._negative_slope = negative_slope
        self._name = name

    def forward(self, x):
        return F.leaky_relu(x, self._negative_slope, self._name)

    def extra_repr(self):
        name_str = 'name={}'.format(self._name) if self._name else ''
        return name_str