Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
460d5040
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
460d5040
编写于
11月 17, 2022
作者:
K
Kevin吴嘉文
提交者:
GitHub
11月 17, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Remove reduntant numpy input in Example code, test=document_fix (#47916)
上级
b7e120d2
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
124 addition
and
115 deletion
+124
-115
python/paddle/distributed/utils/moe_utils.py
python/paddle/distributed/utils/moe_utils.py
+13
-20
python/paddle/fft.py
python/paddle/fft.py
+67
-57
python/paddle/sparse/nn/functional/activation.py
python/paddle/sparse/nn/functional/activation.py
+21
-18
python/paddle/sparse/nn/layer/activation.py
python/paddle/sparse/nn/layer/activation.py
+23
-20
未找到文件。
python/paddle/distributed/utils/moe_utils.py
浏览文件 @
460d5040
...
...
@@ -71,7 +71,6 @@ def global_scatter(
.. code-block:: python
# required: distributed
import numpy as np
import paddle
from paddle.distributed import init_parallel_env
init_parallel_env()
...
...
@@ -79,17 +78,14 @@ def global_scatter(
world_size = 2
d_model = 2
in_feat = d_model
local_input_buf =
np.array
([[1, 2],[3, 4],[5, 6],[7, 8],[9, 10]],
\
dtype=np.float32
)
local_input_buf =
paddle.to_tensor
([[1, 2],[3, 4],[5, 6],[7, 8],[9, 10]],
\
dtype='float32', stop_gradient=False
)
if paddle.distributed.ParallelEnv().local_rank == 0:
local_count =
np.array([2, 1, 1, 1]
)
global_count =
np.array([2, 1, 1, 1]
)
local_count =
paddle.to_tensor([2, 1, 1, 1], dtype="int64"
)
global_count =
paddle.to_tensor([2, 1, 1, 1], dtype="int64"
)
else:
local_count = np.array([1, 1, 2, 1])
global_count = np.array([1, 1, 2, 1])
local_input_buf = paddle.to_tensor(local_input_buf, dtype="float32", stop_gradient=False)
local_count = paddle.to_tensor(local_count, dtype="int64")
global_count = paddle.to_tensor(global_count, dtype="int64")
local_count = paddle.to_tensor([1, 1, 2, 1], dtype="int64")
global_count = paddle.to_tensor([1, 1, 2, 1], dtype="int64")
a = paddle.distributed.utils.global_scatter(local_input_buf,
\
local_count, global_count)
a.stop_gradient = False
...
...
@@ -193,7 +189,6 @@ def global_gather(
.. code-block:: python
# required: distributed
import numpy as np
import paddle
from paddle.distributed import init_parallel_env
init_parallel_env()
...
...
@@ -201,17 +196,15 @@ def global_gather(
world_size = 2
d_model = 2
in_feat = d_model
local_input_buf =
np.array
([[1, 2],[3, 4],[5, 6],[7, 8],[9, 10]],
\
dtype=
np.float32
)
local_input_buf =
paddle._to_tensor
([[1, 2],[3, 4],[5, 6],[7, 8],[9, 10]],
\
dtype=
'float32', stop_gradient=False
)
if paddle.distributed.ParallelEnv().local_rank == 0:
local_count =
np.array([2, 1, 1, 1]
)
global_count =
np.array([2, 1, 1, 1]
)
local_count =
paddle.to_tensor([2, 1, 1, 1], dtype="int64"
)
global_count =
paddle.to_tensor([2, 1, 1, 1], dtype="int64"
)
else:
local_count = np.array([1, 1, 2, 1])
global_count = np.array([1, 1, 2, 1])
local_input_buf = paddle.to_tensor(local_input_buf, dtype="float32", stop_gradient=False)
local_count = paddle.to_tensor(local_count, dtype="int64")
global_count = paddle.to_tensor(global_count, dtype="int64")
local_count = paddle.to_tensor([1, 1, 2, 1], dtype="int64")
global_count = paddle.to_tensor([1, 1, 2, 1], dtype="int64")
a = paddle.distributed.utils.global_gather(local_input_buf, local_count, global_count)
print(a)
# out for rank 0: [[1, 2], [3, 4], [7, 8], [1, 2], [7, 8]]
...
...
python/paddle/fft.py
浏览文件 @
460d5040
...
...
@@ -521,26 +521,29 @@ def fftn(x, s=None, axes=None, norm="backward", name=None):
.. code-block:: python
import numpy as np
import paddle
x = np.mgrid[:4, :4, :4][1]
xp = paddle.to_tensor(x)
fftn_xp = paddle.fft.fftn(xp, axes=(1, 2)).numpy()
print(fftn_xp)
# [[[24.+0.j 0.+0.j 0.+0.j 0.-0.j]
arr = paddle.arange(4, dtype="float64")
x = paddle.meshgrid(arr, arr, arr)[1]
fftn_xp = paddle.fft.fftn(x, axes=(1, 2))
print(fftn_xp.numpy())
# [[[24.+0.j 0.+0.j 0.+0.j 0.-0.j]
# [-8.+8.j 0.+0.j 0.+0.j 0.-0.j]
# [-8.+0.j 0.+0.j 0.+0.j 0.-0.j]
# [-8.-8.j 0.+0.j 0.+0.j 0.-0.j]]
# [[24.+0.j 0.+0.j 0.+0.j 0.-0.j]
# [[24.+0.j 0.+0.j 0.+0.j 0.-0.j]
# [-8.+8.j 0.+0.j 0.+0.j 0.-0.j]
# [-8.+0.j 0.+0.j 0.+0.j 0.-0.j]
# [-8.-8.j 0.+0.j 0.+0.j 0.-0.j]]
# [[24.+0.j 0.+0.j 0.+0.j 0.-0.j]
# [[24.+0.j 0.+0.j 0.+0.j 0.-0.j]
# [-8.+8.j 0.+0.j 0.+0.j 0.-0.j]
# [-8.+0.j 0.+0.j 0.+0.j 0.-0.j]
# [-8.-8.j 0.+0.j 0.+0.j 0.-0.j]]
# [[24.+0.j 0.+0.j 0.+0.j 0.-0.j]
# [[24.+0.j 0.+0.j 0.+0.j 0.-0.j]
# [-8.+8.j 0.+0.j 0.+0.j 0.-0.j]
# [-8.+0.j 0.+0.j 0.+0.j 0.-0.j]
# [-8.-8.j 0.+0.j 0.+0.j 0.-0.j]]]
...
...
@@ -901,15 +904,16 @@ def fft2(x, s=None, axes=(-2, -1), norm="backward", name=None):
.. code-block:: python
import numpy as np
import paddle
x = np.mgrid[:2, :2][1]
xp = paddle.to_tensor(x)
fft2_xp = paddle.fft.fft2(xp).numpy()
arr = paddle.arange(2, dtype="float64")
x = paddle.meshgrid(arr, arr)[0]
fft2_xp = paddle.fft.fft2(x)
print(fft2_xp)
# [[ 2.+0.j -2.+0.j]
# [ 0.+0.j 0.+0.j]]
# Tensor(shape=[2, 2], dtype=complex128, place=Place(gpu:0), stop_gradient=True,
# [[ (2+0j), 0j ],
# [(-2+0j), 0j ]])
"""
_check_at_least_ndim
(
x
,
2
)
...
...
@@ -971,15 +975,16 @@ def ifft2(x, s=None, axes=(-2, -1), norm="backward", name=None):
.. code-block:: python
import numpy as np
import paddle
x = np.mgrid[:2, :2][1]
xp = paddle.to_tensor(x)
ifft2_xp = paddle.fft.ifft2(xp).numpy()
arr = paddle.arange(2, dtype="float64")
x = paddle.meshgrid(arr, arr)[0]
ifft2_xp = paddle.fft.ifft2(x)
print(ifft2_xp)
# [[ 0.5+0.j -0.5+0.j]
# [ 0. +0.j 0. +0.j]]
# Tensor(shape=[2, 2], dtype=complex128, place=Place(gpu:0), stop_gradient=True,
# [[ (0.5+0j), 0j ],
# [(-0.5+0j), 0j ]])
"""
_check_at_least_ndim
(
x
,
2
)
if
s
is
not
None
:
...
...
@@ -1033,16 +1038,17 @@ def rfft2(x, s=None, axes=(-2, -1), norm="backward", name=None):
.. code-block:: python
import paddle
import numpy as np
x = paddle.to_tensor(np.mgrid[:5, :5][0].astype(np.float32))
print(paddle.fft.rfft2(x))
# Tensor(shape=[5, 3], dtype=complex64, place=CUDAPlace(0), stop_gradient=True,
# [[ (50+0j) , (1.1920928955078125e-07+0j) , 0j ],
# [(-12.5+17.204774856567383j) , (-9.644234211236835e-08+7.006946134424652e-08j) , 0j ],
# [(-12.500000953674316+4.061495304107666j) , (3.6837697336977726e-08-1.1337477445749755e-07j), 0j ],
# [(-12.500000953674316-4.061495304107666j) , (3.6837697336977726e-08+1.1337477445749755e-07j), 0j ],
# [(-12.5-17.204774856567383j) , (-9.644234211236835e-08-7.006946134424652e-08j) , 0j ]])
arr = paddle.arange(5, dtype="float64")
x = paddle.meshgrid(arr, arr)[0]
result = paddle.fft.rfft2(x)
print(result.numpy())
# [[ 50. +0.j 0. +0.j 0. +0.j ]
# [-12.5+17.20477401j 0. +0.j 0. +0.j ]
# [-12.5 +4.0614962j 0. +0.j 0. +0.j ]
# [-12.5 -4.0614962j 0. +0.j 0. +0.j ]
# [-12.5-17.20477401j 0. +0.j 0. +0.j ]]
"""
_check_at_least_ndim
(
x
,
2
)
if
s
is
not
None
:
...
...
@@ -1192,13 +1198,20 @@ def ihfft2(x, s=None, axes=(-2, -1), norm="backward", name=None):
.. code-block:: python
import numpy as np
import paddle
x = np.mgrid[:5, :5][0].astype(np.float64)
xp = paddle.to_tensor(x)
ihfft2_xp = paddle.fft.ihfft2(xp).numpy()
print(ihfft2_xp)
arr = paddle.arange(5, dtype="float64")
x = paddle.meshgrid(arr, arr)[0]
print(x)
# Tensor(shape=[5, 5], dtype=float64, place=Place(gpu:0), stop_gradient=True,
# [[0., 0., 0., 0., 0.],
# [1., 1., 1., 1., 1.],
# [2., 2., 2., 2., 2.],
# [3., 3., 3., 3., 3.],
# [4., 4., 4., 4., 4.]])
ihfft2_xp = paddle.fft.ihfft2(x)
print(ihfft2_xp.numpy())
# [[ 2. +0.j 0. +0.j 0. +0.j ]
# [-0.5-0.68819096j 0. +0.j 0. +0.j ]
# [-0.5-0.16245985j 0. +0.j 0. +0.j ]
...
...
@@ -1250,15 +1263,11 @@ def fftfreq(n, d=1.0, dtype=None, name=None):
.. code-block:: python
import numpy as np
import paddle
x = np.array([3, 1, 2, 2, 3], dtype=float)
scalar_temp = 0.5
n = x.size
fftfreq_xp = paddle.fft.fftfreq(n, d=scalar_temp)
fftfreq_xp = paddle.fft.fftfreq(5, d=scalar_temp)
print(fftfreq_xp)
# Tensor(shape=[5], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
# [ 0. , 0.40000001, 0.80000001, -0.80000001, -0.40000001])
"""
...
...
@@ -1301,13 +1310,10 @@ def rfftfreq(n, d=1.0, dtype=None, name=None):
.. code-block:: python
import numpy as np
import paddle
x = np.array([3, 1, 2, 2, 3], dtype=float)
scalar_temp = 0.3
n = x.size
rfftfreq_xp = paddle.fft.rfftfreq(n, d=scalar_temp)
rfftfreq_xp = paddle.fft.rfftfreq(5, d=scalar_temp)
print(rfftfreq_xp)
# Tensor(shape=[3], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
...
...
@@ -1343,15 +1349,17 @@ def fftshift(x, axes=None, name=None):
.. code-block:: python
import numpy as np
import paddle
x = np.array([3, 1, 2, 2, 3], dtype=float)
n = x.size
fftfreq_xp = paddle.fft.fftfreq(n, d=0.3)
res = paddle.fft.fftshift(fftfreq_xp).numpy()
fftfreq_xp = paddle.fft.fftfreq(5, d=0.3)
print(fftfreq_xp)
# Tensor(shape=[5], dtype=float32, place=Place(gpu:0), stop_gradient=True,
# [ 0. , 0.66666669, 1.33333337, -1.33333337, -0.66666669])
res = paddle.fft.fftshift(fftfreq_xp)
print(res)
# [-1.3333334 -0.6666667 0. 0.6666667 1.3333334]
# Tensor(shape=[5], dtype=float32, place=Place(gpu:0), stop_gradient=True,
# [-1.33333337, -0.66666669, 0. , 0.66666669, 1.33333337])
"""
shape
=
paddle
.
shape
(
x
)
...
...
@@ -1386,15 +1394,17 @@ def ifftshift(x, axes=None, name=None):
.. code-block:: python
import numpy as np
import paddle
x = np.array([3, 1, 2, 2, 3], dtype=float)
n = x.size
fftfreq_xp = paddle.fft.fftfreq(n, d=0.3)
res = paddle.fft.ifftshift(fftfreq_xp).numpy()
fftfreq_xp = paddle.fft.fftfreq(5, d=0.3)
print(fftfreq_xp)
# Tensor(shape=[5], dtype=float32, place=Place(gpu:0), stop_gradient=True,
# [ 0. , 0.66666669, 1.33333337, -1.33333337, -0.66666669])
res = paddle.fft.ifftshift(fftfreq_xp)
print(res)
# [ 1.3333334 -1.3333334 -0.6666667 0. 0.6666667]
# Tensor(shape=[5], dtype=float32, place=Place(gpu:0), stop_gradient=True,
# [ 1.33333337, -1.33333337, -0.66666669, 0. , 0.66666669])
"""
shape
=
paddle
.
shape
(
x
)
...
...
python/paddle/sparse/nn/functional/activation.py
浏览文件 @
460d5040
...
...
@@ -87,28 +87,31 @@ def softmax(x, axis=-1, name=None):
.. code-block:: python
import paddle
import numpy as np
paddle.seed(100)
mask = np.random.rand(3, 4) < 0.5
np_x = np.random.rand(3, 4) * mask
# [[0. 0. 0.96823406 0.19722934]
# [0.94373937 0. 0.02060066 0.71456372]
# [0. 0. 0. 0.98275049]]
csr = paddle.to_tensor(np_x).to_sparse_csr()
# Tensor(shape=[3, 4], dtype=paddle.float64, place=Place(gpu:0), stop_gradient=True,
# crows=[0, 2, 5, 6],
# cols=[2, 3, 0, 2, 3, 3],
# values=[0.96823406, 0.19722934, 0.94373937, 0.02060066, 0.71456372,
# 0.98275049])
mask = paddle.rand((3, 4)) < 0.5
x = paddle.rand((3, 4)) * mask
print(x)
# Tensor(shape=[3, 4], dtype=float32, place=Place(gpu:0), stop_gradient=True,
# [[0.83438963, 0.70008713, 0. , 0.88831252],
# [0.02200012, 0. , 0.75432241, 0.65136462],
# [0.96088767, 0.82938021, 0.35367414, 0.86653489]])
csr = x.to_sparse_csr()
print(csr)
# Tensor(shape=[3, 4], dtype=paddle.float32, place=Place(gpu:0), stop_gradient=True,
# crows=[0 , 3 , 6 , 10],
# cols=[0, 1, 3, 0, 2, 3, 0, 1, 2, 3],
# values=[0.83438963, 0.70008713, 0.88831252, 0.02200012, 0.75432241,
# 0.65136462, 0.96088767, 0.82938021, 0.35367414, 0.86653489])
out = paddle.sparse.nn.functional.softmax(csr)
# Tensor(shape=[3, 4], dtype=paddle.float64, place=Place(gpu:0), stop_gradient=True,
# crows=[0, 2, 5, 6],
# cols=[2, 3, 0, 2, 3, 3],
# values=[0.68373820, 0.31626180, 0.45610887, 0.18119845, 0.36269269,
# 1. ])
print(out)
# Tensor(shape=[3, 4], dtype=paddle.float32, place=Place(gpu:0), stop_gradient=True,
# crows=[0 , 3 , 6 , 10],
# cols=[0, 1, 3, 0, 2, 3, 0, 1, 2, 3],
# values=[0.34132850, 0.29843223, 0.36023921, 0.20176248, 0.41964680,
# 0.37859070, 0.30015594, 0.26316854, 0.16354506, 0.27313042])
"""
return
_C_ops
.
sparse_softmax
(
x
,
axis
)
...
...
python/paddle/sparse/nn/layer/activation.py
浏览文件 @
460d5040
...
...
@@ -86,29 +86,32 @@ class Softmax(Layer):
.. code-block:: python
import paddle
import numpy as np
paddle.seed(100)
mask = np.random.rand(3, 4) < 0.5
np_x = np.random.rand(3, 4) * mask
# [[0. 0. 0.96823406 0.19722934]
# [0.94373937 0. 0.02060066 0.71456372]
# [0. 0. 0. 0.98275049]]
csr = paddle.to_tensor(np_x).to_sparse_csr()
# Tensor(shape=[3, 4], dtype=paddle.float64, place=Place(gpu:0), stop_gradient=True,
# crows=[0, 2, 5, 6],
# cols=[2, 3, 0, 2, 3, 3],
# values=[0.96823406, 0.19722934, 0.94373937, 0.02060066, 0.71456372,
# 0.98275049])
paddle.seed(2022)
mask = paddle.rand((3, 4)) < 0.7
x = paddle.rand((3, 4)) * mask
print(x)
# Tensor(shape=[3, 4], dtype=float32, place=Place(gpu:0), stop_gradient=True,
# [[0.08325022, 0.27030438, 0. , 0.83883715],
# [0. , 0.95856029, 0.24004589, 0. ],
# [0.14500992, 0.17088132, 0. , 0. ]])
csr = x.to_sparse_csr()
print(csr)
# Tensor(shape=[3, 4], dtype=paddle.float32, place=Place(gpu:0), stop_gradient=True,
# crows=[0, 3, 5, 7],
# cols=[0, 1, 3, 1, 2, 0, 1],
# values=[0.08325022, 0.27030438, 0.83883715, 0.95856029, 0.24004589,
# 0.14500992, 0.17088132])
softmax = paddle.sparse.nn.Softmax()
out = softmax(csr)
# Tensor(shape=[3, 4], dtype=paddle.float64, place=Place(gpu:0), stop_gradient=True,
# crows=[0, 2, 5, 6],
# cols=[2, 3, 0, 2, 3, 3],
# values=[0.68373820, 0.31626180, 0.45610887, 0.18119845, 0.36269269,
# 1. ])
print(out)
# Tensor(shape=[3, 4], dtype=paddle.float32, place=Place(gpu:0), stop_gradient=True,
# crows=[0, 3, 5, 7],
# cols=[0, 1, 3, 1, 2, 0, 1],
# values=[0.23070428, 0.27815846, 0.49113727, 0.67227983, 0.32772022,
# 0.49353254, 0.50646752])
"""
def
__init__
(
self
,
axis
=-
1
,
name
=
None
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录